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Divergence Based Feature Selection
for Muitimodal Class Densities

Jana Novovicové, Pavel Pudil, and Josef Kitiler

Abstract—A new feature selection procedure based on the Kullback

J-divergence between two class conditional density functions
approximated by a finite mixture of parameterized densities of a
special type is presented. This procedure is suitable especially for
multimodal data. Apart from finding a feature subset of any cardinality
without involving any search procedure, it also simultaneously yields a
pseudo-Bayes decision rule. its performance is tested on real data.

Index Terms—~Feature selection, feature ordering, mixture distribution,
maximum likefihood, EM algorithm, Kullback J-divergence.

‘

1 INTRODUCTION

In practice, when designing a pattern recognition system we
often encounter situations when even the form underlying the
class conditional probability distribution of the pattern is un-
known. Such a problem arises in a number of real pattern rec-
ognition problems when we have the data but no other infor-
mation. Apart from the rather trivial cases when the data is
governed by a simple distribution which can be found from it,
untill recently there seemed not to exist any direct method for
selecting a good subset of features. The options left in such a
case were not satisfactory ([9], [10]), becoming computationally
unfeasible for problems of realistic dimensionality.

An attempt to overcome the stated difficulties was made in
our preceding work (see Pudil et al. [9], [10]) where we pro-
posed a feature selection method based on approximating the
uknown class conditional probability density functions (PDFs)
in the sense of minimizing the Kullback-Leibler distances be-
tween the true and the postulated densities.

However, it should be stressed that the primary goal of that
approach was not to select the most discriminative features but
rather the features which minimize the adopted criterion of
approximation error. When features are found which are best
from the point of view of approximating the unknown class
distributions, we can hope that they will be good for discrimi-
nating between the classes as well. Obviously, this premise is
not always substantiated. Consequently, though the method
has yielded very good results in a number of applications, its
performance on a problem involving correlated data was not
quite satisfactory [9].

Motivated by the need to improve the performance of the
feature selection process by employing a criterion more di-
rectly linked to the concept of separability between classes, a
new approach to feature selection is developed in the paper.
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The method is based on the Kullback J-divergence between
class conditional PDFs approximated by finite mixtures of .
parameterized densities. The maximum likelihood (ML) esti-
mates of the unknown parameters. of the postulated class
conditional PDFs are computed by the expectation-
maximization (EM) algorithm (see Dempster et al. [2]). The
proposed approach is especially suitable for‘multimodal data
and is restricted to two classes.

To date the use of probabilistic separability measures has
been confined to the cases when the class conditional PDFs
belong to a family of special parametric PDFs for which an
analytical solution can be found. The method presented in'this
paper extends the usability of divergence criterion for feature
selection to the general case of PDFs of unknown form. Fur-
thermore, while ‘the new method complements the recent
method based on approximation ([9]) in selécting features ac-
cording to their discriminatory potential more directly, it pre-
serves all its advantages. Particularly, besides yielding the
feature subset of required dimensionality without any search
procedure, it also provides a pseudo-Bayes decision rule. Con-
sequently, the problems of feature selection and classifier de-
sign are solved simultaneously.

2 PARAMETRIC MODEL BASED ON FINITE MIXTURE

Following the statistical approach to pattern recognition, we
assume that a pattern described by a real D-dimensional vector

x=(x,x x,)" € X < R is to be classified into one of a fi-

nite set of C different classes Q = {a,, @, -+, @} The patterns
are supposed to occur randomly according to some true class

conditional PDFs p*(x | @) and the respective a priori probabili-

ties P*(w). Vector x can be then optimally classified using the
Bayes minimum error rule based on the knowledge of the

components p*(x| @)P*(w), ® € Q of the unconditional PDF
p*(x). Since the class conditional PDFs and the a priori class
probabilities are seldom specified in practice, it is necessary to
estimate these functions from the sets of independent labeled

whoxeXcRY, k=1, N,

samples: X = {x,x;, -, x .
we Q, N, is the number of samples from class w.

In the case of parametric approaches to density estimation,
usually a simplifying assumption about the data structure is
made. As a result, instead of finding the underlying true
structure in the data, a simplified and generally incorrect
structure is imposed on it. This is why the practical results of
estimating multivariate distributions are often unsatisfactory.

On the other hand, when no underlying structare is assumed,
nonparametric methods of estimating the class conditional PDFs
which do not require any prior kI/l/oWledge about the forms of
these PDFs must be resorted ta; However, the use of non-
parametric methods gives rise tz diferent type of problems.
The most common problem encotntered is the excesswe‘_storage
requirement for the multidimensional probabilify function- in- .
volved (see Devijver and Kitler [3], Duda a /dHart {4} for ge
details). Further problems ConcermngA'he kernel-based es;'fma—
tors are the choice of the functional form of the kernel aﬁd the
choice of the window width (see Jain [7]).

In this paper we adopt an alternative approach W}uch in terms
of the required computer storage is considerably more efficient
than nonparametric PDF estimation methods but at the same time
it retains the capacity to reflect the local structure of the distribu-
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tion. In this sense it is superior to the kernel PDF estimation tech-
nique. The key idea is to use a mixture of large number of
parametric components of a special type. The simplicity of the
basic building block of the mixture must be compensated for by
numbers. Nevertheless, we shall see that confining the kernel to a
simple form has several important advantages:

1) ease of optimization,

2) local sensitivity,

3) it facilitates feature selection which is of primary consid-
eration in our work,

4) despite the increased number of components, it results in
an improved overall memory space efficiency (the num-
ber of estimated parameters grows slower than the
number of parameters of more complex kernels)

In our approach the following parametric model is postu-
lated for the wth class conditional density function:

Zampm (o) = zamgo (xb,) ( |b

o . . . M,
where «, is a nonnegative mixing weight, 2m=1

p(xo) = 0 @) xeX (1)

o, =1,and M,
is the number of mixture components. Each component den-

sity p, (x| @) of this finite mixture includes a background PDF
8y common to all classes, which is an important distinction
from the kernel approach, and a function g of the form

slof) = T o) @

o [ )|
m' ) ];][ (iloz)

[ (bovbazf""bop)/ bf:l ( ml’b::2'
®= (¢1,¢2,«~,¢D)e{0,1}

where b, b?, and @ are the parameter vectors. The function g
is actually defined on a subspace

Xy < R[:XU) =X xX, ><-«-><Xil,Xik cR,
1<i, <D, k=1,,1

specified by nonzero binary parameters ¢, .

g( . 9 E'{O'l}'

b bo)eB, (3

The univariate function f is assumed to be from a paramet-
ric family of PDFs parameterized by b € B. For any choice of
the binary parameters ¢, which can be looked upon as control
variables, the finite mixture (1) can be rewritten as

p(xj4, B, b, @) = Za [( xlon)™ flfos)
~~~,(me), Bw=(bf,b;”,---,b;m}.

Model (1) is a particular case of the parametric model pro-
posed by Grim [6]. It will be seen later that as a result of ap-
proximating the unknown conditional PDFs with the model (4)
the process of feature selection becomes a very simple task.

4
A, = (af, al,

3 ML ESTIMATION OF PARAMETERS USING

EM ALGORITHM
We consider the ML estimation of all the uknown parameters
A={A,, we Q}, B={B,, we Q}, and b, in the parametric
families {p(x!A,, B,, b, ®)}. The estimation will be based on
the labeled sample of independent observations from class @,

i.e.,, on X, The a priori probability of class @ is assumed to be
known and for simplicity we denote it by P(w).

The log-likelihood function for A, B, b, and @ is given un-
der model (4) by

L(A,Blbo,¢)=2 Zlogp(xlAm,B,bo,Q), ©®)

wel m xeX,,

where “log” denotes the natural logarithm. Estimates of
uknown parameters can be obtained as a solution of the log-
likelihood equation by an iterative procedure via EM algo-
rithm (see Dempster et al. [2], Redner and Walker [11]).

We shall use the EM algorithm to maximize the log-
likelihood function (5) with respect to the parameters A, B, and
b, under given ®. The two steps of the EM algorithm of Demp-

ster et al. [2], are specified in our case in the following: Given a
current approximation (‘A, ‘B, ‘b,) of a maximizer of L(A, B, b,,
@) obtain the next approximation (A,B, f)o) as follows:
¢ E-step: Determine for ® and ‘® the conditional expecta-
tion
P(w)
o c _
Lo, o0, @)=y~

o) o

Z{ZP i, @) log|ag, (xjb, )g(x lbm, o )]}

xeX,

®

where the abbreviation ®

ity and

= (A, B, b)) is used for simplic-

P, ) = SV b0 0)
z)‘l"a“’g( l‘b;’,‘bo,f o) )
m=12,- M ,xeX, 6 0eQ

e M-step: Choose © = arg max,{£(©, CIJI”Q,‘ D)}.

According to Redner and Walker [11], Grim [5], and Pudil et al.
[9], for any fixed binary parameters ¢, and under fixed weights
v(x | m, w) defined by

plmfx, )
uixm, ®) = =———————,
(Xm, ) Y, Py, o) ®)
m=12,,M, ,xeX,  0ecQ,

the function (6) is maximized by A = A, B=8B, and b, =b,,
where

Zv(mlx/ ®), ©

ll) xeX,,
b° = arg Ilbl%x{ Y v(xm, »)log f(xilb)}, (10)
< xeX,
R . M,
b, = P l b
o = AT r&%x{gl (@) mZ;l XEZX (xjm, w)log f(x,| )} )
m=12,,M,,i=12,,D, 0eQ.

Since the inequality £(°0,®|°0," ®) < £(6,®|'®," @) is satis-

fied, we have L(°A, B, by, @) < L(A, B, b,, @) ([11], [5]).

Like all other currently available estimation procedures, the
EM algorithm does not guarantee convergence to a global
maximum. Similarly the choice of the'number of components in
(4) influences only the quality of approximation. The frequently




discussed slow convergencé of the EM algorithm in the final
stages of computation is also of little importance since the corre-
sponding changes of the criterion are usually negligible.

4 APPROACHTO FEATURE SELECTION

In the following we shall concentrate on the two-class prob-
lem, i.e., Q = (@, @}

Consider the Kullback J-divergence between two classes @,
and o, given by (see Boekee and Van der Lubbe [1])

" (xo)
2 P(w)E {log —5(—15—(0)}

WeQ
where E_ denotes the mathematical expectation with respect to
the class-conditional PDF p*(x | @) and “Q — & is the abbrevia-
tion either for @, if = , or for w, if 0= @,
As this measure reflects the separability of the two classes
we shall use it as a criterion for feature selection. Suppose that the

o 0,) (12)

PDF p*(x} @) has the form p(x | @) defined in (4). Then [*(w; @) in
(12) can be estimated from the sets X as
M,
D e OB X000 Py
J(A,B, @) = z )Z] Mn_‘ ('M ®) 13)
weQ 0) xeX,, Zmzl m g( [b bo/q))

It is easy to verify that by using the weights p(m1x, @) given by
(7) we can rewrite (13) in the form

J(A,B,®) =
P(w) ol

+2N Z me[xwlogm

weQ @ xeX, |(m=1
Mg_o an—w

- ,Q - w)log——L—r 14
z:; p(mix ) ng(mx,Q—w) (14)

D . M, '
+ 2 0; 2p(m|x, a)) logf(xf !bfn)i)
i=1

D MQ,
1—2¢ 2pm|xQ w]ogf Ilbnm}

m=1

Denote

Awﬂw_ Zp

w xeXw

(15)

p(m X, L — a))

Zyexw p(m

Equation (13) can be rewritten using (9), (8), (15), and (16) as
J(A,B,®) =

Pt

v”(x

mQ-0)= (16)

y,Q—a))

M, Mg
w){z aplogay — Y 6o log otf:“’}

weQ m=1 m=1
D
+ Z(piZP 2 z x\m, logf l\b
=l 0eQ © xeXy
. D MnA
2¢2P Z&mﬂmz lbnw
=l weQ xeX,,

2 z Zp ) logp

weQ "” xeX,, m=1

+z Z me]xﬂ w)log p(m

weQ ‘” xeX,, m=1

o)

x, )~ CD)

(17)
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Now substituting A = A, B = B in (17) and introducing quantities

JP =Plw)y > ay 2 (x|m, o)log f llbml
m=1 x€Xy
Mg_o R .
=Y ety 0”(x ( ]bf;;w)} (18)
m=1 xeXy
=3 i=12D weQ, ‘
[215e]

we obtain

J(A,B,@)=0(A, (19)

fs)+j¢ji

where only the second term on the right-hand side:depends on @.
Rank J; in their descending order

{fik}D ’fik 2f»

k=1 Tyl (20)
and set
- lfork=1,2,---,d,
¢fk:{0fork=d+1,--~,D, 1<i,<p. @D

Then for vector & ; of parameters é)i and for any vector ®,
consisting of 4 1s and (D - d) Os, the inequality

J(A B o, <J(A B, (22)

is satisfied. Here and in the sequel ®, denotes the vector con-
sisting of d 1s and (D —d) Cs.
Our approach to the problem of selecting a subset of d features

=, Je=12,dx, €X) fomtheset X = fxj=1,2, -, D}
of D possible features representing the pattern, d < D, is trans-
formed to the problem of choosing that vector o ,Which satisfies

J(A,B,d,)- max J(ABo,) (23)
It follows from (19) that to find the vector ® , satisfying (23) is
equivalent to finding the vector ®, for which the criterion

J(@) = (24)

M
&
__T()

is maximized with respect to any other ®, for given A,B,
where f‘. is defined as in (18). That is, we attempt to find vec-
tor ® + Which maximizes the estimation of the Kullback J-

divergence between the approximations .p(x’fkw,éw,fao,tb &)

and p(xAﬂ_w,B f)o,(Dd)

Q-a’

of the class. conditional PDFs

p (x| @) and p*(x | Q ~ w), respectively. ‘

Using the results presented in Section 3 and in this section

we propose the following algorithm for feature selection:

s Step 1: Given the parameters ‘A, B, and ‘® compute the
weights p(m Ix, @) and v(xim, w), m=1,2, .-, M xe X,
we Q according to (7) and (8), respectively.

e Step 2: Under fixed weights (7) and (8) compute new
values A of A and B of B by (9) and (10), respectively.

If A# °A, B # ‘B, continue by Step 1 using the new pa-
rameters A, B . Otherwise continue by Step 3.
e Step 3: Using the parameters A, B, and the weights (8), com-

pute for the vector ‘® the quantities fi ,i=1,2,---,D, accord-



|IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18,

N

ing to (18). Rank J, so that J, > [, 2> ],
define @, for a given d according to (21).

2.2 fiD, and

It & . # ‘@ then continue by Step 1 with new values A

B,and & 4» €lse terminate the algorithm.

Note that in order to initialize the algorithm we should set ¢,=
1foralli=1,2,--+, D, ie, ®=(1,1, -, 1). This follows both from
theoretical considerations and computational reasons as the
choice results in a quicker convergence of the algorithm.

The proposed method possesses some unique properties
which make it very useful in practice. First of all, a feature sub-
set of a given cardinality d, whered =1, 2, -+, D, is obtained
immediately since a distinctive characteristics of our approach
to feature selection is that only the operation of ranking of J, is
required, without any search procedure, in order to obtain a
required subset of d features. A computationally time consum-
ing search procedure usually associated with a selected crite-
rion is not needed in our approach. Moreover, in practice we
can get a near optimal ordering (often even an optimal one) of
all the original D features after passing the Step 3 of the algo-
rithm for the first time. Thus a near optimal feature subset of
any cardinality d, where d = 1, 2, ---, D, can be obtained im-
mediately. Subsequent computations according to the algo-
rithm will further improve the model by adjusting all the pa-
rameters and thus increase the value of log-likelihood func-
tion, but they will not necessarily change the composition of
the feature subset.

Given the approximations

4

P(XA O’A) Hf( i/)ﬁ H(u

j=d+1 m=1 k=1

miy, )

(25)
weQ, 1<i <D,

i, <
it can be easily seen that the background PDF g, may be re-
duced in the inequality in the Bayes decision rule. Thus we
may classify the observation of x according to the pseudo-
Bayes decision rule:

decide that x is from class @, if
M, 4
P(o, 2 G Hf( A I}_‘ﬁz"{P(“’f) & TT A o, )} 26)

m=1 k=1
It means that a new pattern x is classified into one of two
classes according to only 4 features x, , -+, x, .

]

ber ) =

iy

An important characteristics of this approach is that it ef-
fectively partitions the set X of all D features into two disjunct
subsets X, and X — X, where the joint distribution of the fea-
tures from X — X, is common to both the classes and constitutes
the background distribution, as opposed to features x; ,---, x; ,
forming X, which are significant for discriminating the classes
and the joint distribution of these features constitutes the
“specific” distribution defined in (3). According to these fea-
tures alone a new pattern x is classified into one of two classes.

4.1 Application to a Particular Type of Mixtures
If (2) and (3) are of the form

= 1% = py :
go(x|,u0, GO) l,;[[ 270, {_7(TJ H (27)

eR, o, €(0,),

~um
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(s, 0%, 1,04, ®) =
D 1 o\ g 2|
Oy xX; - ; X, = Mq:
H __OL«EXP __ i ‘u’ml += i :u’Ot (28)
o 2 o 2\ oy
i=1 | Omi O mi o
U eR, 0% €(0,2), m=12,-M, ©ecQ,

then (18) can be simplified as follows

fgeel]

m=1
Mg_, ~0-0 \? FOQ-0 _ AQ-@ 2
©,Q-0 Q -0\2 Gmi ”mi umi
+ 2 log{é t—ow | * romen :
m=1

O i G i
29)
where
= zxiv(x[m, ),
xeX
’ (30)
(62) = X (x - ) olxjm, o),
xeXe
and
pete =7y x0°(xm, Q - 0),
xeX,, (31)

(657) = X (v -

xeX,,

v (xjm, Q - ).

5 RESULTS OF EXPERIMENTS

* The advocated method was tested on synthetic and real data

though only the results achieved on real data from texture clas-
sification and speech recognition are described in the sequel. Its
performance is compared with that of the ordinary multivariate
normal model and in the case of speech data also with that of the
“approximation model” [9], [10]. Owing to different assump-
tions about the underlying probability distributions, the com-
parison has been made using the misclassification rate obtained
from both types of classifiers, i.e., classifier based on the mixture
of normal distribution (the pseudo-Bayes classifier) and the
classifier based on multivariate normal distribution (the Gausian
classifier). Separate training and test sets were used in all ex-
periments. In addition, the a priori probabilities in all experi-
ments were taken to be equal for all classes.

5.1 Texture Data

A number of different images have been tested in this experi-
ment. Two color images (described in more detail in [9]) were
specifically chosen since they are not well separated in the
measurement space. They are derived from specimens of cer-
tain types of marble. From 26 features extracted altogether,
eight were texture features and the remaining 18 color features.
The sample size for both training and test sets were 1,000. Be-
cause of the high dimensionality of the measurements, when
the distributions were assumed to be Gaussian, the sequential
forward floating selection (SFFS) method was used to select
features. This method has been shown to achieve quasi opti-
mal performance at low computational costs [8]. The results of
classification for various sizes of the feature set are depicted in
Table 1. Here and in the sequel Pe(X,) denotes the error esti-
mation of the classification based on feature subset X,.
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TABLE 1
PERFORMANCE OF PSEUDO-BAYES AND GAUSSIAN CLASSIFIERS FOR DIFFERENT FEATURE SUBSET SIZE OF IMAGE DATA
Model Pe(X) | Pe(X,) | Pe(X) | Pe(X,) | Pe(X,) | Pe(X,) |
Mixture of 2 components ||  0.097 0.062 0.030 0.030 0.030 0.030
Mixture of 3 components || 0.063 0.027 0.016 0.007 0.007 0.007
Mixture of 4 components || 0.056 | 0.011 | 0.007 | 0.007 | 0.007 | 0.007
Multivariate normal 0.235 0.287 0.169 0.169 0.169 0.169
From Table 1, it is obvious that the assumption that the dis- - , T T ‘
tributions are unimodal Gaussian is not appropriate. In con- '
trast, when a mixture of normal densities is used, a much -8 2 components
smaller error rate is obtained. As far as feature selection is con- 0.30 b @ -~-© 3 components 1
cerned, our approach works very well since a substantial di- 4-— & 4 components
mensionality reduction can be made without significantly de- 4--—05 components
teriorating the classifier performance. In other words, redun- =% multivariats normal
dant features have been detected especially with the mixture of 025 ¢ )
four components. The higher the number of the mixture com-
ponents, the better the results for the feature subsets of the 2
same size. This can be clearly seen for the subsets of 10 and 14 % 0.20 -
features. i
= [ e ...
5.2 Speech Data 8 oas | - P O— TS °
The data used to train, test and compare the proposed method .E"wz )
was a set of 1,418 pattern vectors of the utterances “YES” and
“NO” spoken over the public switched telephone network.
Each 15-dimensional feature vector contained five segments of 0.10
three features derived by low order linear prediction analysis.
From this set, 798 samples were used for training and the re-
maining 620 samples to form the test set. Both sets contain 005 |
nearly equal number of samples for each pattern class. The
data was supplied by British Telecom. The results of the ex-
periment using are shown in Fig. 1.
. . . 1 1 H ! L £ !
As reported already in [9], a detailed analysis has shown 0.0 4 5 s 0 i3 y i

that the data lies in narrow regions along parallel hyperplanes,
i.e., the data are highly correlated and unimodal. It is therefore
pertinent to use the Gaussian classifier in this case. To ap-
proximate these distributions by a mixture of independent
Gaussian distributions properly would require a higher num-
ber of mixture components. However, owing to a small sample
size of the training set, this is not possible. For this reason the
feature selection method based on PDF approximation [9]
failed to provide good results in this case, as we can see from
Fig. 1. In both the approaches the mixture model of two, three,
four, and five components has been used.

The fact that despite the above mentioned conditions the
presented new approach based on divergence provided the
results comparable or even better than the “normal” approach,
indicate its great potential. Note again that the “normal” ap-
proach consisted of selecting features by the sequential for-
ward floating search method (giving in this case the identical
results to the branch and bound method) and using the Gaus-
sian classifier.

From Fig. 1 it can be seen that even in the case of diver-
gence criterion the mixture of two independent normal densi-
ties was not sufficient to accurately approximate the unknown
distributions. This insufficiency is apparent from the classifi-
cation error rate which was approximately twice as high than
in the case of more components. With the mixture of three,
four, and five components the comparable (for five compo-
nents even better) results to that of the multivariate normal
model have been obtained.

Number of features

Fig. 1. Performance of pseudo-Bayes classifier.

6 CONCLUSIONS

A novel feature selection method, based on approximating the
unknown class conditional distributions by finite mixtures of
parameterized densities of a special type using the Kullback J-
divergence as the criterion of optimality, has been developed. It
is distinguished from an earlier attempt of PDF approximation
[9]} in the sense that it is more directly aimed at:selecting a sub-
set of features with the highest possible discriminative potential.

The method described in this paper extends. the usability of
divergence criterion to the general case of PDFs of unknown
form. The idea is to model these densities by a mixture of
parametric densities of special type. This approach is quite
realistic and is particularly useful for the case of multimodal
distributions when other feature selection methods based on
distance measures (e.g., Mahalanobis distance, Bhattacharyya
distance) would totally fail to provide reasonable results.

As the comparison with the results’ achieved by
“multivariate normal” approach and “approximation” ap-
proach demonstrate, the new method is more robust with re-

spect to the form of class conditional PDFs. While the former

one fails in the case of multimodal distributions and on the
other hand the performance of the latter one is not too good in
the case of unimodal PDFs (particularly with $maller training
set sample size), the method based on divergence yields very
good results in both the cases.
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