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ivergence Based Feature Selection 
for Multimodal Class Densities 

Jana NovovicovB, Pave1 Pudil, and Josef Kittler 

Abstract-A new feature selection procedure based on the Kullback 
J-divergence between two class conditional density functions 
approximated by a finite mixture of parameterized densities of a 
special type is presented. This procedure is suitable especially for 
multimodal data. Apart from finding a feature subset of any cardinal&y 
without invo!ving any search procedure, it also simultaneously yields a 
pseudo-Bayes decision rule. Its performance is tested on real data. 

IndexTerms-Feature selection, feature ordering, mixture distribution, 
maximum likelihood, EM algorithm, Kullback J-divergence. 
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1 ~NTR~DUC~I~N 
In practice, when designing a pattern recognition system we 
often encounter situations when even the form underlying the 
class conditional probability distribution of the pattern is un- 
known. Such a problem arises in a number of real pattern rec- 
ognition problems when we have the data but no other infor- 
mation. Apart from the rather trivial cases when the data is 
governed by a simple distribution which can be found from it, 
until1 recently there seemed not to exist any direct method for 
selecting a good subset of features. The options left in such a 
case were not satisfactory ([9], [lo]), becoming computationally 
unfeasible for problems of realistic dimensionality. 

An attempt to overcome the stated difficulties was made in 
our preceding work (see Pudil et al. [9], [lo]) where we pro- 
posed a feature selection method based on approximating the 
uknown class conditional probability density functions (PDFs) 
in the sense of minimizing the Kullback-Leibler distances be- 
tween the true and the postulated densities. 

However, it should be stressed that the primary goal of that 
approach was not to select the most discriminative features but 
rather the features which minimize the adopted criterion of 
approximation error. When features are found which are best 
from the point of view of approximating the unknown class 
distributions, we can hope that they will be good for discrimi- 
nating between the classes as well. Obviously, this premise is 
not always substantiated. Consequently, though the method 
has yielded very good results in a number of applications, its 
performance on a problem involving correlated data was not 
quite satisfactory [9]. 

Motivated by the need to improve the performance of the 
feature selection process by employing a criterion more di- 
rectly linked to the concept of separability between classes, a 
new approach to feature selection is developed in the paper. 
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The method is based on the Kullback J-divergence between 
class conditional PDFs approximated by finite mixtures of 
parameterized densities. The maximum likelihood (ML) esti- 
mates of the unknown parameters of the postulated class 
conditional PDFs are computed by the expectation- 
maximization (EM) algorithm (see Dempster et al. [2]). The 
proposed approach is especially suitable for,multimodal data 
and is restricted to two classes. 

To date the use of probabilistic separability measures has 
been confined to the cases when the class conditional PDFs 
belong to a family of special parametric PDFs for which an 
analytical solution can be found. The method presented in’ this 
paper extends the usability of divergence criterion for feature 
selection to the general case of PDFs of unknown form. Fur- 
thermore, while the new method complements the recent 
method based on approximation ([9]) in selecting features ac- 
cording to their discriminatory potential more directly, it pre- 
serves all its advantages. Particularly, besides yielding the 
feature subset of required dimensionality without any search 
procedure, it also provides a pseudo-Bayes decision rule. Con- 
sequently, the problems of feature selection and classifier de- 
sign are solved simultaneously. 

2 PARAMETRIC MODEL BASED ON FINITE MIXTURE 
Following the statistical approach to pattern recognition, we 
assume that a pattern described by a real D-dimensional vector 

x = (x1, x2, .‘., x,)’ E X c a” is to be classified into one of a fi- 

nite set of C different classes Q = {w,, w2, ..., w,}. The patterns 
are supposed to occur randomly according to some true class 

conditional PDFs p*(x I W) and the respective a priori probabili- 
ties P*(W). Vector x can be then optimally classified using the 
Bayes minimum error rule based on the knowledge of the 

components p*(x I c@*(u), w E Q of the unconditional PDF 
p*(x). Since the class conditional PDFs and the a priori class 
probabilities are seldom specified in practice, it is necessary to 
estimate these functions from the sets of independent labeled 

samples: Xw = (x~,x~,.~.,x~~}, x,” E X c RD, k = 1, ..., NW, 

w E Q, N, is the number of samples from class w. 
In the case of parametric approaches to density estimation, 

usually a simplifying assumption about the data structure is 
made. As a result, instead of finding the underlying true 
structure in the data, a simplified and generally incorrect 
structure is imposed on it. This is why the practical results of 
estimating multivariate distributions are often unsatisfactory. 

On the other hand, when no underlying structure is assumed, 
nonparametric methods of estimating the’class conditional PDFs 
which do not require any 
these PDFs must be resorted the use of non- 
parametric methods gives 
The most common problem enco 
requirement for the multidimension%@obabi%@-f-unction-,i,,’- 

2 volved (see Devijver and Kittler [3], Dud>a$Hart [4] for I$ re 
details). Further problems concerning&e kernel-based es&na- 
tors are the choice of the functional form of the kernel ai% the 
choice of the window width (see Jain [7]). 

, / 

In this paper we adopt an alternative approach which in terms 
of the required computer storage is considerably more efficient 
than nonparametric PDF estimation methods but at the same time 
it retains the capacity to reflect the local structure of the distribu- 
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tion. In this sense it is superior to the kernel PDF estimation tech- 
nique. The key idea is to use a mixture of large number of 
parametric components of a special type. The simplicity of the 
basic building block of the mixture must be compensated for by 
numbers. Nevertheless, we shall see that confining the kernel to a 
simple form has several important advantages: 

1) ease of optimization, 
2) local sensitivity, 
3) it facilitates feature selection which is of primary consid- 

eration in our work, 
4) despite the increased number of components, it results in 

an improved overall memory space efficiency (the num- 
ber of estimated parameters grows slower than the 
number of parameters of more complex kernels) 

In our approach the following parametric model is postu- 
lated for the uth class conditional density function: 

p(xlw) = 2 a:~,&#) = &Q&+,)g(+,r b,, a), x  E X (1) 
In=1 rn=l 

where ol”, is a nonnegative mixing weight, cf:, az = 1, and M, 

is the number of mixture components. Each component den- 

sity p,,(x I w) of this finite mixture includes a background PDF 
gV common to all classes, which is an important distinction 
from the kernel approach, and a function g of the form 

b, = (bol,bo2,..., b,,), b: = (b,“,, b” mL,...,b;D) E BD, (3) 

Q  = (~l,q&*-r&J) E {otl}D 

where b,, b: , and Q  are the parameter vectors. The function g 
is actually defined on a subspace 

X(,, c  a’: X(,, = xi, x  xi, x.. . x  xi,, xi* c  a, 

15i, <D, k=l,...,Z 

specified by nonzero binary parameters #i, . 

The univariate function f is assumed to be from a paramet- 
ric family of PDFs parameterized by b E ‘B. For any choice of 
the binary parameters $:, which can be looked upon as control 
variables, the finite mixture (1) can be rewritten as 

A. = (a;,a;,-.,a;m), Bw = (b;,b;,-.,b;m). 

Model (1) is a particular case of the parametric model pro- 
posed by Grim [6]. It will be seen later that as a result of ap- 
proximating the unknown conditional PDFs with the model (4) 
the process of feature selection becomes a very simple task. 

3 ML ESTIMATION OF PARAMETERS USING 
EM ALGORITHM 

We consider the ML estimation of all the uknown parameters 
A = (Am, w E Q], B = [Bo, w E a}, and b, in the parametric 
families (p(x I A, B, b,, Q)). The estimation will be based on 
the labeled sample of independent observations from class W, 

i.e., on X,. The a priori probability of class w is assumed to be 
known and for simplicity we denote it by P(w). 

The log-likelihood function for A, B, b,, and Cp is given un- 
der model (4) by 

$V%b,,@) = ~~~~~logp(xlA”,,B~,b,.e). (5) 
w 

where “log” denotes the natural logarithm. Estimates of 
uknown parameters can be obtained as a solution of the log- 
likelihood equation by an iterative procedure via EM algo- 
rithm (see Dempster et al. [2], Redner and Walker [ll]). 

We shall use the EM algorithm to maximize the log- 
likelihood function (5) with respect to the parameters A, B, and 

b, under given @. The two steps of the EM algorithm of Demp- 
ster et al. [2], are specified in our case in the following: Given a 
current approximation (CA, ‘B, ‘b,) of a maximizer of L(A, B, b,, 
Q)  obtain the next approximation (A, g,b,) as follows: 

l E-step: Determine for @  and ‘Q, the conditional expecta- 
tion 

(‘) 

where the abbreviation 0 = (A, B, b,) is used for simplic- 
ity and 

‘a;g(xl%:,” botc @ ) 
p(m’xrw) = x; ‘a;g(xl’b;,’ b,,,C @)  (7) 

m  = 1,2, +. . , Mm, x E X0, w E R. 

. M-step: Choose 6 = argmax,{~(@,@]cO,c a)}. 

According to Redner and Walker [ll], Grim [5], and Pudil et al. 
[9], for any fixed binary parameters $i and under fixed weights 
v(x I m, w) defined by 

dmlx* 4 
v(x’m’ u, = CyEx, p(m(y, w) ’ (8) 
m = 1,2,...,M,, x  E X,, w  E Cl, 

the function (6) is maximized by A = A, B = g, and b, = 6,, 
where 

i$ = arg mix xz v(xjm, w) log f(qlb) , (10) 
w 

Cll) 

m  = l,Z,...,M o, i = l,Z,...,D, w E CL 

Since the inequality r(‘@,@l’@,’ @)  < L(~,(Plc0,‘4p) is satis- 

fied, we have L(CA,C B,C bO,C @)  2 L&6,6,,@) ([ll], [S]). 
Like all other currently available estimation procedures, the 

EM algorithm does not guarantee convergence to a global 
maximum. Similarly the choice of the’number of components in 
(4) influences only the quality of approximation. The frequently 
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discussed slow convergence of the EM algorithm in the final 
stages of computation is also of little importance since the corre- 
sponding changes of the criterion are usually negligible. 

PPROACH TO FEATURE SELECTION 
In the following we shall concentrate on the two-class prob- 
lem, i,.e., Q  = (W,, W,}. 

Consider the Kullback J-divergence between two classes W, 
and w, given by (see Boekee and Van der Lubbe [l]) 

where Ew denotes the mathematical expectation with respect to 
the class-conditional PDF p*(x I w) and “Q  - U” is the abbrevia- 
tion either for W, if w  = w, or for W, if w  = w,. 

As this measure reflects the separability of the two classes 
we shall use it as a criterion for feature selection. Suppose that the 
PDF $(x I w) has the form p(x I W) defined in (4). Then p(w,; w,) in 
(12) can be estimated from the sets X, as 

It is easy to verify that by using the weights p(m I x, CO) given by 
(7) we can rewrite (13) in the form 

&‘h B, @)  = 

M,-, R-O 

- C p(m]x, Q  - o)log 
“m 

(14) 
m=l p(mlx,~ - w) 

Denote 

(15) 
^ o,n-w 
%I = &x-xf(mlx,R - 4 

p(+, Q  - w) 

vw(x'm'Q - a) = CyEx., p(m/y,Q - w) 
(16) 

Equation (13) can be rewritten using (9), (8), (15), and (16) as 

7(&J%@) = 

Now substituting A = A, B = B in (17) and introducing quantities 

we obtain 

(19) 

where only the second term on the right-hand side depends on @. 
Rank ii in their descending order 

(20) 

and set 
3, =(1fork=1,2;..,d, 

0 fork = d+ l;..,D, 1 S i, I D. (21) 

Then for vector 6, of parameters ii and for any vector @)d 
consisting of d Is and (D - d) OS, the inequality 

$4, s, aq I p,s, q (22) 

is satisfied. Here and in the sequel @, denotes the vector con- 
sisting of d 1s and (D - d) OS. 

Our  approach to the problem of selecting a subset of d features 
X, = (r,lk = 1,2;..,d; xfk E X) from the set X = (x, I j = 1,2, “, D} 

of D possible features representing the pattern, d < D, is trans- 
formed to the problem of choosing that vector $,which satisfies 

?(A, i?,&,) = mO;x I(A, 6, Qd)  (23) 

It follows from (19) that to find the vector &)d satisfying (23) is 
equivalent to finding the vector &)d for which the criterion 

J(Q) = &ii, (24) 
i=l 

is maximized with respect to any other Q ’a for given A, 8, 
where ii is defined as in (18). That is, we attempt to find vec- 
tor &)d which maximizes the estimation of the Kullback J- 

divergence between the approximations p(x/&, fi,, bO, ad) 

and P(x~,~~,~,~~,~,,~,) of the class conditional PDFs 

p*(x I W) and p*(x I R  - w), respectively. 
Using the results presented in Section 3 and in this section 

we propose the following algorithm for feature selection: 
l Step 1: Given the parameters ‘A, ‘B, and “@  compute the 

weights p(m I x, w) and v(x I m, w), m = 1, 2, .. ., M, x E X, 
w E Sz according to (7) and (S), respectively. 

* Step 2: Under fixed weights (7) and (8) compute new 
values A of A and 6 of B by (9) and (lo), respectively 
If A # ‘A, B # ‘B, continue by Step 1 using the new pa- 
rameters A, B Otherwise continue by Step 3. 

* Step 3: Using the parameters A, B , and the weights (8), com- 
pute for the vector “@  the quantities ii , i = 1,2,. ‘. , D, accord- 
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ing to (18). Rank ii so that ii, 2 ii, 2.. .2 ii, 2.. -2 ii,, and 

define &, for a given d according to (21). 

If &)d # ‘Q  then continue by Step 1 with new values A, 
I?, and &)d, else terminate the algorithm. 

Note that in order to initialize the algorithm we should set GZ = 
1 for all i = 1,2, . . I, D, i.e., Q, = (1, 1, + s ., 1). This follows both from 
theoretical considerations and computational reasons as the 
choice results in a quicker convergence of the algorithm. 

The proposed method possesses some unique properties 
which make it very useful in practice. First of all, a feature sub- 
set of a given cardinality d, where d = 1, 2, ..‘, D, is obtained 
immediately since a distinctive characteristics of our approach 
to feature selection is that only the operation of ranking of ii is 
required, without any search procedure, in order to obtain a 
required subset of d features. A computationally time consum- 
ing search procedure usually associated with a selected crite- 
rion is not needed in our approach. Moreover, in practice we 
can get a near optimal ordering (often even an optimal one) of 
all the original D features after passing the Step 3 of the algo- 
rithm for the first time. Thus a near optimal feature subset of 
any cardinality d, where d = 1, 2, *.s, D, can be obtained im- 
mediately. Subsequent computations according to the algo- 
rithm will further improve the model by adjusting all the pa- 
rameters and thus increase the value of log-likelihood func- 
tion, but they will not necessarily change the composition of 
the feature subset. 

Given the approximations 

w E Q  12 i, I D, 

it can be easily seen that the background PDF g, may be re- 
duced in the inequality in the Bayes decision rule. Thus we 
may classify the observation of x according to the pseudo- 
Bayes decision rule: 

decide that x is from class w, if 

It means that a new pattern x is classified into one of two 
classes according to only d features xi,, ... , xld . 

An important characteristics of this approach is that it ef- 
fectively partitions the set X of all D  features into two disjunct 
subsets X, and X - X,, where the joint distribution of the fea- 
tures from X - X, is common to both the classes and constitutes 
the background distribution, as opposed to features xi,, ..‘, xi, , 
forming X, which are significant for discriminating the classes 
and the joint distribution of these features constitutes the 
“specific” distribution defined in (3). According to these fea- 
tures alone a new pattern x is classified into one of two classes. 

4.1 Application to a ParticularType of Mixtures 
If (2) and (3) are of the form 

dxbd = fi[&exp{-:(~~}] (27) 

P”l 63 a, ogj E (o,c-), 

& E a, a;; E @I,=), m  = l,Z,...M,, w E Q, 

then (18) can be simplified as follows 

where 
(29) 

and 

P”,, = xz xi++% W)’ 

(&$ = C(Xi - P:i)2z(xlm,o), 
(30) 

X&O 

CLWm? = c XizqXlrn, n - w), 
xtx, 

(6:;n-y = E(Xi - p~~-“)2vm(xlm,cl - w). (31) 
xsx, 

5 RESULTS OF EXPERIMENTS 
The advocated method was tested on synthetic and real data 
though only the results achieved on real data from texture clas- 
sification and speech recognition are described in the sequel. Its 
performance is compared with that of the ordinary multivariate 
normal model and in the case of speech data also with that of the 
“approximation model” [9], [lo]. Owing to different assump- 
tions about the underlying probability distributions, the com- 
parison has been made using the misclassification rate obtained 
from both types of classifiers, i.e., classifier based bn the mixture 
of normal distribution (the pseudo-Bayes classifier) and the 
classifier based on multivariate normal distribution (the Gausian 
classifier). Separate training and test sets were used in all ex- 
periments. In addition, the a priori probabilities ‘in all experi- 
ments were taken to be equal for all classes. 

5.1 Texture Data 
A number of different images have been tested in this experi- 
ment. Two color images (described in more detail in [9]) were 
specifically chosen since they are not well separated in the 
measurement space. They are derived from specimens of cer- 
tain types of marble. From 26 features extracted altogether, 
eight were texture features and the remaining 18 color features. 
The sample size for both training and test sets were 1,000. Be- 
cause of the high dimensionality of the measurements, when 
the distributions were assumed to be Gaussian, the sequential 
forward floating selection (SFFS) method was used to select 
features. This method has been shown to achieve quasi opti- 
mal performance at low computational costs [8]. The results of 
classification for various sizes of the feature set are depicted in 
Table 1. Here and in the sequel Pe(X,) denotes the error esti- 
mation of the classification based on feature subset X,. 
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TABLE 1 
PERFORMANCE OF PSEUDO-BAYES AND GAUSSIAN CLASSIFIERS FOR DIFFERENT FEATURE SUBSET SIZE OF IMAGE DATA 

From Table 1, it is obvious that the assumption that the dis- 
tributions are unimodal Gaussian is not appropriate. In con- 
trast, when a mixture of normal densities is used, a much 
smaller error rate is obtained. As far as feature selection is con- 
cerned, our approach works very well since a substantial di- 
mensional@ reduction can be made without significantly de- 
teriorating the classifier performance. In other words, redun- 
dant features have been detected especially with the mixture of 
four components. The higher the number of the mixture com- 
ponents, the better the results for the feature subsets of the 
same size. This can be clearly seen for the subsets of 10 and 14 
features. 

5.2 eech Data 
The data used to train, test and compare the proposed method 
was a set of 1,418 pattern vectors of the utterances “YES” and 
“NO” spoken over the public switched telephone network. 
Each 15-dimensional feature vector contained five segments of 
three features derived by low order linear prediction analysis. 
From this set, 798 samples were used for training and the re- 
maining 620 samples to form the test set. Both sets contain 
nearly equal number of samples for each pattern class. The 
data was supplied by British Telecom. The results of the ex- 
periment using are shown in Fig. 1. 

As reported already in [9], a detailed analysis has shown 
that the data lies in narrow regions along parallel hyperplanes, 
i.e., the data are highly correlated and unimodal. It is therefore 
pertinent to use the Gaussian classifier in this case. To ap- 
proximate these distributions by a mixture of independent 
Gaussian distributions properly would require a higher num- 
ber of mixture components. However,  owing to a small sample 
size of the training set, this is not possible. For this reason the 
feature selection method based on PDF approximation [9] 
failed to provide good results in this case, as we can see from 
Fig. 1. In both the approaches the mixture model of two, three, 
four, and five components has been used. 

The fact that despite the above mentioned conditions the 
presented new approach based on divergence provided the 
results comparable or even better than the “normal” approach, 
indicate its great potential. Note again that the “normal” ap- 
proach consisted of selecting features by the sequential for- 
ward floating search method (giving in this case the identical 
results to the branch and bound method) and using the Gaus- 
sian classifier. 

From Fig. 1 it can be seen that even in the case of diver- 
gence criterion the mixture of two independent normal densi- 
ties was not sufficient to accurately approximate the unknown 
distributions. This insufficiency is apparent from the classifi- 
cation error rate which was approximately twice as high than 
in the case of more components. With the mixture of three, 
four, and five components the comparable (for five compo- 
nents even better) results to that of the multivariate normal 
model have been obtained. 
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Fig. 1. Performance of pseudo-Bayes classifier. 

6 CONCLUSIONS 

A novel feature selection method, based on approximating the 
unknown class conditional distributions by finite mixtures of 
parameterized densities of a special type using the Kullback J- 
divergence as the criterion of optimality has been developed. It 
is distinguished from an earlier attempt of PDF approximation 
[9]} in the sense that it is more directly aimed at selecting a sub- 
set of features with the highest possible discriminative potential. 

The method described in this paper extends the usability of 
divergence criterion to the general case of PDFs of unknown 
form. The idea is to model these densities by a mixture of 
parametric densities of special type. This approach is quite 
realistic and is particularly useful for the case of multimodal 
distributions when other feature selection methods based on 
distance measures (e.g., Mahalanobis distance, Bhattacharyya 
distance) would totally fail to provide reasonable results. 

As the comparison with the results achieved by 
“multivariate normal” approach and “approximation” ap- 
proach demonstrate, the new method is more robust with re- 
spect to the form of class conditional PDFs. While the former 
one fails in the case of multimodal distributions and on the 
other hand the performance of the latter one is not too good in 
the case of unimodal PDFs (particularly with smaller training 
set sample size), the method based on divergence yields very 
good results in both the cases. 
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