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Metagenomics and metatranscriptomics are powerful methods to uncover key micro-

organisms and processes driving biogeochemical cycling in natural ecosystems.

Databases dedicated to depicting biogeochemical pathways (for example, metabolism

of dimethylsulfoniopropionate (DMSP), which is an abundant organosulfur compound)

from metagenomic/metatranscriptomic data are rarely seen. Additionally, a recognized

normalization model to estimate the relative abundance and environmental importance

of pathways from metagenomic and metatranscriptomic data has not been organized

to date. These limitations impact the ability to accurately relate key microbial-driven

biogeochemical processes to differences in environmental conditions. Thus, an easy-to-

use, specialized tool that infers and visually compares the potential for biogeochemical

processes, including DMSP cycling, is urgently required. To solve these issues, we

developed DiTing, a tool wrapper to infer and compare biogeochemical pathways

among a set of given metagenomic or metatranscriptomic reads in one step, based

on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and a manually created

DMSP cycling gene database. Accurate and specific formulae for over 100 pathways

were developed to calculate their relative abundance. Output reports detail the relative

abundance of biogeochemical pathways in both text and graphical format. DiTing

was applied to simulated metagenomic data and resulted in consistent genetic

features of simulated benchmark genomic data. Subsequently, when applied to

natural metagenomic and metatranscriptomic data from hydrothermal vents and the

Tara Ocean project, the functional profiles predicted by DiTing were correlated with

environmental condition changes. DiTing can now be confidently applied to wider

metagenomic and metatranscriptomic datasets, and it is available at https://github.com/

xuechunxu/DiTing.
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INTRODUCTION

Biogeochemical cycles mainly refer to the movement of chemical
substances (e.g., carbon, nitrogen, and sulfur) between the
biotic and the abiotic compartments, which impact climate
change and human health (Rousk and Bengtson, 2014; Abatenh,
2018). Microbial communities play integral and unique roles
in mediating global biogeochemical cycles. Applications of
sequencing techniques, such as amplicon sequencing (Bokulich
et al., 2013), whole-genome sequencing (Jones and Good,
2016; Xue et al., 2020b), genome-resolved metagenomics (Parks
et al., 2017), and shotgun metagenomic sequencing (Sharpton,
2014; Xue et al., 2020a), are used widely to characterize the
genetic potential of microbial communities. Metagenomics is an
important tool to unravel the diversity, function and ecology
of complex microbial ecosystems, via quantification of the
genetic potential for various biogeochemical pathways within
microbial communities (Riesenfeld et al., 2004; Pinnell and
Turner, 2019). Moreover, metatranscriptomic data present more
accurate scenarios of processes occurring within ecosystems
because these methodologies move past genetic potential and
report on the transcription of biogeochemical pathway genes
(Aguiar-Pulido et al., 2016; Shakya et al., 2019). Previous
studies have predicted community functions according to gene
annotation against several established databases, e.g., Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Ogata and Goto,
2000), COG (Tatusov et al., 2000), MetaCyc (Caspi et al.,
2006), Pfam (Finn et al., 2014), TIGRfam (Selengut et al.,
2007), SEED (Ross et al., 2014), and eggNOG (Huertacepas
et al., 2016). However, these functional annotations are not
dedicated to biogeochemical cycling and lack comprehensive
lists of annotated genes for important cycles. Another tool,
Functional Ontology Assignments for Metagenomes (FOAM),
although including biogeochemical cycling genes, does not
permit visualization to facilitate interpreting functional profiles,
and it annotates all protein sequences with a universal threshold
value, which may lead to prediction biases (Prestat et al.,
2014). Some tools can be used in the analysis of genome,
metagenome or metatranscriptome, e.g., METABOLIC (Zhou
et al., 2020), iPATH (Darzi et al., 2018), gapseq (Zimmermann
et al., 2021), MEGAN (Huson et al., 2007), and SAMSA2
(Westreich et al., 2018). The METABOLIC (Zhou et al.,
2020) toolkit can assess microbial ecology and biogeochemistry
based on evaluating the completeness of pathways in genomes
or/and metagenome-assembled genomes, but is not directly
based on calculating the relative abundance of pathways.
iPath (Darzi et al., 2018) and gapseq (Zimmermann et al.,
2021) are applications for the visualization and analysis of
metabolic pathways in a cellular genome or a set of gene
sequences, but not metagenomes. These two applications do
not specialize in the biogeochemical cycle and cannot calculate
the relative abundance of pathways. MEGAN (Huson et al.,
2007) is a program to analyze the taxonomical content of
metagenomes, but cannot access functional profiles. SAMSA2 is a
metatranscriptome analysis pipeline that can determine differing
features between individualmetatranscriptomes (Westreich et al.,
2018), but it does not focus on the biogeochemical cycle-related

genes and pathways, and cannot deal with metagenome.
Furthermore, some biogeochemical pathways, e.g., the cycling
of dimethylsulfoniopropionate (DMSP), which is a key marine
osmolyte, nutrient and signaling molecule with important roles
in sulfur cycling (Curson et al., 2011; Zhang et al., 2019), lack
accurate and reviewed databases for annotating the key metabolic
genes. Although a sulfur cycle database SCycDB (Yu et al., 2021)
published very recently includes most of the marker genes of the
DMSP cycle, some key genes are not included, such as eukaryotic-
type methyltransferase DSYB and acryloyl-CoA hydratase AcuH.
These limitations force researchers to undertake often tricky
and time-consuming gathering of gene sequences from primary
research and collate them into local databases (Llorens-Marès
et al., 2015; Dombrowski et al., 2018; Zhang et al., 2018; Acinas
et al., 2019). Also, this may lead to challenges for downstream
interpretation, organization, and visualization.

Additionally, to infer the relative abundance of pathways
for metagenomic and metatranscriptomic data, there is not
any prepared normalization method for pathways involving
multiple genes. In some studies, the relative abundance of
every gene in a biogeochemical pathway was added together
(Petter et al., 2013; Smedile et al., 2013; Ganesh et al.,
2014). The cumulative relative abundance is not suitable
for comparing different pathways within a sample, thus we
consider a method that can calculate the average relative
abundance of all genes in a pathway. For example, thiosulfate
disproportionation (thiosulfate→sulfide and sulfite) is catalyzed
by thiosulfate reductase, which is encoded by three genes
(phs-A, B, and C, hereafter collectively referred to phsABC)
(Heinzinger et al., 1995). Thus, the relative abundance of the
thiosulfate disproportionation pathway should be the mean
relative abundance of phsABC instead of the sum of phsABC
relative abundance when compared to other sulfur-related
pathways within a sample. This normalization mode was applied
in some recent studies (Llorens-Marès et al., 2015; Graham
et al., 2018). However, there is a lack of any simple tools
to achieve this normalization. Also, handy methods for high
throughput comparison and visualization of samples are rarely
seen. Therefore, new automated tools to identify, quantify,
and compare the abundance and/or transcription of genes
and pathways for biogeochemical cycles, including the DMSP
cycle, are needed.

Here we developed the software DiTing, which is a
pipeline to infer and compare biogeochemical pathways in
metagenomic and metatranscriptomic data. DiTing is named
after a Chinese mythical creature who knows everything
when he put his ears on the Earth’s surface. Similarly,
scientists may gain robust knowledge on microbial-driven
biogeochemical cycles from environmental ‘omic data after
analysis with DiTing. DiTing annotates protein sequences
based on the KEGG database (Ogata and Goto, 2000) for
most microbial-mediated biogeochemical cycles supplemented
with a supervised database developed specifically for DMSP
cycling. The relative abundance of each functional gene
was calculated followed by the relative abundance of each
pathway, which is calculated according to a customized formula.
The output results consist of summary tables conveniently

Frontiers in Microbiology | www.frontiersin.org 2 August 2021 | Volume 12 | Article 698286

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Xue et al. DiTing for Biogeochemical Pathways

presenting over 100 biogeochemically relevant pathways and
corresponding genes with their relative abundances in individual
metagenomic/metatranscriptomic samples. This is alongside
graphical outputs consisting of heatmaps and multiple sketch
plots for easier visualization and comparison. We applied DiTing
to simulated benchmark metagenomic data and natural real
metagenomic and metatranscriptomic data, which demonstrated
the accuracy of this tool and its potential application in the
environmental microbiome.

MATERIALS AND METHODS

The Main Procedure of DiTing
Assembly

DiTing was written in Python 3 and runs on Linux/Unix
platforms. The pre-requisites required for running the software
are described on the DiTing GitHub page1. DiTing can be
installed via Conda2. The input source is a set of metagenomic
and/or metatranscriptomic clean reads where low-quality reads,
primer, and adaptor sequences have been trimmed beforehand
(Figure 1). The input datasets are then assembled by Megahit
v1.1.2 (Li et al., 2016) or metaSPAdes v3.12.0 (Nurk et al.,
2017) with the assembler’s default parameters according to
users’ specification. Compared toMegahit, MetaSPAdes performs
better in recovering long contigs. It has a higher assembly
quality index and is the recommended assembler for high-
complex metagenomes (Forouzan et al., 2018; Pasolli et al.,
2019). However, Megahit has a low error rate, is highly memory-
efficient, and is ideal for large datasets (Forouzan et al., 2018).
Optionally, users can also assemble reads by themselves before
running DiTing. DiTing supports assembled contigs and clean
reads together as input.

Gene Prediction and Quantification

Genes are predicted and translated from the assembled contigs
by Prodigal v2.6.3 with the “-p meta” option (Hyatt et al.,
2010). To determine the relative abundance of each gene,
the input metagenomic reads are mapped against predicted
genes (nucleotides) by BWA-MEM (Li, 2013) (bwa v0.7.15,
default settings) to generate sequence alignment map (SAM)
files. Unsorted SAM files are used as input for pileup.sh
(bbmap v38.22) (Bushnell, 2014, default parameters) to calculate
the average coverage of each gene or transcript. The TPM
methodology is used to indicate the relative abundance of a gene
by the following formula.

TPMi =
bi

∑
j bj

· 106 =

Xi
Li

∑
j
Xj

Lj

· 106

where TPMi is the relative abundance of gene i, bi is the copy
number of gene i, Li is the length of gene i, Xi is the number of
times that gene i is detected in a sample (i.e., the number of reads
in alignment), and j is the number of genes in a sample.

1https://github.com/xuechunxu/DiTing
2https://docs.conda.io

Gene Annotation

The translated protein sequences are queried against KOfam
database [HMM database of KEGG Orthologs (KOs)] (Aramaki
et al., 2019) using hmmsearch implemented within HMMER
(Finn et al., 2011) (parameter: hmmsearch -T <threshold> –
tblout <output> <hmm database> <input protein sequence>
when the score type is “full”; hmmsearch –domT <threshold> –
domtblout <output> <hmm database> <input protein
sequence> when the score type is “domain”). This employs
methods for detecting remote homologs sensitively and
efficiently. KOfam suggested values3 are used as the cutoff
threshold values for hmmsearch, in which each KO entry
has its unique cutoff threshold values (Aramaki et al., 2019).
KofamKOALA assigns KOs numbers to protein sequences
with the accuracy being comparable to the best existing KO
assignment tools (Aramaki et al., 2019). For genes assigned
into multiple KOs numbers, all the corresponding functions
are associated with the genes. To specifically probe DMSP
catabolism, 20 verified gene sequences (DMSP lyase genes
dddD, dddK, dddL, dddP, dddQ, dddY, dddW, Alma1; DMSP
synthesis genes dsyB, DSYB, mmtN; DMSP demethylation
pathway genes dmdA, dmdB, dmdC, dmdD; acryloyl-CoA
hydratase acuH, methanethiol S-methylase mddA, dimethyl
sulfide (DMS) monooxygenase dmoA, methanethiol oxidase
MTO, and DMSO reductase dorA) were collected manually to
create the profile HMM using HMMER 3.3.1 (Eddy, 2011).
A table with the relative abundance and annotation of genes was
used to estimate the relative abundance of approximately one
hundred biogeochemical pathways in each sample.

Normalization

The formula for each pathway is specifically designed to
estimate the relative abundance of the pathway according to the
definitions4:

Ai =
a1_1 + a1_2 + a1_n

n
+

a2_1 + a2_2 + . . . + a2_n

n

+ . . . +
am_1 + am_2 + . . . + am_n

n

where Ai is the relative abundance of the i pathway, and am_n

is the relative abundance of protein m_n in each sample. m is
one of the optional routes for accomplishing the i pathway, and
n is the number of proteins in the optional routem. For example,
assimilatory sulfite reduction (ASR) that converts sulfite to sulfide
has two known possible pathways: (1) Sir protein (K00392)
mediated pathway (Gisselmann et al., 1993; Bork et al., 1998),
and (2) CysJI protein (K00380 + K00381) mediated pathway
(Ostrowski et al., 1989a,b; Zeghouf et al., 2000). Thus, the relative
abundance of ASR pathway is estimated by the following formula:

AASR = aK00392 +
aK00380 + aK00381

2

where AASR is the relative abundance of the ASR pathway, aKO
is the relative abundance of KO in each sample. Dissimilatory

3ftp://ftp.genome.jp/pub/db/kofam/
4https://github.com/xuechunxu/DiTing/blob/master/Pathway_formulas.txt
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FIGURE 1 | A flowchart of the major steps involved in running DiTing. First (A), clean reads of metagenomes or/metatranscriptomes are assembled, annotated, and

mapped. Second (B), a table for relative abundances of KO number in KEGG among samples is constructed and relative abundances of biogeochemical pathways

are estimated according to unbiased specific formulas. Third (C), heatmap and sketch plots are drawn to aid visualization.

nitrite reduction (DNRA), which converts nitrite to ammonia,
may occur via two different enzymatic reactions: (1) NirBD
proteins (K00362 + K00363) to convert nitrite to ammonia, or
(2) NrfAH protein (K03385 + K15876) to convert nitrite to
ammonia. Thus, the relative abundance of DNRA to ammonia
is estimated by the following formula:

ADNRA =
aK00362 + aK00363

2
+

aK03385 + aK15876

2

where ADNRA is the relative abundance of DNRA pathway, aKO
is the relative abundance of KO in each sample. For other
pathways, a customized formula for each pathway was utilized
(see Supplementary Table 1).

DiTing produces a table in the specified output directory.
This table contains approximately 100 biogeochemical pathways
and their relative abundance in each input sample. Another
table of the relative abundances of corresponding KO/genes
within these pathways in each sample is also generated. For
improved visualization, heatmaps and sketch plots for comparing
the relative abundances of biogeochemical pathways in different
samples are drawn finally. Output also contains some important

intermediate data, such as assembled contig, gene sequence
and mapping file.

Construction of the Organosulfur
Compound Database
Dimethylsulfoniopropionate is a marine organosulfur compound
with important roles in the global sulfur cycle and may affect
climate (Zhang et al., 2019). Yet, genes involved in the cycling of
this compound are rarely seen in currently available databases.
Profile HMM were manually generated for eight pathways
related to the cycling of DMSP (Song et al., 2020; Yu et al.,
2021), including DMSP biosynthesis (methionine→DMSP),
DMSP demethylation (DMSP→MMPA), DMSP demethylation
(MMPA→MeSH), DMSP cleavage (DMSP→DMS), DMS
oxidation (DMS→MeSH), DMS oxidation (DMS→DMSO),
DMSO reduction (DMSO→DMS), MddA pathway
(MeSH→DMS), MeSH oxidation (MeSH→Formaldehyde).
Twenty verified gene sequences encoding key enzymes of these
pathways were used to create the profile HMM (Song et al.,
2020). Each separate cut-off E-value was confirmed by blasting
between functionally verified protein sequences. We applied this
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E-value to several metagenomic samples to retrieve homologs.
All retrieved homolog sequences were aligned to the verified
protein sequences and then a maximum likelihood phylogenetic
tree was constructed to further ensure the accuracy of the
E-value. The custom HMM databases are available for download
and can be used in other pipelines as well.

DMSP Biosynthesis (Methionine→DMSP)

Three gene families participating in DMSP biosynthesis
from methionine (Met), including DSYB, DsyB, and
MmtN are included in DiTing. DSYB and DsyB are
methylthiohydroxbutryrate S-methyltransferase enzymes
found in marine eukaryotes and prokaryotes, respectively
(Curson et al., 2017, 2018). The MmtN Met S-methyltransferase
is found in some Gram-positive bacteria, alpha- and gamma-
proteobacteria (Liao and Seebeck, 2019; Williams et al., 2019).
The cut-off E-values of DSYB, DsyB, and MmtN are 1 × 10−30,
1 × 10−67, and 1 × 10−98, respectively.

DMSP Demethylation (DMSP→MMPA)

The first step of DMSP demethylation pathway that results in the
production of methylmercaptopropionate (MMPA) is initiated
by the DmdA enzyme (Reisch et al., 2011a). The cut-off E-value
of the DmdA is 1 × 10−130.

DMSP Demethylation (MMPA→MeSH)

Further degradation of MMPA generating gaseous methanethiol
(MeSH) catalyzed by the Dmd- B, C, and D (hereafter collectively
referred to DmdBCD) or AcuH enzymes (Reisch et al., 2011b;
Shao et al., 2019). The cut-off E-values of DmdB, DmdC,
DmdD, and AcuH are 1 × 10−75, 1 × 10−100, 1 × 10−30, and
1 × 10−56, respectively.

DMSP Cleavage (DMSP→DMS)

Eight distinct DMSP lyase enzymes (DddD, DddK, DddL, DddP,
DddQ, DddW, DddY and Alma1) can cleave DMSP to generate
DMS (Curson et al., 2011; Alcolombri et al., 2015; Johnston et al.,
2016; Sun et al., 2016). The cut-off E-values of DddD, DddK,
DddL, DddP, DddQ, DddW, DddY, and Alma1 are 1 × 10−97,
1 × 10−35, 1 × 10−33, 1 × 10−83, 1 × 10−20, 1 × 10−49,
1 × 10−64, and 1 × 10−26, respectively.

DMS Oxidation (DMS→MeSH)

Dimethylsulfoniopropionate can be oxidized to generate MeSH
via the DMSmonooxygenase enzyme DmoA (Boden et al., 2011).
The cut-off E-value of the DmoA is 1 × 10−34.

DMS Oxidation (DMS→DMSO)

Dimethylsulfoniopropionate can be oxidized to generate
dimethyl sulfoxide (DMSO) by the DMS dehydrogenase
complex (DdhABC) (McDevitt et al., 2002) or trimethylamine
monooxygenase (Tmm) (Lidbury et al., 2016). The cut-off
E-values of both DdhABC, DdhB, and Tmm are 1 × 10−30.

MddA Pathway (MeSH→DMS)

MeSH can be S-methylated to generate DMS by the MddA
enzyme (Carrión et al., 2017). The cut-off E-value of MddA is
1 × 10−30.

MeSH Oxidation (MeSH→Formaldehyde)

MeSH can also be modified through another pathway catalyzed
by the MeSH oxidase MTO (Eyice et al., 2018). The cut-off
E-value of MTO is 1 × 10−20.

The sugar 6-deoxy-6-sulfoglucose (sulfoquinovose, SQ),
which is produced by plants, algae, and cyanobacteria, is an
important component of carbon and sulfur cycles (Frommeyer
et al., 2020). The microbial community can completely
degrade SQ into inorganic sulfate or hydrogen sulfide through
three pathways, i.e., sulfo-Embden-Meyerhof-Parnas (sulfo-
EMP) (Denger et al., 2014), sulfo-Entner-Doudoroff (sulfo-ED)
(Felux et al., 2015), and 6-deoxy-6-sulfofructose-transaldolase
(SFT) pathways (Frommeyer et al., 2020).

Sulfo-EMP Pathway

Sulfoquinovose is converted to 6-deoxy-6-sulfofructose
(SF) through an aldose/ketose isomerase YihS. The SF is
phosphorylated to 6-deoxy6-sulfofructosephosphate (SFP) by
an ATP-dependent SF kinase YihV. The SFP is then cleaved
into 3-sulfolactaldehyde (SLA) and dihydroxyacetone phosphate
(DHAP) by an SFP aldolase YihT. Finally, the SLA is reduced
via an NADH-dependent SLA reductase (YihU) to DHPS, which
is excreted from microorganisms. These four genes YihSVTU
were annotated through K18479, K18478, K01671, and K08318
Orthology in KEGG, respectively.

Sulfo-ED Pathway

This pathway starts with anNAD+-dependent SQ dehydrogenase
(EC:1.1.1.390) oxidizing SQ to 6-sulfogluconolactone (SGL).
The SGL is hydrolyzed to 6-deoxy-6-sulfogluconate (SG) by
an SGL lactonase (EC:3.1.1.99). The SG is then converted by
an SG dehydratase (EC:4.2.1.162) to 2-keto-3,6-deoxy-6-sulfo-
gluconate (KDSG). The KDSG is cleaved by a KDSG aldolase
(EC:4.1.2.58) into pyruvate and 3-SLA. The SLA can be oxidized
by a NAD+-dependent SLA dehydrogenase (EC:1.2.1.97) to
SL. The reference sequences of these enzymes were collected
manually from Uniprot database5.

SFT Pathway

Three key enzymes take part in this pathway. The SQ is converted
to SF by an aldose/ketose isomerase, which is the same enzyme as
the first step of sulfo-EMP pathway. SF is cleaved to 3-SLA by SF
transaldolase enzyme. Finally, The SLA is oxidized by a NAD+-
dependent SLA dehydrogenase to SL. The SLA dehydrogenase
is the same enzyme as the last step of sulfo-ED pathway. The
reference sequence of SF transaldolase enzymewas collected from
IMG6 according to Frommeyer et al. (2020).

Isoprene (2-methyl-1, 3-butadiene) is an important volatile
organic compound emitted to the atmosphere, and has
significant effect on climate (Carrión et al., 2018). Isoprene
may be degraded by microbial communities with the isoprene
monooxygenase (IsoMO). The gene isoA encoding the α-subunit
of IsoMO was selected as a marker gene for distribution,
diversity, and abundance of the isoprene-degrading pathway

5https://www.uniprot.org/
6https://img.jgi.doe.gov/
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in the environment (Carrión et al., 2018, 2020). The reference
sequences of IsoA enzyme were collected manually from NCBI
according to Carrión et al. (2018).

The Processing of Simulated Benchmark
and Natural Real Datasets
To verify the accuracy of DiTing in evaluating the relative
abundance of biogeochemical pathways, CAMISIM (Fritz
et al., 2019) was used to simulate five metagenomic
shotgun sequenced samples using 15 genomes. These 15
genomes can be divided into three groups (photoautotrophs,
chemoautotrophs, and heterotrophs). The photoautotrophic
group was made up of five Cyanobacteria genomes (NCBI
accession numbers: GCF_000018105.1, GCF_000020025.1,
GCF_000021825.1, GCF_000317105.1, and GCF_000317615.1).
The chemoautotrophic group was made up of five ammonia-
oxidizing archaea (AOA) genomes (NCBI accession numbers:
GCF_000299365.1, GCF_000299395.1, GCF_000875775.1,
GCF_000956175.1, and GCF_013407185.1). The heterotrophic
group was made up of five SAR11 genomes (NCBI
accession numbers: GCF_000012345.1, GCF_000195085.1,
GCF_000299095.1, GCF_000299115.1, and GCF_012276695.1).
The metagenomic samples were simulated according to the
relative abundance ratio of Cyanobacteria:SAR11:AOA genomes.
Finally, CAMISIM created Illumina 2 × 150 bp paired-end
reads with a size of 2 Gb for each simulated sample. These five
simulated metagenomic samples were then fed into DiTing
(default parameters) to produce the relative abundance of KO
families and pathways. Due to the lack of features to specify
the relative abundance of genes or pathways in CAMISIM,
we manually inferred KO relative abundance profiles as the
real result. To this end, all the 15 genomes were annotated by
KofamScan software (Aramaki et al., 2019) to infer the KO
family. The KO relative abundance profile from each simulated
sample can be inferred according to the KofamScan annotation
and relative abundance of genomes used in the simulation. KO
relative abundance profile similarity between the DiTing output
and the real result was calculated with Pearson’s correlation
coefficient (PCC).

Subsequently, we applied DiTing to the natural real
metagenomic datasets from the hydrothermal vent and
Tara Ocean project. The raw reads were first filtered and
trimmed by Trimmomatic v3.6 (Bolger et al., 2014). The clean
reads were then fed into DiTing using default parameters:
diting.py –r<clean reads dir> -o<diting.out dir>, where<clean
reads dir> is the directory containing a set of clean reads files,
<diting.out dir> is the directory for output., The clean reads
were assembled using Megahit v1.1.2 (Li et al., 2016) under
default parameters in DiTing.

We also tested DiTing on metatranscriptomic datasets. Three
published and analyzed metagenomes with their corresponding
metatranscriptomes were selected. These data were derived from
hydrothermal vent fluid samples at Axial Seamount located
on the Juan de Fuca Ridge in the Pacific Northwest region
(Fortunato et al., 2018). They were selected as the data have been
analyzed with a comprehensive functional prediction regarding

biogeochemical cycles, thus facilitating comparison with the
results generated by DiTing. First, the metagenomic reads
were assembled using Megahit v1.1.2 with default parameters
(Li et al., 2016). Second, the metagenomic contigs and the
corresponding metatranscriptomes were used as input to DiTing.
Then DiTing was run by: diting.py –r <metatranscriptomic
clean reads dir> -a<metagenomics assembled contigs dir>
-o<diting.out dir>, where <metatranscriptomic clean reads
dir> is the directory containing the three metatranscriptomic
clean reads files, <metagenomics assembled contigs dir> is the
directory containing the three metagenomic assembled contigs
files, and <diting.out dir> is the directory for output.

RESULTS AND DISCUSSION

General Information of DiTing
We developed a new metagenomics/metatranscriptomic analysis
pipeline, DiTing, to infer and compare the prevalence of genes
and pathways of key biogeochemical cycles. DiTing consists
of four main features: (i) automated assembly, Open Reading
Frame (ORF) prediction, mapping, and gene annotation from
reads; (ii) a manually created and curated DMSP cycling-
related gene database; (iii) the specific formulae for DMSP
and other biogeochemical pathways to calculate the relative
abundance of biogeochemically relevant pathways and genes;
and (iv) visualization of results comparing biogeochemical
cycling potential between different inputted samples. These
features make DiTing a flexible and versatile tool wrapper for
studying biogeochemical cycles, or just as a platform to tackle
metagenomic shotgun sequencing data. Additionally, DiTing has
high speed. Five samples (from the hydrothermal vent case study
below) that are ∼500 Gb in total were used to evaluate the speed.
The total run time for all analyses from reads to visualization was
∼33 h using 60 CPU threads on a Linux version 4.15.0-20-generic
server (Ubuntu 18.04; CPU, Intel(R) Xeon(R) Gold 6140 CPU @
2.30GHz; RAM, 256 GB).

Accuracy Testing of DiTing Using
Simulated Benchmark Datasets
To verify the accuracy of DiTing, we compared DiTing’s result
on the simulated data with genetic features of 15 genomes and
manually inferred the KO family relative abundance profiles
(Figure 2). The overall relative abundances of biogeochemical
pathways in simulated samples were consistent with the genetic
features of genomes used in the simulation (Figures 2A,B).
For example, metagenomes in sample 1, 4, and 5 possessed
photosynthesis-related pathways (photosystem I, II, and
cytochrome b6/f complex), which were absent in sample 2 and 3
(Figure 2A). This is because genomes used to simulate sample 1,
3, and 5 contained Cyanobacteria, which is a photoautotrophic
organism possessing photosynthesis-related genes (Figure 2B).
Since only Cyanobacteria genomes were used to simulate
sample1 metagenome, the relative abundance of photosynthesis-
related pathways in sample1 was highest (Figure 2A). Similarly,
sample3 was simulated by only AOA, a typical bacterial ammonia
oxidizer that possesses amoABC genes encoding the ammonia
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FIGURE 2 | (A) Bubble plots depicting the DiTing result of the relative abundance of pathways in simulated metagenomes. The horizontal axis indicates the relative

abundance ratio of Cyanobacteria:SAR11:AOA genomes used in simulated metagenomes. Cya, Cyanobacteria; SAR11; Pelagibacterales; AOA. ammonia oxidation

archaea; DNRA, dissimilatory nitrate reduction to ammonium; ANRA, assimilatory nitrate reduction to ammonium; ASR; assimilatory sulfate reduction; DSR;

dissimilatory sulfate reduction. (B) Selected genes distributed among 15 genomes used to simulate metagenomes. 15 genomes were divided into three groups

(Cyanobacteria, SAR11 and AOA). The genes were annotated by KofamScan. (C) Pearson correlation between gene relative abundance outputted from DiTing and

that predicted through the relative abundance of genomes for simulation manually.

monooxygenase complex (Figure 2B). Correspondingly, the
relative abundance of ammonia oxidation pathway was highest
in sample 3, while it was absent in sample 1 and 2 that do not

contain AOA (Figure 2A). The nirK gene encoding nitrite
reductase was found with multiple copies in AOA genomes
(Figure 2B). Consistently, this gene also showed a very high
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relative abundance in sample 3, in which the metagenome was
simulated only by AOA genomes. Additionally, bacteria and
archaea normally use F-type ATPase and V/A-type ATPases
(Figure 2B) to hydrolyze ATP to ADP, respectively (Pisa et al.,
2007; Fillingame, 1997). As expected, F-type ATPase was detected
in samples simulated by genomes containing Cyanobacteria and
SAR11 genomes (sample 1, 2, 4, and 5), and V/A-type ATPase
was detected in samples simulated by genomes containing AOA
genomes (sample 3, 4, and 5).

Subsequently, the translated gene sequences (amino acid)
from 15 genomes for simulation were annotated using
KofamScan software (Aramaki et al., 2019). Considering
that CAMISIM (Fritz et al., 2019) lacks the feature to specify the
relative abundance of genes or pathways directly, and there are
no other appropriate tools available to achieve this to the best
of our knowledge. We manually inferred the relative abundance
of the KO family in simulated metagenomes according to
KofamScan annotation and relative abundance of genomes,
as the real KO relative abundance (Supplementary Table 2).
On the other hand, we fed these five simulated metagenomic
samples into DiTing to generate KO relative abundance profile.
For a comparison of KO relative abundance profile produced
by DiTing with the real one, the similarity between these two
KO relative abundance profiles was calculated with PCC. All the
PCC scores were higher than 0.99 (Figure 2C), which indicated
the KO relative abundance profiles created by DiTing were
strongly consistent with the real result. The above results verify
the accuracy of DiTing.

Application of DiTing on Five Real
Hydrothermal Vent Datasets
DiTing was used to analyze the biogeochemical potential of
five marine metagenomic samples (Supplementary Table 3;
NCBI accession number: ERR1679394-1679398) generated from
hydrothermal vent samples taken at PACManus and North Su
fields in the Manus Basin (Meier et al., 2017). The metagenomic
clean reads ranged in size from 81 to 112 Gbp from each
sample. The reads were assembled into 799,269 to 1,182,847
contigs with the total assembly sizes ranging from 0.58 to
1.00 Gbp. A total of 5,639,558 ORFs within these contigs
were then predicted. ∼18.9% (1,065,097) ORFs were annotated
against KEGG databases and affiliated to 8128 KO entries.
The relative abundances of ∼100 biogeochemically relevant
pathways were calculated (Supplementary Table 4) according
to our new formulae (Supplementary Table 1). The relative
abundance of genes within these pathways was also prepared
for further analyses at the gene level (Supplementary Table 5).
The summary sketch for visualization of these pathways was
generated by DiTing (Figure 3), and these reflected the different
patterns of community function within metagenomic samples.

Of the five metagenomes collected in diffuse hydrothermal
vent fluids, NSu-F2b and NSu-F5 originated from acidic samples
with sulfide (1.6 and 0.7 mmol l−1 H2S, respectively) and
methane (0.2 and 0.01 mmol l−1 CH4, respectively) levels
detected (Supplementary Table 3). The Fw-F1b, Fw-F3, and
RR-F1b metagenomes originated from sites with no detectable

H2S and CH4. Reassuringly, the NSu-F2b and NSu-F5 samples,
with similar environmental parameters, showed the most similar
distribution patterns for genes and pathways involved in the
cycling of nitrogen, carbon, and sulfur (Figures 3, 4). Indeed,
hierarchical clustering of samples according to their microbial
function composition showed NSu-F2b and NSu-F5 fall into
one cluster, and the other three samples into another cluster
(Supplementary Figure 1).

At hydrothermal vents, chemolithoautotrophic
microorganisms carry out carbon fixation coupled with oxidation
of reduced sulfur compounds (Meier et al., 2017). In accordance,
we found the relative abundance of thiosulfate oxidation, sulfite
oxidation, and the first step of dissimilatory sulfate reduction
pathways (reversible conversion of sulfate to sulfite) to be more
highly represented compared to other sulfur cycle pathways in all
five samples (Figures 3, 4). This indicated that sulfate reduction
and sulfur oxidation were major processes in microbial sulfur
cycling. This finding is supported by the presence of sulfate-
reducing Nitrospira and sulfur-oxidizing Gammaproteobacteria
dominating microbial communities at these hydrothermal vents
(described in Meier et al., 2017, 2019). In addition, assimilatory
sulfate reduction and thiosulfate disproportionation pathways
were found only in NSu-F2b and NSu-F5 (Figure 3); the only
samples with detectable sulfide levels, indicating microbes in
these samples may incorporate sulfide into the amino acids
cysteine (Cys) or homo-Cys. Here, the relative abundance of
thiosulfate disproportionation was estimated by dividing the
sum of relative abundance of phsABC by the number (n = 3)
of essential subunits. The relative abundances of each subunit
of thiosulfate reductase were often not equal to each other
in the metagenomes (Supplementary Table 5). For example,
phsA (encoding thiosulfate reductase subunit A) was always far
more abundant than phsC (thiosulfate reductase cytochrome
B subunit), and phsB (thiosulfate reductase electron transport
protein) was not detected in any sample. This may be due
to insufficient sequencing depth and/or protein redundancy.
Whatever the reason for these discrepancies, it cannot be easily
solved by bioinformatics alone and culture-dependent work
is necessary. This phenomenon highlighted for the thiosulfate
disproportionation genes may occur also in other pathways;
thus further analyses at the gene level, not only at the pathway
level, are essential in predicting the biogeochemical potential of
microbial communities after DiTing analysis.

In previously tested seawater and sediment samples, known
DMSP synthesis genes were always much less abundant than
those for its catabolism (Curson et al., 2017, 2018; Williams et al.,
2019). This was not the case in previously studied hydrothermal
samples (Song et al., 2020), with the DMSP lyase gene dddP
being the only detected DMSP catabolic gene. In three out of five
hydrothermal samples interrogated here, the genetic potential to
synthesize DMSP, through prokaryotic dsyB and mmtN genes, is
far less than that for DMSP catabolism (DMSP synthesis:DMSP
catabolism = 1:16.9) and not so dissimilar to ratios seen in
seawater samples (Curson et al., 2017, 2018;Williams et al., 2019).
The reasons for this discrepancy between the distinct samples
are unknown. The prokaryotic DsyB sequences retrieved from
these data were clustered with ratified DsyB proteins, not with
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FIGURE 3 | Pie charts representing the relative abundance of carbon (A), nitrogen (B), sulfur (C), and DMSP (D) cycle-related pathways for five metagenomic

samples from the Manus Basin. Normalized relative abundance was calculated through dividing the relative abundance of a pathway in an individual sample by the

sum of this pathway’s relative abundance in all samples. The pie chart area reflects the relative abundance of the process according to the scale shown in pink. The

dashed line in panel (D) means the data was not shown. (A) CBB, Calvin-Benson-Bassham cycle; rTCA, reductive citric acid cycle; WL, Wood-Ljungdahl pathway;

3HB, 3-hydroxypropionate bicycle. (B) ANRA, assimilatory nitrate reduction to ammonia; DNRA, Dissimilatory nitrate reduction to ammonia; Anammox, anaerobic

ammonia oxidation. (C) ASR, assimilatory sulfate reduction; DSR, dissimilatory sulfate reduction. (D) DMSP, dimethylsulfoniopropionate; MMPA,

methylmecaptopropionate; MeSH, methanethiol; DMSO, dimethyl sulfoxide; L-Met, L-methionine. This figure was the output from DiTing.

eukaryotic DSYB and non-functional DsyB-like proteins from
Streptomyces varsoviensis, which support their function in DMSP
synthesis (Supplementary Figure 2). Interestingly, sample NSu-
F2b has higher DMSP synthesis potential than any other samples
due to relatively high levels of bacteria with mmtN. As discussed
by Song et al. (2020), the potential for DMSP cleavage was
more prominent than for DMSP demethylation (dmdA) in all
hydrothermal samples, although catabolism of MMPA, the initial
product of DMSP demethylation by DmdA (Howard et al.,
2006), was very abundant. These data support DMSP cleavage
being the dominant DMSP catabolic pathway in hydrothermal
sediments, as proposed in Song et al. (2020). Alternatively,
there could be novel DMSP demethylase enzymes. This would
explain why there were such low dmdA levels in hydrothermal

sediment, yet very high MMPA degradation potential. The
potential for oxidation and reduction of DMSP catabolites,
DMS and methanethiol was similar to that described in Song
et al. (2020), with sites NSU-F2b and F5 showing the greatest
potential. Thus, some interesting predictions of DMSP cycling
were enabled by DiTing analysis on the metagenomes analyzed
here. It should be emphasized that any predictions made from
genetic potential alone require further investigation regarding
function and expression and, importantly, substantiation for
synthesis and turnover rate analysis.

The samples NSu-F2b and NSu-F5 had lower oxygen
concentration than Fw-F1b, Fw-F3, and RR-F1b samples,
especially NSu-F2b (0.07 and 0.14 mmol l−1 for NSu-F2b
and NSu-F5, respectively; 0.17–0.2 mmol l−1 for other three).
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FIGURE 4 | Bubble plots depicting the relative abundance of pathways for carbon (A), sulfur (B), nitrogen (C), and other selected (D) processes. The key marker

genes used to report on the genetic potential for pathways (as the relative abundances) are indicated in brackets. ASR, assimilatory sulfate reduction; DSR,

dissimilatory sulfate reduction. The full name of these key marker genes can be found in Supplementary Table 1. For better visualization, we multiply the relative

abundance by 103 and transformed it by log(10).

Indeed, compared to the other three samples, NSu-F2b and
NSu-F5 had significantly more genes encoding bd ubiquinol
cytochrome oxidases (p < 0.01) that are associated with low
oxygen concentrations (Figure 4). It is worth noting that the bd
oxidase was enriched most in NSu-F2b under the highest sulfide
concentration (1.6 mmol l−1) and lowest oxygen concentration.
A previous study found that bd oxidase could promote sulfide-
resistant O2 consumption and growth in Escherichia coli (Forte
et al., 2016) implying the important role of bd oxidases in the low
oxygen NSu-F2b environment.

The NSu-F2b and NSu-F5 samples showed enrichment for
denitrification, nitrification, and nitrogen fixation potential,
which may be due to the lower oxygen levels of these
samples or is possibly reflecting the nitrogen availability at
higher temperatures. Notably in NSu-F5, genes encoding for
the denitrification enzymes responsible for the reduction of
the cytotoxic gaseous intermediates, nitric oxide (NO), norBC,
and nitrous oxide (N2O), nosZ, are significantly enriched.
These are alongside the nitrifying genes responsible for aerobic
conversion of nitrite to nitrate (nxrAB). Genes encoding the
nitrification enzymes involved in ammonia oxidation process,
amoABC, hydroxylamine, hao, nitrate, nxrAB, are significantly
enriched in The NSu-F2b and NSu-F5 samples. The importance

of denitrification and nitrification to the nitrogen cycling in
hydrothermal vents has previously been reported (Bourbonnais
et al., 2012). These metagenomes highlight the metabolic
importance of nitrogen cycling with the potential for all other
pathways being at similarly high levels (Supplementary Table 4)
in all samples with the exception that nitrite assimilation
(nitrite to ammonia) was not detected. Again, this may reflect
nitrogen availability but is also indicative of nitrogen source
preference of the microbiomes under the highly reactive
physicochemical constraints of the vent environment. This
study illustrates the need for comprehensive measurements of
nitrogen flux, metatranscriptomic analyses to ascertain the most
active pathways, and identification of the dominant organisms
responsible for nitrogen cycling in these ecosystems. Overall,
these results highlight potential microbial metabolic differences
in communities from different hydrothermal samples that most
likely reflect changes in environmental conditions.

Application of DiTing on 15 Real Tara

Ocean Project Datasets
DiTing was also applied to analyze 15 metagenomic samples
from chlorophyll a (Chla) maximum layer in Mediterranean
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FIGURE 5 | Comparative analysis of the combination of metagenomic and metatranscriptomic datasets between a reference study and DiTing. The left panel is

taken from reference (Fortunato et al., 2018), and shows normalized abundance and transcription of key genes for oxygen, nitrogen, methane, hydrogen and sulfur

metabolism in hydrothermal vent metagenomes and metatranscriptomes. The right panel shows the results produced using analysis by DiTing. The normalized

method is different from the reference. Multiply the relative abundance by 103 and transformed by log(10).

Sea from Tara Ocean project. The metagenomic clean reads
ranged in size from 1.24 to 52.53 Gbp from each sample.
The reads were assembled into 71,183–1,601,956 contigs with
the total assembly sizes ranging from 0.045 to 1.38 Gbp.
A total of 18,431,131 ORFs within these contigs were then
predicted. ∼24% (1,065,097) ORFs were annotated against
KEGG databases and affiliated to 8759 KO entries. The
74 pathways related to biogeochemical cycles were found
(Supplementary Table 6). Compared to the sample-derived
hydrothermal vents, the Chla maximum layer contains a
remarkably high relative abundance of photosystem pathways
as expected (Supplementary Tables 6, 7). Additionally, the

eukaryotic DMSP synthesis gene, DSYB was detected in 10
out of 15 Chla maximum samples, which were absent in
the hydrothermal vent samples. The relative abundance of
DSYB was comparable to that of prokaryotic DMSP synthesis
gene dsyB in Chla maximum layers (Supplementary Table 7),
indicating that the DMSP was produced by both prokaryotes
and eukaryotes in these environments. For DMSP degradation,
in six out of 15 samples, the genetic potential to demethylate
DMSP, through the dmdA gene, was higher than that for
DMSP cleavage (ddds and alma1) (DMSP demethylation:DMSP
cleavage = 1.69:1). This contrasts with the hydrothermal vent
samples. In another nine samples, the potential for DMSP

Frontiers in Microbiology | www.frontiersin.org 11 August 2021 | Volume 12 | Article 698286

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Xue et al. DiTing for Biogeochemical Pathways

demethylation was comparable to that for DMSP cleavage (DMSP
demethylation:DMSP cleavage = 0.82:1). These data support both
DMSP demethylation and cleavage being the dominant DMSP
catabolic pathways in the Chlamaximum layer.

Application of DiTing on the Combination
of Metagenomic and Metatranscriptomic
Datasets
Subsequently, we applied DiTing on three metagenomic samples
with their corresponding metatranscriptomes. The metagenomic
and metatranscriptomic clean reads ranged in size from 6.8 to
9.9 Gb and 2.7 to 3.9 Gb for each sample, respectively. The
total run time for all analyses from assembly to visualization
was ∼11 h using 60 CPU threads on a Linux version 4.15.0-
20-generic server (Ubuntu 18.04; CPU, Intel(R) Xeon(R) Gold
6140 CPU @ 2.30GHz; RAM, 256 GB). The overall relative
abundance of biogeochemical pathways, after analysis with
DiTing, was consistent with the original study (Figure 5;
Fortunato et al., 2018). For example, the cbb3-type cytochrome
c oxidase genes/transcripts were found in three samples but
were absent in the Marker113 2015 metatranscriptomic samples
according to both the DiTing output and the reference result.
The gene for the nitrogenase iron protein (nifH) was absent in
one metagenomic and two metatranscriptomic samples in both
analyses. However, there were also some differences between
the reference study and the DiTing results. For example, the
nitrate reductase gene (narG) was absent in two samples
according to Fortunato et al. (2018), but DiTing found it in
all samples (Figure 5). Notably, the narG gene was present
at extremely low levels in the Marker33 2015 and Marker133
2015 metatranscriptome samples, but phylogenetic analysis
confirmed that their products cluster with ratified functional
sequences instead of those without nitrate reductase activity
(Supplementary Figure 3). These narG transcripts may have
been missed in the original study due to the universal threshold
(e-score of 1E-10, 30% amino acid identity and alignment
length of 40 amino acids) used for all gene annotation
against the KO database. In contrast, DiTing employed the
specific cutoff threshold (—domT 304.50) for narG according
to Kofam suggestion (Aramaki et al., 2019), enabling the
correct annotation.

CONCLUSION

In summary, this study developed a pipeline (DiTing) to
infer and compare biogeochemical pathways from metagenomic
and metatranscriptomic data. DiTing is a portable tool
for analyzing metagenomic and metatranscriptomic datasets,
providing automatic, multi-threaded bioinformatic workflows
for data handling, including read assembly, ORF prediction,
annotation, and customized specific formulas for calculating
the relative abundance of biogeochemical pathways. The
visualization module is designed to more easily compare
functions between samples via graphical outputs. Additionally,
a verified database was built manually for the annotation of
genes involved in the production and cycling of DMSP. As

validation of the outputs produced by DiTing, comparisons of
the relative abundance of biogeochemical pathways in published
metagenomes to those calculated by DiTing were consistent.
By applying DiTing to analyze five hydrothermal shotgun
metagenomes, we showed that the functional profile could
accurately reflect changes in environmental conditions (H2S and
O2 concentrations). Besides marine environments, DiTing was
supposed to be applied easily to other interesting environments
(e.g., glaciers, soil environments, and wastewater). DiTing can
be applied readily to metagenomic and/or metatranscriptomic
studies with relatively straightforward user intervention. This
bioinformatics framework will facilitate our understanding
of spatial and temporal changes in microbiome-mediated
biogeochemical cycles.
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