
DIVE - a Multi-User Virtual Reality System 

Christer Carlsson Olof Hagsand 

Swedish Institute of Computer Science 
Box 1263 

164 28 Kista, Sweden 
tel: +46 8 752 1500 
fax: +46 8 751 7230 

cc@sics.se olof@sics.se 

Abstract 

The Distributed Interactive Virtual Environment (DIVE) is a heterogeneous dis- 
tributed VR system based on UNIX and Internet networking protocols. Each partic- 
ipating process has a copy of a replicated database and changes are propagated to the 
other processes with reliable multicast protocols. DIVE provides a dynamic virtual 
environment whew applications and users can enter and leave the environment on 
demand. Several user-related abstractions have been introduced to ease the task of 
application and user interface construction. 

1 Background 

The VR-related research at SICS is focused on distribution, collaboration, interac- 
tion and multi-user aspects of virtual reality. In order to perform research in these 
areas, we need a fully distributed software platform where several participants can 
meet and interact in a shared virtual environment. We also want the platform to be 
reasonably “open” , so that new applications easily c,an be prototyped and tested. 
From these goals we have developed a software platform for virtual environment sys- 
tems with specific focus 011 multi-user, distribution and human-computer interaction 
support. The platform, the Distributed Interactive Virtual Environment, DIVE, has 
enabled us to perform a multitude of experiments with virtual environments. 

The DIVE system has been developed at the Distributed Systems Laboratory, Swedish 
Institute of Computer Science with the aid of the Interaction and Presentation Lab- 
oratory, Royal Institute of Technology. The work has been done within the MultiG 
program, a Swedish national research effort on high speed communication and dis- 
tri bu ted applications. 

0-7803-1363-1193 $3.00 8 1993 JJ3EE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 5, 2008 at 12:06 from IEEE Xplore.  Restrictions apply.



2 The DIVE system 

2.1 Introduction 

A participant in a DIVE virtual world is either a human user or an application 
process. Users navigate in 3D space and may see, meet and collaborate with other 
users and applications in the environment. Users are represented by graphical ob- 
jects called ~ O ~ Y - ~ C O T L S .  Body-icons may be used as templates on which users’ input 
devices are graphically modeled in 3D space. Also, the body-icon facilitates aware- 
ness of ongoing activities since it defines the position from which a user sees the 
world. 

Figure 1: Two users and an application in a virtual environment. 

As an example, Figure 1 illustrates two simple body-icons representing users in a 
synthetic world, as viewed from a third user. The users are standing in front of a 
“white-board” application. 

A user sees and interacts with a world through an interface application called a 
oisualizer. A visualizer can be set up to accommodate a wide range of 1/0 devices 
such as HMDs, wands, datagloves, etc. It reads the user’s input devices and maps 
the physical actions taken by the user to actions in the DIVE system. This includes 
navigation in 3D space, selecting and grasping objects, etc. 

In addition to user processes, any number of application processes may exist within 
a world. When started, an application process typically builds its user interface 
by creating and introducing graphical objects in the world. Thereafter, the process 
listens to world events and messages. When an event occurs or a message is received, 
it reacts according to some control logic. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 5, 2008 at 12:06 from IEEE Xplore.  Restrictions apply.



2.2 Basic model: worlds and processes 

Conceptually, the distribution model is best described as a memory shared over a 
network. A set of processes interact by making concurrent accesses to the shared 
memory and by sending messages to each other. 

The memory, or database, is partitioned into worlds. Each world represents a specific 
set of objects and parameters completely distinct from other worlds. A DIVE process 
is a member of exactly one such world at a time, although it may change worlds 
dynamically. Since a world represents a local “state”, a change of world results in a 
complete switch of context. 

A DIVE process represents either a human user or an application. From a system 
point of view, there is no distinction between the two. A process acts on a world by 
modifying objects and parameters and by sending messages to the other processes 
of that world. Internally, each process runs multiple light weight processes, each 
thread being responsible for a certain task such as rendering, controlling 1/0 devices 
or updating the database. 

Worlds are implemented by ISIS process groups [4]. A process group is a set of pro- 
cesses which may be addressed as one entity: messages addressed to the group are 
relayed by multicast protocols. The prime advantage with the process group abstrac- 
tion in our setting is the ability to manage replicated data with atomic multicast 
protocols and achieve high availability by fault-tolerant computing algorithms. 

A world is implemented as a process group where each participating process actively 
manages its own replica; a complete copy of the database kept in primary memory. 
From an application point of view the replication is transparent, a process only 
modifies an object in what it sees as a shared database. 

The concurrency control mechanism uses mutual exclusive locks, reliable source 
ordered multicast and distributed object locks to ensure consistency between the 
copies of the replicated database. For a more detailed description, see [6]. 

2.3 Objects 

A DIVE object is the elementary information bearer in the replicated database. Each 
object has a globally unique identifier which is used for global referencing. Some 
other fields of an object are the following: 

0 Geometrical transformation: Objects can be composed hierarchically. In 
addition to its own transformation, each object inherits the rotation and trans- 
lation of the object on the level above. 

0 Status flags: The flags control basic properties such as how an object is dis- 
played and interacted with. For example, there is a “grasp” flag that controls 
whether an object may be grasped by a user. 

396 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 5, 2008 at 12:06 from IEEE Xplore.  Restrictions apply.



0 Views: Each object may have a number of graphical representations, views. 
Some of the currently implemented views are: lines, spheres, cylinders, text- 
strings, boxes, grids, pixmaps and polygons. Since an object may have multiple 
views, a rendering process may change the object’s graphical representation 
“on the fly”. For example, an object may be represented by a simpler view if 
it is seen from a distance. 

0 Behaviour: A simple reactive behaviour can be associated with an object 
without having an application controlling it. This is done by associating a 
finite state machine with the object. Each transition in  the state machine may 
be triggered by a message, resulting in changes in transformation, material, 
etc. 

2.4 Persons and interaction 

The user interface in DIVE uses the concept of persons to model a number of user 
interface abstractions. One such such abstraction is the body-icon, which is moved 
around in 3D space by the user. A head is a part of the body-icon which may be cou- 
pled directly to the movement of a HMD. One or two eyes identify viewpoints from 
which the visualizer renders the world. Many additional objects may be associated 
to persons, such as ears, hands and visors. 

A visor is a transparent rectangular object placed just in front of an eye, where 
information and virtual control devices may be placed. Since the visor is placed at 
a short distance from an eye, it is for practical purposes invisible to other users. 

Users can select and grasp objects by using interaction devices. When a user grasps 
an object, it is typically attached to the user’s body-icon in some way, for example to 
the icon’s hand. A select is normally a notification for the object or other processes 
to react to. In both cases, a message is distributed to all members of the world. 
This message can then be interpreted by an application, or alternatively, the object 
can react autonomously according to its behaviour description. 

2.5 Vehicles 

A user must be able to move through a virtual world and interact with applications, 
objects and other participants. In DIVE, this is accomplished with the aid of the 
various vehicles. A vehicle maps physical input devices to actions in the virtual 
environment, such as movement of a user’s body-icon, the sending of messages and 
the grasping of objects. 

There exists several vehicles in  DIVE. One is the mouse vehicle, which supports 
movement in six degrees of freedom and basic 3D interaction through the X11 
window and mouse interface. Movement is accomplished by dividing the differ- 
ent degrees of freedom into pairs and mapping them onto three icons. The icons 

397 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 5, 2008 at 12:06 from IEEE Xplore.  Restrictions apply.



are presented in the center of the display window and the user moves by drawing 
a rubberband from the selected icon. The user can also select and grasp objects 
simply by placing the mouse pointer on the object and pressing a mouse button. 

Another example is the HMD vehicle, which is designed to be used with a head 
mounted display and a “flying mouse”, both equipped with Ascension Technology 
magnetic trackers. The sensor on the HMD tracks the movements of a user’s head. 
The flying mouse is used for movement by pointing it in the desired direction and 
pressing a button. Other buttons are used to select and grasp objects by aiming a 
virtual beam at the object and then pressing the appropriate button. 

2.6 Hardware and implementation 

The DIVE system is written in C. Currently, DIVE runs on SUN4s with GX, GS 
or GT graphics hardware, IBM RS6000s with graphics hardware that supports GL 
and on Silicon Graphics workstations. The system is heterogeneous since users on 
different platforms can be present in the same virtual environment and work with 
applications running 011 any platform. The graphics may be displayed with vari- 
ous degrees of rendering quality, ranging from gouraud-shaded z- buffered polygons 
to simple wireframe rendering. Note that machines not equipped with graphics 
hardware can still run non-rendering applications. 

3 Applications in DIVE 

One of the fundamental principles in DIVE is to use the advantages a distributed 
platform can offer. One such advantage is the separation of the user’s interfaces to 
the virtual environment and the semantics supplied by an application. In DIVE, a 
visualizer is an example of a virtual environment interface, while an application (a 
separate process) typically manifests itself by modifying the content of the shared 
world database, and reacts to events taking place in the world. Application specific 
information regarding objects in  the database is maintained by the application it- 
self. This information is not distributed to other processes, as the semantics of the 
information is local to the application. 

Several applications have been built in DIVE. Some of those use traditional click- 
and-drag interfaces, such as Multidraw [ 101, where a 2-dimensional multi-user draw- 
ing application is projected within the 3D environment. Other applications use 
invisible, implicit interfaces, such as in  the family of Aura [8] [3] applications, where 
the intersection of invisible geometrical volumes around users and objects trigger 
actions, such as an audio conference. Also, a direct manipulation robot interface [l], 
a 3D graph editor and an experimental 3D air traffic control system has been built 
using the system. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 5, 2008 at 12:06 from IEEE Xplore.  Restrictions apply.



4 Related Work 

The 3D navigation technique we employ in our screen-and-mouse interface is based 
on [9]. Other multi-user VR systems have been developed, e.g. Rubber Rocks [2], 
RB2 [5 ] .  A difference between these and our approach is that DIVE can accom- 
modate any number of users running several different applications without recon- 
figuration. The VEOS system [7] is somewhat similar to DIVE in  that it uses 
peer to peer distribution between processes as opposed to Rubber Rocks which uses 
a client/server architecture. Our vehicle concept has similarities to the dialogue 
managers in Rubber Rocks. 

5 Conclusions and Future Work 

We have presented an experimental software environment for the development of 
multi-user virtual reality applications, in  which a rich scale of experiments have been 
performed. We have less accentuated the graphic aspects of virtual environments 
and instead focused 011 multi-user and 3D interaction aspects. 

The use of active replication has proven a powerful method and model for virtual 
worlds. In fact, once past the initial threshold of learning the process group abstrac- 
tion, many application developers find this model appealing, and in some ways more 
intuitive than a traditional client/server model. The use of active replication has 
also resulted in a degree of fault-tolerance and persistency. A natural consequence 
of the distribution model is the ability to separate the virtual environment interface 
from the applications by using separate peer processes: visualizers and application 
processes, respectively. Application processes can then act on worlds completely 
independent of 1/0 device issues or the number of users, for example. 

We have found that the effort of designing virtual worlds and applications is huge. 
It is therefore essential to develop tools and abstractions which may aid the design 
of virtual environments. We have introduced some “higher level” concepts, such as 
vehicles, visors and behaviours which we have found helpful when designing virtual 
reality applications. However, we see this only as a first effort and that more research 
is needed in this area. 

A question which we have not addressed in full is what application areas are best 
served by an active replication based distributed VR system such as DIVE. With 
our model, we have found that many user interfaces which can be modeled by direct 
real-world metaphors are ideal. Simulation-like applications, terrain modeling etc., 
have been less successful because of the large amount of data in such applications. 
However, we are currently addressing this issue as well, where terrain or background 
object serve as “second class” objects which are of a static nature and cannot directly 
be interacted wit 11. 

399 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 5, 2008 at 12:06 from IEEE Xplore.  Restrictions apply.



Note 

The DIVE software is freely available for non-commercial purposes. Contact the 
authors for more information. 

References 

[l] Magnus Andersson, Lennart E. Fahlkn, and Torleif Soderlund. A virtual en- 
vironment user interface for a robotic assistive device. In Proceedings of the 
second European Conference on the Advancement of Rehabilitation Technology, 
pages 33-57, Stockholm, May 1993. 

[a] Perry A. Appino, Bryan J. Lewis, Lawrence Koved, Daniel T. Ling, David A. 
Rabenhorst, and Christopher F. Codella. An architecture for virtual worlds. 
Presence, 1(1), 1991. 

[3] Steve Benford and Lennart E. FahlCn. A spatial model of interaction in large 
virtual environments. In Proceedings of ECSCW '93, September 1993. 

[4] Kenneth P. Birman, Robert Cooper, and Barry Gleeson. Programming with 
process groups: Group and multicast semantics. Technical Report TR-91-1185, 
Dept. of Computer Sciences, University of Cornell, January 1991. 

[5] Chuck Blanchard, Scott Burgess, Young Harville, Jaron Lanier, Ann Lasko, 
Mark Oberman, and Michael Teitel. Reality built for two: A virtual reality 
tool. ACM SZGGRAPH Computer Graphics, 24(2):35-36, 1992. 

[6] Christer Carlsson and Olof Hagsand. DIVE - a platform for multi-user virtual 
environments. Computers and Graphics, 6, 1993. 

[7] Geoffrey P. Coco. Veos 2.0 tool builders manual. Technical report, Human 
Interface Technology Lab, University of Washington, 1992. 

[8] Lennart E. Fahlh,  Charles G. Brown, Olov Stihl, and Christer Carlsson. A 
space based model for user interaction in shared synthetic environments. In 
ZNTERCHZ '93 conference proceedings, Amsterdam, April 1993. 

[9] Jock D. Macinlay, Stuart K. Card, and George G. Robertson. Rapid controlled 
In SZGGRAPH '90 conference movement through a virtual 3D workspace. 

proceedings, pages 171-176, Dallas, August 1990. 

[lo] Olov Stihl. Mdraw - a tool for cooperative work in the MultiG telepresence 
environment. Technical Report SICS-T92:05, SICS, 1992. 

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 5, 2008 at 12:06 from IEEE Xplore.  Restrictions apply.


