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Abstract

By sensing changes in one or few environmental factors biological systems can anticipate future changes in multiple factors
over a wide range of time scales (daily to seasonal). This anticipatory behavior is important to the fitness of diverse species,
and in context of the diurnal cycle it is overall typical of eukaryotes and some photoautotrophic bacteria but is yet to be
observed in archaea. Here, we report the first observation of light-dark (LD)-entrained diurnal oscillatory transcription in up
to 12% of all genes of a halophilic archaeon Halobacterium salinarum NRC-1. Significantly, the diurnally entrained
transcription was observed under constant darkness after removal of the LD stimulus (free-running rhythms). The memory
of diurnal entrainment was also associated with the synchronization of oxic and anoxic physiologies to the LD cycle. Our
results suggest that under nutrient limited conditions halophilic archaea take advantage of the causal influence of sunlight
(via temperature) on O2 diffusivity in a closed hypersaline environment to streamline their physiology and operate oxically
during nighttime and anoxically during daytime.
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Introduction

The ability to anticipate impending environmental change(s)

and mount a preparative response is crucial to the fitness of all

organisms [1,2]. Such preparatory behavior has been observed

over a wide range of time scales (e.g. daily or seasonal variations)

and is mediated via sensing, internalizing and subsequently

recalling fluctuation patterns in the specific environmental factor(s)

(EFs). Interestingly, such behavior can also result from the ability

of biological systems (even microorganisms) to internalize and use

reproducible interrelationships among EFs such that by sensing a

change in one or few EFs (i.e. proxy variables) they are informed of

impending changes in other EFs [3]. In other words, anticipatory

or preparative behavior is a manifestation of gene regulatory

networks that are appropriately structured to reproduce the cyclic

nature and interrelatedness of EFs that have constrained their

evolution [4].

In context of the diurnal cycle, anticipatory behavior appears

widely throughout the eukaryotes and has been observed in some

bacteria and is typical of organisms possessing circadian clocks [5].

However, photoresponsive anticipatory behavior is yet to be

observed in archaea. The halophilic archaeaon Halobacterium

salinarum was considered a prime candidate for LD entrainment

of transcription owing to the presence in its genome of genes for

four opsins, one putative cryptochrome and an ortholog of the

bacterial clock component KaiC [6]. H. salinarum NRC-1 uses light

as a source of information for physical relocation towards

favorable wavelengths of light or away from damaging radiation

[7,8,9,10,11]. Under anoxic conditions it can use light-driven ion

pumping by bacteriorhodopsin (bR) as means for producing ATP

phototrophically [12,13,14]. Taken together with substantial

evidence for light-mediated global gene regulation in this organism

[15,16,17], these observations make a compelling case for

investigating the feasibility of entraining global expression changes

in Halobacterium salinarum NRC-1 by prolonged culturing under

diurnal 12h:12h light:dark (LD) cycles.

Here we present results of these experiments in which we detected

free-running rhythms for at least 72 hours in up to 12% of all genes

in H. salinarum NRC-1 under constant darkness post-entrainment

with 3 days of LD cycles. Remarkably, we observe that despite

maintaining constant O2 during this experiment, a significant

fraction of cycling genes are those that are also independently

regulated by changes in O2 concentration [18]. This is interesting

because O2 is another EF that has dominant influence on

haloarchaeal physiology as a result of poor gas solubility in

hypersaline environments. As such, we have previously demonstrat-

ed that a significant number of genes (at least 10%) in H. salinarum

NRC-1 are differentially regulated as a direct consequence of changes

in O2 availability [18]. We conclude that H. salinarum can take

advantage of coupled changes in sunlight and O2 such that it can use

the L:D cycle to anticipate higher levels of O2 during nighttime and

lower levels during daytime. Given that entrainment of halobacterial

physiology was best accomplished under nutrient limited condition

we discuss this finding as a possible mechanism for maximizing

resource utilization.

Results and Discussion

We investigated possible diurnal entrainment of gene expression

in H. salinarum NRC-1 by subjecting cultures at various cell
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densities (Supplementary Table S1) to 72 hours of light:dark (L:D)

changes on a 12:12 hour cyclic schedule. Cells were harvested

over 3 or 4 hour intervals for up to 75 hours in continuous

darkness post-entrainment (Fig 1a and Supplementary Table S1).

The cell pellets were flash frozen and subsequently processed for

transcriptome analysis using whole genome microarray hybridiza-

tion [16,19]. The duration of each experiment, sampling

frequency and cell densities over which the experiments were

conducted (as estimated by optical density (OD) at 600 nm) are

reported in Supplementary Table S1.

The resulting microarray data (Geo accession number:

GSE15282) were analyzed for periodic expression patterns using

the Lomb-Scargle (LS) method [20] (see methods for details). The

LS analysis makes use of a least squares fit of sinusoidal curves to a

given time series, and thus does not require evenly spaced data and

is tolerant to missing data points [21]. The null distribution for the

periodogram was also derived to determine statistical significance

(p-value) of detecting oscillatory gene expression patterns [22].

The application of this analysis to 5 extended time courses (3

experimental and 2 controls with durations up to 75 hours with a

3–4 hour sampling frequency) allowed us to investigate oscillatory

expression patterns with periods ranging from 6 hrs to .30 hrs. A

gene was considered to have oscillatory behavior if a periodic

pattern was detected in its expression with a p-value,0.2 in its

respective LS periodogram (Figure 1b and Supplemental Figure

S1). Consistent with the 3-day 12:12 L:D entrainment regimen,

statistically significant periodic expression patterns with dominant

periods of ,13.0 hrs or ,21 hrs were detected in a total of 290

genes (,12.1% of the genome) in Experiment A and 230 genes

(9.6% of the genome) in Experiment B (Fig 1c, Supplementary

Figure S1). When expanded to include transcriptionally-linked

genes within operons [23] (Koide et al., submitted to Mol Sys Bio)

this represents potential periodic transcription of up to 636 genes

in Expt A (27%) and 460 genes in Expt B (19%). An overlap of 167

genes between these gene-sets demonstrated significant reproduc-

ibility across the two experiments (p,1028). Significantly, periodic

gene expression with either of the two dominant frequencies was

not observed at a lower cell density (OD600,0.4) (this is discussed

further below), in control cultures that received no entrainment

but were otherwise processed identically; or after shuffling/

randomization of the expression-matrices (Supplementary Figure

S1).

Genes with significant periodic expression patterns were further

investigated in context of cellular physiology. This identified

several classes of expression profiles, each with a distinct period

and phasing and several with significant over-representation of

diverse function categories (Fig 1d–e). This preliminary integrated

analysis demonstrated the diurnal synchronization of a large

number of linked enzymatic steps including key steps in the

synthesis of nucleotides (Figure 2, Supplementary Figure S1B and

Supplementary Table S2). Moreover, it was possible to phase-align

several classes of oscillatory gene expression changes with the L:D

cycle (Fig 1e). This revealed that related cellular processes align

well with respect to patterns of co-induction within the entrained

transcriptional program.

Interestingly, diurnal entrainment of gene expression was

maximally observed above a cell density (OD600.0.4) (Supple-

mentary Figure S1) at which H. salinarum NRC-1 is known to

undergo a large physiological transition that involves the

differential regulation of over 63% of all genes (Facciotti et al.,

submitted to J. Bact) through diverse mechanisms including

activation of a large number of alternate promoters, terminators

and putative ncRNAs (Koide et al., submitted). Not surprisingly,

transcription of a significant fraction of cycling genes is also

independently induced at this growth phase (Experiment A:

p = 761025; Experiment B: p = 3.761027). This growth-phase

dependent phenomenon results from exhausted nutritional

resources including decreased oxygen carrying capacity in the

medium - conditions akin to those in the natural environment of

H. salinarum NRC-1 [24] (Facciotti et al., submitted). Consistent

with this observation, the 135 transcripts that are both periodically

induced upon diurnal entrainment (including 70 genes with peak

expression during daytime) and also independently upregulated at

high cell density are significantly enriched for anoxic functions

[18] (Figure 3, Supplementary Table S3) [18]. Surprisingly, the

converse was also true - 45 transcripts that are typically

downregulated at this growth phase and also independently

repressed by a decrease in oxygen availability were also diurnally

entrained with maximal expression during nighttime [18] (Fig 3;

Supplementary Table S3). Remarkably, the distinct partitioning of

periodic transcriptional changes in oxic and anoxic genes

continues for at least 72 hours post-entrainment (Fig 3A). This

clear split in oscillatory behavior of genes associated with oxic and

anoxic functions strongly suggests synchronization and entrain-

ment of oxygen-responsive physiologies according to the L:D

phase. Taken together these results demonstrate that nutrient and

oxygen-limited conditions are the most conducive to entrainment

with L:D cycles – indicating perhaps the importance of

synchronizing gene expression for efficient resource utilization

under such conditions. Again, this periodic switching between oxic

and anoxic physiologies was observed post-entrainment with the

L:D cycle, in constant darkness, and in culture conditions that

were controlled to maintain constant dissolved oxygen (Supple-

mentary Table S1). However, one could argue that natural oxygen

consumption during aerobic growth and the subsequent adaptive

shift to anaerobic physiology might have induced spontaneous

cycling of oxic and anoxic gene expression similar to a

phenomenon observed during continuous culturing of yeast [25].

We can rule out such a phenomenon because control experiments

that were conducted simultaneously and at the same cell density

did not result in oscillatory expression of oxic and anoxic

physiology genes. Thus, we conclude that the 12:12 L:D

entrainment indirectly induced cycling of oxygen-related physiol-

ogies and speculate that this might be an outcome of a natural

relationship between changes in light and oxygen that has been

internalized by H. salinarum NRC-1. This was initially intriguing

because in most aquatic environments the direct physical coupling

between light and oxygen via temperature is often confounded by

diverse hydrological (river inflow, tides, rainfall, etc.) and biological

(e.g. the balance between photosynthesis and respiration) phe-

nomena [26,27]. Further investigation into the physical charac-

teristics of the natural hypersaline environment of halophilic

archaea provided clues into the potential implication of light-

mediated entrainment of oxygen-associated physiologies.

Extreme haloarchaea such as H. salinarum NRC-1 thrive in

closed ponds or terminal lake systems (such as the Great Salt Lake

or the Dead Sea) with salinities in excess of 100–150 g salt L21

[28]. Oxygen solubility is extremely poor at such high salinities

and, not surprisingly, in addition to aerobic respiration most

halophilic organisms also require alternate means of energy

production such as phototrophy, denitrification and other

dissimilatory processes [29,30,31,32]. Adaptive responses that

enable efficient conditional switching between these varied modes

of energy production are critical for the energetically expensive

lifestyle of halophilic organisms [16,24,33,34,35,36]. For instance,

in these environments, temperature and salinity are generally

considered to be the dominant parameters influencing dissolved

oxygen content [37] as biological primary production (photosyn-

Diurnal Anticipatory Behavior

PLoS ONE | www.plosone.org 2 May 2009 | Volume 4 | Issue 5 | e5485



Figure 1. Discovery of diurnally entrained periodic gene expression in H. salinarum NRC-1. a, H. salinarum NRC-1 cells were entrained with
3 days of 12:12 LD and subsequently released into constant darkness. Total RNA was prepared from samples collected immediately post-entrainment
(t = 0 hrs), every four hours until t = 60 hours. Two additional samples were collected at t = 64.5 hrs and t = 68.5 hrs. Culture conditions during
sampling were frequently monitored and controlled (Supplementary Table S1). b, Frequency histogram of genes detected with periodic
transcriptional changes (binned at intervals of 0.001 hr21, p,0.2) using Lomb-Scargle analysis. c, Spectral density (black line) of the histogram in (a)
shows two dominant frequencies of ,12.5 and ,21 hours; the blue swath shows data distribution of normally distributed gene expression changes.
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thesis) is greatly reduced [38,39]. The physicochemical depen-

dence of O2 concentration on temperature and salinity is well

known [40,41]. Notably, concentration of dissolved O2 in water

drops as its temperature goes up; the solubility of O2 at 0uC is

about twice its solubility at 30uC. Furthermore, there is evidence

for an average diurnal cycle of 1–2uC in surface temperature of

Great Salt Lake, a prototypically closed hypersaline ecosystem,

with lower temperatures at nighttime [42]. Hence, higher oxygen

levels are generally expected at nighttime relative to the warmer

daytime period. Our data suggests that this physicochemical

relationship between light and oxygen in the natural closed

hypersaline environment has been imprinted onto the regulatory

architecture of indigenous organisms such as H. salinarum NRC-1.

In other words, under nutrient limited conditions halophilic

archaea take advantage of this relationship to streamline their

physiology by anticipating present and future linked changes in

oxygen availability and operate oxically during nighttime and

anoxically during daytime.

While such anticipatory behavior has been observed over

shorter time scales [3], this study shows sustained oscillations in

oxic/anoxic transitions over longer time scales through several

cell divisions even after the L:D stimulus is removed and the cells

are maintained under constant conditions. Large families of

haloarchaeal regulatory proteins (signal transducers and TFs)

with physically linked domains for sensing light and oxygen are

further evidence of tight coupling between these environmental

Figure 2. Periodic expression of genes in five linked processes. Integrated analysis of transcriptional changes from a physiological context
identified periodic expression of genes encoding key steps in energy production (TCA cycle and arginine metabolism), C- and N- assimilation
(glutamate and arginine metabolism) and nucleotide biosynthesis. The inset graphs show transcriptional profiles (log10 ratios) of gene with a specific
period.
doi:10.1371/journal.pone.0005485.g002

d, Five k-means clusters of periodic transcriptional changes of the 290 genes (from Experiment A) in (a, b) are visualized as a heatmap [average period
is shown in parentheses and overrepresented GO or KEGG physiological functions (p,0.01) are also indicated]. The phasing of the diurnal L:D cycle is
indicated at the top of the heatmap with alternating white and shaded rectangles, respectively. e, Phase alignment of periodic gene expression
changes shows co-induction of related cellular functions according to the diurnal cycle. DNA replication, tyrosine metabolism and ion-coupled
transporters were upregulated during the middle of the light and dark phase with a period of 13.6 hours. Transcription of genes encoding
components of NADH dehydrogenase (ndhG3 and ndhG4), cytochrome oxidase (coxB), the urea cycle and glutamine-glutamate metabolism peaked
at the transitions from one phase to the next. Finally, nucleotide sugar metabolism, general sugar metabolism, and DNA integration were maximally
induced during the latter half of the dark phase.
doi:10.1371/journal.pone.0005485.g001
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factors and the biological architecture of the gene regulatory

networks [6,29,43]. Finally, the discovery of diurnal entrainment

of gene expression in an archaeon also raises important questions

regarding the origin of light-responsive clock mechanisms. This

is because archaeal information processing machinery is

assembled from components that share ancestry with eukaryotic

(general transcription factors and RNA polymerase) and

bacterial (sequence-specific transcription regulators) counterparts

[44]. Furthermore, components of both bacterial [45,46] and

eukaryotic [47] clocks are encoded in its genome [6,32]. Indeed,

further detailed experimentation is necessary to ascertain precise

phasing, temperature compensation, adaptability to different

periods of entrainment etc. to ascertain the mechanistic

underpinnings of this diurnal entrainment and its physiological

implications. Nonetheless, our results demonstrate that even

extremophilic archaea can use the diurnal day/night cycle to

their advantage by anticipating future physicochemically linked

changes in other EFs.

Materials and Methods

Culturing, sampling and RNA extraction
Wild type Halobacterium salinarium NRC-1 was cultured from a

single colony in Complete Medium (CM) [48]; at 37uC with

shaking at 125 rpm (Innova Waterbath, NewBrunswick Scien-

tific, Edison, NJ). Cells were incubated under entrainment

conditions (12:12 L:D cycle; daylight was simulated with full

spectrum light at 150 mE/m2/s) or in continuous darkness

(control) for three to four days prior to sampling. Post-

entrainment Samples (2 ml) were collected periodically (every

3–4 hours) for up to 72 hours in continuous darkness, under

constant cell density. The cell density was maintained by

replacing a fixed volume in the culture (typically 30 mls) with

equivalent of fresh CM every 3–4 hours [49]. Comparative

analysis with a similarly processed control culture discounted

any unaccounted perturbations that were introduced by this

periodic dilution. Cell pellets were harvested by centrifugation

at 1600 rcf for 2 min, decanted, flash-frozen in liquid N2 and

stored at 280u until RNA extraction. Total RNA was prepared

using the Absolutely RNA kit (Qiagen, Foster City, CA, USA).

RNA quality was examined by spectrophotometry and

BioAnalyzer (Agilent, Santa Clara, CA, USA) analyses and

DNA contamination was ruled out by PCR with 16S rDNA

primers.

Microarray Analysis
H. salinarum NRC-1 microarrays were fabricated at the Institute

for Systems Biology Microarray Facility. Each microarray slide

contains a unique 70mer oligonucleotide for each of the 2400

genes spotted in quadruplicate at two spatially distinct locations.

Labeling, hybridization and washing have been previously

described [16]. Statistical significance of differential gene expres-

sion was determined using the maximum likelihood method [19].

All microarray data reported in the manuscript is described in

accordance with MIAME guidelines.

Frequency Analysis
To examine the relative periodicity of genes in the constant light

and constant dark experiments we used the Lomb normalized

periodogram to estimate the spectral power as a function of

angular frequency [20,50,51,52]. This method can be used to

evaluate whether a given gene is periodic or is the result of noise or

some other non-periodic process (a p-value associated with the

significance of the each peak in the periodogram can be easily

calculated). There are other methods that would allow us to

calculate periodograms and statistically evaluate whether a signal

was truly periodic [22,50,53]; we chose the Lomb periodogram in

part because it does not require evenly sampled data. Further,

obeying the Nyquist limit, the highest frequency allowed was

0.167 hr21 (period = 6 hrs). For our analysis the lowest frequency

detected was 0.033 hr21 (period = 30 hrs). This allowed for

detection of a 24 hour signal and also for the experiment duration

to contain two full periods over which to detect.

The Lomb periodogram, PN(v), is calculated as follows:

PN vð Þ~

1

2s2

P
j hj{h
� �

cos v tj{t
� �h i2

P
j cos2v tj{t

� � z

P
j hj{h
� �

sin v tj{t
� �h i2

P
j sin2v tj{t

� �
8><
>:

9>=
>;

where mean and variance are calculated as per usual:

h~
1

N

XN

1

hi s2~
1

N{1

XN

1

hi{h
� �2

Tau is an offset that makes PN(v) invariant to shifts in all time-

Figure 3. Entrained genes are directly linked to the oxygen and growth response in H. salinarum NRC-1. Three classes of average mRNA
profiles for 180 of the 290 genes detected as cyclers in Experiment A. Expression profiles in all three panels are color-matched to indicate transcript
profiles for the same three sets of genes over the LD cycle (A), in response to oxygen (B) and during growth in a batch culture (C). In panel A The
period of oscillations in transcription upon entrainments is indicated as is the L:D cycle (open:grey boxes). Average transcript level changes in the
same three groups of genes are plotted over the course of the growth curve for H. salinarum NRC-1 (data from Facciotii et al. submitted). (C) The
transcriptional response of these genes to sudden inflow of O2 after .6 hrs of anoxia [O2 levels are shown as a magenta dotted line (see secondary y-
axis)] (Schmid et al. 2007).
doi:10.1371/journal.pone.0005485.g003
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points by a constant; tau is defined by the relation:

tan 2vtð Þ~
P

j sin 2vtjP
j cos 2vtj

This offset removes phase from the calculation. The Lomb

periodogram is analogous to least squares fitting of sins and cosines

to our signal in the time domain.

The significance of periodicity of expression changes for each

gene is then calculated as the probability that a peak in the

periodogram with intensity greater than z is due to a random or

non-periodic process [54]:

P wzð Þ:1{ 1{e{zð ÞM

Where M is the effective number of independent frequencies

sampled, which in our case is well approximated by N, the number

of samples [55]. Thus, for each of the 2400 unique genes the

analysis of a single time series resulted in a spectrogram and the

significance of the maximum peak in that spectrogram.

Data Integration and Visualization
Data were explored using the Gaggle and Firegoose framework

for integrating diverse software tools and algorithms including

Cytoscape, Data Matrix Viewer (DMV), KEGG, STRING, the R

statistical package and MeV [56,57].

Supporting Information

Figure S1 A. Results from Lomb-Scargle analysis are presented

as periodograms for each experiment described in Supplementary

Table 1. Only genes with p,0.2 were considered to be cyclic in

their expression pattern. Note that a strong banding pattern with

p,0.2 is only observed in experiments A and B. B. Reproduc-

ibility of periodic transcriptional changes in 12 genes of diverse

functions post-entrainment with three days of 12:12 LD.

Transcriptional changes over 48 hours of ‘‘memory’’ phase are

shown along with putative functions.

Found at: doi:10.1371/journal.pone.0005485.s001 (0.94 MB

PDF)

Table S1 Experiment design, culturing parameters and sam-

pling schedule.

Found at: doi:10.1371/journal.pone.0005485.s002 (0.18 MB

PDF)

Table S2 Genes with oscillatory gene expression profiles in

Experiments A and B, period of oscilattion and significance.

Found at: doi:10.1371/journal.pone.0005485.s003 (0.38 MB

PDF)

Table S3 The number of genes and average period in each of

the clusters presented in Figure 3 of the Experiment A.main text.

The number of genes correlated to high or low oxygen (taken from

Schmid et al. 2007) are also given.

Found at: doi:10.1371/journal.pone.0005485.s004 (0.13 MB

PDF)
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