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DIVERGENCE-FREE FINITE ELEMENTS

ON TETRAHEDRAL GRIDS FOR k ≥ 6

SHANGYOU ZHANG

Abstract. It was shown two decades ago that the Pk-Pk−1 mixed element
on triangular grids, approximating the velocity by the continuous Pk piecewise
polynomials and the pressure by the discontinuous Pk−1 piecewise polynomi-
als, is stable for all k ≥ 4, provided the grids are free of a nearly-singular
vertex. The problem with the method in 3D was posted then and remains
open. The problem is solved partially in this work. It is shown that the Pk-
Pk−1 element is stable and of optimal order in approximation, on a family of
uniform tetrahedral grids, for all k ≥ 6. The analysis is to be generalized to
non-uniform grids, when we can deal with the complicity of 3D geometry.

For the divergence-free elements, the finite element spaces for the pressure
can be avoided in computation, if a classic iterated penalty method is applied.
The finite element solutions for the pressure are computed as byproducts from
the iterate solutions for the velocity. Numerical tests are provided.

1. Introduction

Rewriting the Navier-Stokes or the Stokes equations in the weak variational
forms, the primitive unknowns, the velocity and the pressure, belong to Sobolev
spacesH1 and L2, respectively. Naturally, a finite element method would be the Pk-
Pk−1 element which approximates the velocity in an H1-subspace of continuous Pk

piecewise polynomials (C0-Pk) and approximates the pressure in an L2-subspace of
discontinuous Pk−1 piecewise polynomials (C−1-Pk−1). This is a truly conforming
element as the incompressibility condition is satisfied pointwise and the discrete
solution for the velocity is a projection within the space of divergence-free functions.
A fundamental study on the method was done by Scott and Vogelius ([11, 12]) that
the method is stable and consequently of the optimal order on 2D triangular grids
for any k ≥ 4, provided that the grids have no nearly-singular vertex. A 2D vertex
of a triangulation is singular if all edges meeting at the vertex form two cross lines;
see Figure 1. For k ≤ 3, Scott and Vogelius showed that the Pk-Pk−1 element
would not be stable, and may not produce approximating solutions on general 2D
triangular grids in [11, 12]. What is this magic number k in 3D? Scott and Vogelius
posted this question explicitly after discovering that k = 4 in 2D. The problem has
remained open for more than 20 years.

The geometry of the 3D tetrahedral grids is much more complicated than that of
2D. By adding or moving a few edges and vertices locally, one can easily eliminate
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Figure 1. Singular vertices (A and B) and a nearly-singular ver-
tex (C, when C → A), in 2D.

singular vertices in 2D; see Figure 1. When a triangulation is singular-vertex free, it
is shown by Scott and Vogelius [11, 12] that the divergence of a C0-Pk vector space
is exactly the space of C−1-Pk−1 modulus a constant. Following this approach, we
found previously that this is true on Hsieh-Clough-Tocher tetrahedral grids ([17])
for all k ≥ 3 in 3D also. For general tetrahedral grids, it is challenging to identify
all the singular vertices and edges. For example, when doing multigrid refinements
on tetrahedral grids (cf. [16]), a known type of singular edges (all face triangles
meeting at the edge fall into two planes) and singular vertices (all face triangles
meeting at the vertex fall into three planes) cannot be avoided. To extend the
Scott-Vogelius result to 3D while avoiding the technical details on the geometry
of singular vertices, we limit this research on a family of uniform grids, shown in
Figure 2. We will show that the Pk-Pk−1 element is stable and provides the optimal
order solutions, for all k ≥ 6. When a classic iterated penalty method ([6, 3, 4, 14])
is used here, we only need to solve a vector-Laplacian equation for the velocity with
an iteration number independent of grid size. In such a case, the mixed element
is reduced to a single element, and the pressure is computed as a byproduct. This
research is still far away from answering the question on the magic number k in 3D
proposed by Scott and Vogelius. Since we limit our work on the uniform grids, the
magic k may be greater than 6. As we require k ≥ 6 in our constructional proof,
the magic k could be less than 6 as well, though unlikely; see Corollary 3.1 and the
numerical result following that. We note that for the continuous pressure version
of the Pk-Pk−1 element (k ≥ 2) on tetrahedral grids, the analysis is done in [2],
extending the Taylor-Hood element [10].

The rest of the paper is organized as follows. In Section 2, we define the Pk-
Pk−1 element. In Section 3, we will prove the stability of the Pk-Pk−1 element on a
uniform grid, and show the optimal order of convergence. In Section 4, we provide
some numerical results.

2. The Pk-Pk−1 element

In this section, we shall define the Pk-Pk−1 finite element for the stationary
Stokes equations. The resulting linear systems are guaranteed to have a unique
solution, i.e. the (reduced) inf-sup condition always holds for such a divergence-
free finite element pair. The classic iterated penalty method ([6, 3, 4, 14]) can be
applied where the mixed element is reduced to a single divergence-free element.
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Figure 2. The first three levels (n = 1, 2, 4) of grids, Ωh.

We solve a model stationary Stokes problem: Find functions u (the fluid velocity)
and p (the pressure) on a domain of unit cube Ω = (0, 1)3 such that

(2.1)

−Δu+∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

where f is the body force. The standard variational form is: Find u ∈ H1
0 (Ω)

3 and
p ∈ L2

0(Ω) such that

(2.2)
a(u,v) + b(v, p) = (f ,v) ∀v ∈ H1

0 (Ω)
3,

b(u, q) = 0 ∀q ∈ L2
0(Ω).

Here H1
0 (Ω)

3 is the Sobolev space (cf. [5]) with zero boundary trace, L2
0(Ω) is the

L2 space with zero mean value, i.e., L2(Ω)/R = {p ∈ L2 |
∫

Ω
p = 0}, and

a(u,v) =

∫

Ω

∇u · ∇v dx,

b(v, p) = −
∫

Ω

divu p dx,

(f ,v) =

∫

Ω

f v dx.

Let Ωh be a family of uniform tetrahedral grids on Ω depicted in Figure 2:

Ωh = {K | K is a tetrahedron with size |K| ≤ h} .
Then we define the Pk-Pk−1 mixed element spaces by

Vh,k =
{

uh ∈ C(Ω) | uh|K ∈ Pk(K)3 ∀K ∈ Ωh and uh|∂Ω = 0
}

⊂ H1
0 (Ω)

3,

(2.3)

Ph = {divuh | uh ∈ Vh,k} ⊂ L2
0(Ω).(2.4)

It is widely known that the pointwise divergence-free mixed method is too compli-
cated and not practical; cf. [4]. Very little work has been done on this method; cf.
[1, 7, 8, 9, 11, 17, 18]. The resulting system of finite element equations for (2.2) is:
Find uh ∈ Vh,k and ph ∈ Ph such that

(2.5)
a(uh,v) + b(v, ph) = (f ,v) ∀v ∈ Vh,k,

b(uh, q) = 0 ∀q ∈ Ph.
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The linear system of equations (2.5) always has a unique solution, in the divergence-
free element method; cf. [18]. We note that Ph in (2.4) is a proper subspace of
traditional C−1-Pk−1 finite element space. We will characterize it in detail below.
Letting q = divuh in (2.5), we still have the (pointwise) divergence-free property
for the finite element solution

(2.6)

∫

Ω

(divuh)
2dx = b(uh, q) = 0.

By (2.6), the unique solution uh of (2.5) is divergence-free ([10, 4, 3, 18]). It is, in
fact, the a(·, ·) orthogonal projection from the divergence-free space Z to a subspace
Zh, defined by,

Z :=
{

v ∈ H1
0 (Ω)

3 | div v = 0
}

,(2.7)

Zh := {v ∈ Vh,k | div v = 0} .(2.8)

As Ph may be a proper subspace of discontinuous, piecewise polynomials of degree
(k−1) or less, it may be difficult to find a nodal basis for Ph in some cases. But on
the other side, it is the special interest of the divergence-free element method that
the space Ph can be omitted in computation and the discrete solutions approximat-
ing the pressure function in the Stokes equations can be obtained as byproducts, via
the iterated penalty method. This does not only simplify the coding work, but also
it avoids the difficulty of solving non-positive definite systems of linear equations,
encountered in typical mixed element methods. We refer to [6, 4, 3, 14, 18] for the
iterated penalty method.

3. Stability and convergence

In this section, we will prove the inf-sup condition (3.69), i.e., the stability of
the divergence-free Pk-Pk−1 mixed element. The analysis is done by construction,
based on the unit cube domain Ω and the uniform grids Ωh, except Lemma 3.1.
The convergence follows the stability routinely.

Lemma 3.1. For any q ∈ Ph (defined in (2.4)), k ≥ 3, there is a function v1 ∈ Vh,3

(defined in (2.3)) such that

(3.1)

∫

K

div v1 =

∫

K

q ∀K ∈ Ωh, and ‖v1‖H1(Ω)3 ≤ C‖q‖L2(Ω).

Proof. For any q ∈ Ph, by the inf-sup condition for the continuous functions
(cf. [10]) there is a uq ∈ H1

0 (Ω)
3 such that

divuq(x, y, z) = q(x, y) a.e. for (x, y, z) ∈ Ω

and

‖uq‖H1 ≤ C‖q‖L2 .

We modify the Lagrange interpolation operator slightly to define a “Fortin op-
erator” (see [4]):

Ih : C(Ω) ∩H1
0 (Ω)

3 → Vh,3, Ih : uq �→ Ihuq,

Ihuq(ai) = uq(ai) at all nodes except the four internal face nodes,
∫

(∂K)i

Ihuqdx =

∫

(∂K)i

uqdx, i = 1, 2, 3, 4,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIVERGENCE-FREE FINITE ELEMENTS ON TETRAHEDRAL GRIDS 673

✡
✡
✡
✡
✡
✡
✡
✡✡

❏
❏

❏
❏

❏
❏

❏
❏❏

✏✏✏✏✏✏✏✏✏

❅
❅

❅

❆
❆
❆
❆
❆❆

ai :

�

�

�

�

� � � ��

�

�

��

�

�

�

�

�

�

��

�

�

�

✡
✡
✡
✡
✡
✡
✡
✡✡

❏
❏

❏
❏

❏
❏

❏
❏❏

✏✏✏✏✏✏✏✏✏

❅
❅

❅

❆
❆
❆
❆
❆❆

�

�

�

�

� � � ��

�

�

��

�

�

�

�

�

�

��

�

�

�

❝ ❝

❝

bi :

Figure 3. P3 Lagrange nodes: bi. Removing four inner-face nodes.

where Ihuq(bi) (see Figure 3) is chosen so that the integral on each of the four
face triangles matches that of uq. We note that an averaging interpolation can be
adopted if the function uq is not continuous, as usual; see [13]. Also follow, for
example, [13], it is standard to show the stability of such an interpolation operator
by scaling:

‖Ihuq‖H1 ≤ C‖uq‖H1 .

The interpolant also preserves the divergence elementwise:
∫

K

div v1dx =

∫

∂K

v1 · ndx =

∫

∂K

uq · ndx =

∫

K

divuqdx =

∫

K

qdx.

We note that the above analysis in defining Ihuq ∈ Vh,3 is well known in showing
the stability of P3-P0 element in 3D; cf. [17]. �

After matching the integral values of q elementwise by div v1, we next match the
vertex-values of q − div v1.

Lemma 3.2. For any q ∈ Ph defined in (2.4) such that
∫

K
q = 0 ∀K ∈ Ωh,

k ≥ 3, there is a function v2 ∈ Vh,3 such that

div v2(a
K
i ) = q(aKi ) ∀K ∈ Ωh,(3.2)

∫

K

div v2 = 0 ∀K ∈ Ωh,(3.3)

‖v2‖H1(Ω)3 ≤ C‖q‖L2(Ω).(3.4)

Here aKi , 1 ≤ i ≤ 4, are the four vertices of element K.

Proof. Let q = divwh for some wh ∈ Vh,k, k ≥ 3. From Figure 4, there are six
types of vertices in Ωh:

Type (a): Corner vertices shared by 2 tetrahedra, B,C,D,E, F,H in Figure 4,

Type (b): Corner vertices shared by 6 tetrahedra, A and G in Figure 4,

Type (c): Mid-edge vertices shared by 4 tetrahedra, I, P and R in Figure 4,

Type (d): Mid-edge vertices shared by 8 tetrahedra, J in Figure 4,

Type (e): Mid-face vertices shared by 12 tetrahedra, L, N and Q in Figure 4,

Type (f): Internal vertices shared by 24 tetrahedra, M in Figure 4,

For a Type (a) boundary vertex, such as B in Figure 4, the vector field wh

vanishes on the four boundary faces meeting at B; it follows that in each of the
two tetrahedra sharing the vertex B, wh vanishes along the three edges meeting at
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Figure 4. The interior and boundary vertices of Ωh.

B (in BASGF , for instance, wh vanishes along BA, BF , and BG). This implies
that divwh = 0 at B, so that we do not need any construction of v2 in order to
meet the requirement (3.2), because q|GAFB(B) = q|GACB(B) = 0.

For a Type (c) vertex, similarly, all four tetrahedra meeting at the vertex have

three boundary edges. Therefore, q(a
Kj

i ) = divwh(a
Kj

i ) = 0 at 4 tetrahedra Kj ,
sharing such a boundary vertex.

For a Type (b) vertex such as A in Figure 4, there are six tetrahedra {Kj}
sharing the vertex. We define a vector function v2,(b) ∈ P 3

3 ∩ C0(∪Kj) such that
v2,(b) = 0 at all Lagrange nodes except nodes on the diagonal edge of the cube
formed by the six tetrahedra, i.e., nodes a and b in Figure 5. As v2,(b) has three
components, there are in total 6 degrees of freedom for such a v2,(b), at nodes a
and b. Note that, as wh|∂Ω = 0, the gradient of wh at A are the same on two
tetrahedra sharing a flat boundary. That is,

q|AGEH(A)=q|AGHD(A), q|AGDC(A)=q|AGCB(A), q|AGBF (A)=q|AGFE(A).

The three values of q(A) at a boundary vertex A would be matched by three degrees
of freedom of v2,(b) while the other three degrees of freedom of v2,(b) would make
∇v2,(b) = 0 at the opposite vertex G.

Let us give an explicit construction of v2,(b). Without loss of generality, let
ABCDEFGH be the unit cube at the origin. Let a “derivative nodal” basis func-
tion φ(b)(x, y, z) at A be the continuous piecewise P3 function which has nodal value
0 at all Lagrange nodes except two diagonal nodes a and b (see Figure 5), so that

∇φ(b)(G) =

⎛

⎝

0
0
0

⎞

⎠ , but ∇φ(b)(A) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

1 0 0
)T

on AGEH ∪ AGHD,
(

0 0 1
)T

on AGDC ∪ AGCB,
(

0 1 0
)T

on AGBF ∪AGFE.
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We can define (not unique) this continuous P3 nodal basis by (see Figure 4),

(3.5) φ(b)(x, y, z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x(1− z)(1 + y − 2z) on AGEH,

x(1− y)(1 + z − 2y) on AGHD,

z(1− y)(1 + x− 2y) on AGDC,

z(1− x)(1 + y − 2x) on AGCB,

y(1− x)(1 + z − 2x) on AGBF,

y(1− z)(1 + x− 2z) on AGFE.

The function v2,(b) to be constructed is

(3.6) v2,(b) = φ(b)(x, y, z)

⎛

⎝

q|AGEH(A)
q|AGBF (A)
q|AGDC(A)

⎞

⎠ .

By the construction div v2,(b) has zero nodal values at all vertices of 6 Kj , except
at vertex A, where the six values match that of q. By the equivalence of norms on
the unit cube for piecewise polynomials, we have

(3.7) |q(A)| ≤ Ch−3/2‖q‖L2(
⋃

Kj).

On the other side, we used scaled derivatives to define v2,(b) and we get the following
bound:

|v2,(b)|H1(
⋃

Kj)3 ≤ C| divv2,(b)|L2(
⋃

Kj) ≤ Ch3/2| div v̂2,(b)|L2((0,1)3)

≤ Ch3/2|q(A)| ≤ C‖q‖L2(
⋃

Kj).(3.8)

We note that due to the uniform grid, we can compute the constants in (3.7) and
(3.8). For example, by (3.5) and (3.6), we can obtain

|v2,(b)|H1(AGEH)3 =
∣

∣q|AGEH(0, 0, 0)
∣

∣

√
3|x(1− z)(1 + y − 2z)|H1(AGEH)

=
∣

∣q|AGEH(0, 0, 0)
∣

∣

1√
35

= 2
√
3‖ div v2,(b)‖L2(AGEH).

But the constants in (3.7) and (3.8) would depend on the polynomial degree k.
The constructed v2,(b) satisfies (3.2) and (3.4), but not (3.3), i.e.,

∫

Kj
div v2,(b) �=

0. By the divergence theorem, the integral on the whole cube formed by the 6
tetrahedra is zero. After correcting the integrals on 5 of the 6 tetrahedron by
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functions supported inside two tetrahedra each time, the last integral on the sixth
integral would be zero also. First, we define v2,(b1) by

(3.9) v2,(b1) =

{

c0nAGEφAGEH on tetrahedron AGEH,

d0nAGEφAGEF on tetrahedron AGEF,

where nAGE is the outward normal to the face AGE on tetrahedron AGEH and
φAGEH is a P3 polynomial identically zero on the three faces of AGEH except face
triangle AGE. φAGEH is zero on all Lagrange nodes except c; cf. Figure 5. For
example, if AGEH is the unit cube as in (3.6), φAGEH = x(1− z)(z− y). In (3.9),
c0 is chosen so that

(3.10)

∫

AGEH

div v2,(b1)dx =

∫

AGEH

div v2,(b)dx.

In (3.9) d0 is chosen so that v2,(b1) is continuous on the interface. We note that c0
can always be found to satisfy (3.10) as nAGE · ∇φAGEH is strictly positive inside
AGEH for the third degree polynomial φAGEH . By a scaling argument, we have
also that

(3.11) ‖v2,(b1)‖H1(Ω)3 ≤ C‖v2,(b)‖H1(Ω)3 ≤ C‖q‖L2(Ω).

Next, we repeat the process on the two tetrahedra AGFE and AGFB to define
v2,(b2) so that

∫

AGEH

div v2,(b2)dx =

∫

AGEH

(

div v2,(b) − div v2,(b1)

)

dx.

It follows by the construction that

(3.12) ‖v2,(b2)‖H1(Ω)3 ≤ C‖v2,(b1)‖H1(Ω)3 + C‖v2,(b)‖H1(Ω)3 ≤ C‖q‖L2(Ω).

Repeatedly, we obtain v2,(bi), i = 1, 2, ..., 5. We note that after we define v2,(b5),
the integral of the divergence of the difference v2,(b) −

∑

v2,(bi) has to be zero on
the sixth tetrahedron as it is zero on the seventh tetrahedron which is also the first
tetrahedron. Let ṽ2,(b) = v2,(b) −

∑

v2,(bi). Then ṽ2,(b) satisfies (3.3) and (3.4),
and its divergence matches q at 6 vertices of 6 tetrahedra at A while being zero at
all other vertices. By symmetry, we can construct such a ṽ2,(b) at the other vertex
G.
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Figure 6. 8 tetrahedra meeting at a vertex J .
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For a Type (d) vertex, for example, J in Figure 4, we construct a ṽ2,(d). This
time, we have two internal edges meeting at J , on which we have 6 degrees of
freedom to match div v2,(d) with q at the 8 vertices of 8 tetrahedra meeting at J .
Similar to (3.5) and (3.7), we define one part of v2,(d) as follows (cf. Figure 4).

div v2,(d1)|ILJ(J) = q|ILJ (J) = q|IHJ(J),(3.13)

div v2,(d1)|HPJ(J) = q|NPJ (J) = q|IHJ(J),(3.14)

div v2,(d1)|MQLJ(J) = q|MJLQ(J) �= q|MJQN (J).(3.15)

To do so, we repeat the construction of v2,(b). Next, on an internal edge JM , we
define a nodal basis function φ(d) like (3.5):

φ(d) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1− y)(z − x)(−y) on MJNG,

(y − x)(1− z)(−y) on MJGL,

(1 + x− z)(y)(−y) on MJLQ,

(1 + x− y)(z)(−y) on MJQN,

assuming that M is the origin and MN is an edge in the y direction of length 1.
We construct the second part of v2,(d) by

v2,(d2) = φ(d)

⎛

⎝

q|MJNG(J)− (q|MJLQ(J)− q|MJQN (J))
q|MJNG(J)

q|MJNG(J)− (q|MJLQ(J)− q|MJQN (J))

⎞

⎠ .

Then we let v2,(d) = v2,(d1)+v2,(d2). div v2,(d) matches q at 7 vertices at J , except

div(v2,(d1) + v2,(d2))|MJGL(J) = q|MJNG(J)− q|MJLQ(J) + q|MJQN (J).

Will div v2,(d)|MJGL(J) = q|MJGL(J)? The answer is yes. As continuous P3 func-
tions, the gradients of three components wh at J are

gradwh,i =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

0 wi,1 0
)T

on MJNG,
(

0 0 wi,1

)T

on MJGL,
(

wi,2 0 wi,1

)T

on MJLQ,
(

wi,2 wi,1 0
)T

on MJQN,

where wi,j are constants. Then

divwh(J) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w2,1 on MJNG,

w3,1 on MJGL,

w1,2 + w3,1 on MJLQ,

w1,2 + w2,1 on MJQN,

i.e.,

divwh|MJGL(J) + divwh|MJQN (J) = divwh|MJNG(J) + divwh|MJLQ(J).

Hence, as div v2,(d) matches the 7 values of q = divwh at J , it matches the eighth
value divwh|MJGL(J). Finally, we correct the perturbation of v2,(d) on the 8
tetrahedra by 7 bubble functions v2,(dj) to obtain a ṽ2,(d) to preserve condition
(3.3), as we did for ṽ2,(b) by {v2,(bi)}1≤i≤5.
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For a Type (e) vertex, say, the mid-face vertex N in Figure 4. The additional
directional derivative of wh at N of internal edge NM will give us a P3 nodal basis
(cf. Figure 6)

φ(e) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(1− y)(y − x)(y) on MNGS,

(1− y)(y − z)(y) on MNJG,

(1 + x− y)(y − z)(y) on MNQJ,

(1 + x− y)(y)(y) on MND′Q,

(1 + z − y)(y)(y) on MNR′D′,

(1 + z − y)(y − x)(y) on MNSR′,

assuming M is the origin and MN is a unit edge in the y direction. Let v2,(e1) be

φ(e)

(

− q|MNGS(N)
)

⎛

⎝

0
1
0

⎞

⎠ .

Then, as wh vanishes on boundary triangles GNJ and GNS, we have that
divwh|MNGS(N) = divwh|MNJG(N), and that divv2,(e1) matches q at N on the
two tetrahedra. Next, viewing the bottom two cubes (having face squares CSNR
and NRDP , respectively) below N together, N is a type J node. So, by the con-
struction of v2,(d), we match nodal values of (q−divv2,(e1)) at N by a 5-dimensional
space to get a v2,(e2). Again, viewing the two cubes (having face squares RDPN
and PNJH, respectively) behind N together, this also makes N a type J node
(a vertical mid-edge Type (d) node). We can define another v2,(e3) to match its
divergence with (q − div v2,(e1) − div v2,(e2)) at N . Therefore, the divergence of

v3,(3) = v2,(e1) + v2,(e2) + v2,(e3)

matches q at N , on all 12 tetrahedra. Unlike earlier cases, we do have (enough
count) 12 degrees of freedom at N in {vh} (3 components and 4 internal edges),
but {(divvh)(N)} is only of dimension 8. On the other side, the twelve values of q
at N would also form an eight-dimensional vector space, because q = divwh and
we have the following four constraints:

q|MNGS(N) = q|MNGL(N),(3.16)

q|D′NDR(N) = q|D′NDP (N),(3.17)

q|R′NMS(N)− q|R′NSR(N) = −q|R′NRQ(N) + q|R′ND′M (N),(3.18)

−q|QNJM (N) + q|QNMD′(N) = q|QND′P (N)− q|QNPJ(N).(3.19)

Repeating the process (3.5)–(3.12), after correcting the integral of divergence of
div v2,(e) on 12 tetrahedra by 11 bubble functions, we would obtain a ṽ2,(e) for the
lemma.

For a Type (f) node, at an internal vertex M in Figure 4, we have 14 internal
edges and 24 tetrahedra connected to the vertex. These 3 × 14 = 42 degrees
of freedoms for v2,(f) will make the divergence of it match q values at M on 24
tetrahedra. Here {q|Ki

(N)} is a dimension 18 vector space, not of 24 dimensions.
There are 6 constraints similar to (3.18) and (3.19), around the 6 square-diagonal
edges meeting at N ; cf. Figure 6. To construct v2,(f), we first view M as two
overlapping Type (e) vertices with 4 squares on the left and 4 on the right to M .
Then we separate the eight squares meeting M into two groups, 4 on top and 4 at
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the bottom, in order to use the construction for a type (e) boundary vertex. Of
course, we can construct v2,(f) directly by giving its explicit definition as we did
for v2,(d) and v2,(e). Repeatedly, we correct v2,(e) to get ṽ2,(f) to preserve (3.3).
The lemma is proved by letting

v2 =
∑

2 Type (b) vertices

ṽ2,(b) +
∑

4(n− 1) Type (d) vertices

ṽ2,(d)

+
∑

6(n− 1)2 Type (e) vertices

ṽ2,(e) +
∑

(n− 1)3 Type (f) vertices

ṽ2,(f),

where n is the number of cubes in one direction. �

After we match the element integrals and the vertex values of q ∈ Ph, we will
next match q pointwise on each edge within each element.

Lemma 3.3. For any q ∈ Ph defined in (2.4) such that
∫

K
q = 0 ∀K ∈ Ωh, k ≥ 6

and q vanishes at all vertices of grid Ωh, there is a function v3 ∈ Vh,k such that

div v3|EK
i

= q|EK
i

∀K ∈ Ωh,(3.20)
∫

K

div v3 = 0 ∀K ∈ Ωh,(3.21)

‖v3‖H1(Ω)3 ≤ C‖q‖L2(Ω).(3.22)

Here EK
i , 1 ≤ i ≤ 6, are the six edges of tetrahedron K.

Proof. Let wh ∈ Vh,k such that divwh = q for a q satisfying the lemma conditions.
We will construct a v3 matching its divergence with divwh at all edges. We start
with an edge EA of triangle EAG; see Figure 8. As in Lemma 3.2, we first construct
a v3,1 in Vh,k for wh ∈ Vh,k, for all k ≥ 4, matching q at edge EA. Then, we
correct the integral of div v3,1 by a v3,0 supported on two tetrahedra FAGE and
EAGH in Figure 8. Regardless of the polynomial degree k in the lemma, the
polynomial degree for v3,0 can be chosen exactly 6 for all k ≥ 4. The reason is
that in order to correct the elementwise divergence-free condition (3.21) while not
perturbing the divergence on the edges shared by two neighboring tetrahedra, as
we did in (3.10)–(3.12), we need degree 6 “bubble” polynomials which have an
internal-face degree of freedom, shown in Figure 9.

�

�

�

�

�

�

�

�

� � � �❞

❞

❞

❞

❞

❞

❞

❞

❞ ❞ ❞ ❞

❅
❅

❅
❅

❅
❅

❅
❅

❅

� � � � � � ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

9 “ �❞” Lagrange nodes to

9 “✻” Hermit nodes.

✻ ✻ ✻ ✻

✲

✲

✲

��✠

��✠

❅
❅

❅
❅

❅
❅

❅
❅

❅

� � � � � � ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7. Change {λi = 1, λj > 0} Lagrange nodes to Hermit
nodes, for P6 elements.
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Figure 8. Modified Lagrange interpolation nodes for P7.

To match the divergence of wh at edge AE (see Figures 8 and 9) we replace some
of the standard Lagrange interpolation nodes on the face triangle AEG by some
edge-normal derivatives on the face triangle. Here we replace one loop of Lagrange
nodes of the standard Pk element on one face triangle by Hermit nodes on the three
edges of the triangle, shown in Figure 7 and Figure 8. We show next that the Pk

element is well defined this way, for k ≥ 4. Let v ∈ Pk defined on tetrahedron
AEGH so that all interpolation values are zero. Let the restriction of v on triangle
AEG be vk. Let LAE = 0, LEG = 0 and LGA = 0 be the equations for three lines
AE, EG and GA, respectively. Since vk has (k + 1) zero points on the three lines,
we have

(3.23) vk = LAELEGLGAvk−3, for some vk−3 ∈ Pk−3(AEG)2.

Let nLAE
be the unit normal vector to AE inside plane EAG. As ∂vk/∂nLAE

has (k − 2) zero points on the line AE (see Figures 8 and 9) vk−3|AE ≡ 0.

vk = L2
AELEGLGAvk−4, for some vk−4 ∈ Pk−4(AEG)2.

Again, as ∂vk/∂nLEG
has (k − 3) zero points on the line EG, and ∂vk/∂nLGA

has
(k − 4) zero points on the line GA, it follows that

vk = L2
AEL

2
EGL

2
GAvk−6, for some vk−6 ∈ Pk−6(AEG)2.

Finally, as v = 0 at (k − 4)(k − 5)/2 Lagrange nodes interior to triangle AEG, we
conclude that vk−6 ≡ 0 and v|AEG ≡ 0. Therefore,

(3.24) v = LAEGwk−1, for some wk−1 ∈ Pk−1(AEGH)3.

Here LAEG = 0 is an equation for the plane AEG. As the rest of the Lagrange
interpolation points are not altered, wk−1 = 0 at (k+2)(k+1)k/6 standard Lagrange
nodes for Pk−1 in 3D (see Figure 8) we conclude that wk−1 = 0 and v = 0.

Now we are ready to prove the lemma. For each internal triangle, exactly one
face triangle of each of two tetrahedra sharing this internal triangle are on the same
plane, due to special structure of the uniform grid. For example, the edge EG of
internal triangle EGA is on the plane EFGH of two face triangles EFG and EGH
of the two tetrahedra EFGA and EGHA; cf. Figure 4. For internal triangle QNP ,
the two sharing tetrahedra have edgeQN on their two face triangles plane, IQRNJ .
If such an edge is on the boundary, then we lose all internal edge degrees of freedom
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Figure 9. Modified Lagrange interpolation nodes for P4, P5, P6

and P7.

for divwh on one side of the edge, for example, divwh|AFE(x) = divwh|AFB(x)
for x on edge AF ; see Figure 4.

Let us first try to construct a P4 polynomial v3 at two tetrahedra GFEA and
GHEA sharing an internal triangle AEG (cf. Figure 8) to match div v3 and divwh

on the three edges of triangle AEG. Let us try to define a P4 “derivative nodal
basis” shown in Figure 9, which is 0 on the 6 outside face triangles of GFEA
and GHEA and has a normal derivative 1 inside the face EAG and two normal
derivatives 0 on another edge. For example, on EAGH, we have

φ3,1(x, y, z) = x(1− z)(z − y)(c1 + c2x+ c3y + c4z)

with 4 constants. But one of them is determined by the internal P4 Lagrange node,
inside the tetrahedron. The other three constants would be determined by three
normal derivatives, 2 on one edge, 1 on another, 0 on the third edge, shown in
Figure 9. We have three choices, EA, EG or AG, for the two-derivative edge,
where the 2 normal derivatives inside triangle EAG are 0. This gives us three such
“nodal basis” functions:

(3.25)

φ3,1 =

{

27
4 x(1− z)(z − y)x on EAGH,
27
4 y(1− z)(z − x)x on EAGF,

φ3,2 =

{

27√
2
x(1− z)(z − y)(1− z) on EAGH,

27√
2
y(1− z)(z − x)(1− z) on EAGF,

φ3,3 =

{

27
2
√
2
x(1− z)(z − y)(z − x) on EAGH,

27√
2
y(1− z)(z − x)(z − x) on EAGF.

Since a vh function has three components, with 3 φ3,i we can have a 3 × 3 = 9
dimensional subspace

(3.26) {vh} = span

⎧

⎨

⎩

φ3,iej | e1 =

⎛

⎝

1
0
0

⎞

⎠ , e2 =

⎛

⎝

0
1
0

⎞

⎠ , e3 =

⎛

⎝

0
0
1

⎞

⎠

⎫

⎬

⎭

;

see (3.27) below. However, we need a dimension 10 {div vh} for the 10 degrees
of internal-edge freedom of q on the two sides of triangle EAG. In fact, we need
a dimension 12 {div vh} subspace for a general grid. But we have a special grid
here that every triangle has precisely one singular edge, where the two neighboring
tetrahedra have one common face plane. In this case, the edge EG is a singular
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edge as EGFA and HEGA each have a triangle on plane z = 1. When a singular
edge is on the boundary, q is continuous on it. In particular, when k = 4, we
have q|EAGF (

1
3 ,

1
3 , 1) = q|EAGH( 13 ,

1
3 , 1), and q|EAGF (

2
3 ,

2
3 , 1) = q|EAGH( 23 ,

2
3 , 1);

cf. Figure 8 and (3.27). To match q at these two points, we let

(3.27)

v3,1 =
2

3
q|EAGF (

1

3
,
1

3
, 1)

⎛

⎝

0
φ3,1

φ3,1 −
√
2φ3,3

⎞

⎠ ,

v3,2 =
1

3
q|EAGF (

2

3
,
2

3
, 1)

⎛

⎝

0
−4φ3,1√

2φ3,3 − 4φ3,1

⎞

⎠ .

In order to match the other 8 q values on the other two edges, we need to “borrow”
one degree of freedom of vh from the next interface. Similar to (3.27), we construct
one more basis function on the next two tetrahedra:

(3.28) φ3,4 =

{

27
4 x(1− z)(y − x)(1− y) on AGHE,
27
4 x(1− y)(z − x)(1− y) on AGHD.

We only use one additional freedom, in addition to the 9-dimensional space (3.26)

⎛

⎝

0
φ3,4

0

⎞

⎠

whose divergence is zero on all edges except on the EAGF side of of edge AG. We
construct v3,i so that div v3,i match the rest of the eight degrees of freedom of q at
the other two edges: edge AG:

(3.29)

v3,3 =
2

3
q|EAGF (

1

3
,
1

3
,
1

3
)

⎛

⎝

0
φ3,1 − φ3,4

(1/
√
2)φ3,2

⎞

⎠ ,

v3,4 =
2

3
q|EAGH(

1

3
,
1

3
,
1

3
)

⎛

⎝

φ3,1

φ3,4

0

⎞

⎠ ,

v3,5 = −1

3
q|EAGF (

2

3
,
2

3
,
2

3
)

⎛

⎝

0
4φ3,1 − φ3,4

(1/
√
2)φ3,2

⎞

⎠ ,

v3,6 = −1

3
q|EAGH(

2

3
,
2

3
,
2

3
)

⎛

⎝

4φ3,1

φ3,4

0

⎞

⎠ ,
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and edge AE:

(3.30)

v3,7 =

√
2

3
q|EAGF (0, 0,

1

3
)

⎛

⎝

φ3,2 − φ3,3√
2φ3,4

0

⎞

⎠ ,

v3,8 =

√
2

3
q|EAGH(0, 0,

1

3
)

⎛

⎝

0

φ3,2 − φ3,3 −
√
2φ3,4

φ3,2

⎞

⎠ ,

v3,9 = − 1

3
√
2
q|EAGF (0, 0,

2

2
)

⎛

⎝

φ3,2 − 4φ3,3√
2φ3,4

0

⎞

⎠ ,

v3,10 = −3
√
2

q
|EAGH(0, 0,

2

3
)

⎛

⎝

0

φ3,2 − 4φ3,3 −
√
2φ3,4

φ3,2

⎞

⎠ .

Hence, letting v3 =
∑10

i=1 v3,i, we have div v3 zero at all vertices, and on all other
edges except the three edges on two sides of triangle AEG where the divergence
matches q, assuming EG is a boundary edge. We remark that we have to “borrow”
a degree of freedom from next internal triangle, no matter how high the polynomial
degree k is. For example, when k = 5, we do have 3 × 6 = 18 nodal degrees
of freedom for vh internal to three edges of triangle AEG, similar to (3.26) (see
Figure 9), while q on the two sides of AEG has 18 nodal values (recall that for P4,
we have dimensions 9 and 10 for them.) But {div vh} is still short of one dimension.

Now, for all k > 4, we have (k − 4) mid-edge degrees of freedom on each edge,
shown in Figure 9. We first construct a v3,m to match q values at the (k − 4)
mid-edge points. For example, for k = 5, on edge EA of Figure 8, we define

(3.31) φ3,m =

{

16y(z − x)2(1− z)2 on EAGH,

16x(z − y)2(1− z)2 on EAGF.

Then the divergence of

v3,m = q|EAGH(0, 0,
1

2
)

⎛

⎝

0
φ3,m

0

⎞

⎠

is zero on all edges except on the side EAGH of edge EA. As

(q − div v3,m)EAGH(0, 0,
1

2
) = 0,

we construct a vh as (3.27)–(3.30) so that div vh|EAGH matches (q−div v3,m)EAGH

at two outside Lagrange nodes, (0, 0, 14 ) and (0, 0, 34 ). For k > 5, we have exact
internal degrees of freedom for defining (3.31) to match q at internal edge nodes.
Hence, a construction can be done for edges EA and AG for all k ≥ 4.

Next, as in the last lemma, we have to preserve the mean divergence-zero ele-
mentwise by correcting div v3 on three tetrahedra with two P6 bubble functions,
supported on two neighboring tetrahedra each, as (3.9). For example,

b3,0 =

{

c0nAEGL
2
AEHL2

EGHL2
GAH on EAGH,

nAEGL
2
AEFL

2
EGFL

2
GAF on EAGF.
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Figure 10. The interior and boundary vertices of Ωh.

Here we need the divergence of P6 bubble functions be zero at all vertices as well
as on all edges.

Repeating this construction for each of the 6 triangles around the diagonal edge
AG, we match q at all edges, assuming Ωh has only 6 tetrahedra. For a general
(small) cube ABCDEFGH in a refined Ωh, the cube has 6 two-tetrahedra edges
like EA where two tetrahedra form a 90-degree face angle; cf. Figure 4. The
above construction would match q exactly at 6 such two-tetrahedra edges. But the
(small) cube ABCDEFGH has also 6 one-tetrahedron edges like EH and 6 flat
two-tetrahedra edges like EG (where two tetrahedra form a 180-degree face angle.)
For these 6 one-tetrahedron and 6 flat two-tetrahedra edges, the above construction
may not match div v3,i with q there. We need to construct further v3,i for these
two cases.

If EH is a boundary edge, but inside a face square, such as QP in Figure 4, then
we use basis functions like (3.25), internal to triangle QPN to match q|QP at the
bottom, to get a v3,b. Then (q − div v3,b) would change the q values at the edge
QP on the two tetrahedra inside the top cube, QPNJ and QPJH. So we need to
repeat the work in (3.25)–(3.30) on the triangle QPJ . Next, if EH is an internal
edge, such as MN in Figure 4, the q values at edge MN are matched separately
on the two cubes in front, and two cubes behind.

Finally, we consider the case of square-diagonal edge when it is not on the bound-
ary, for example, EG in Figure 4. There, AH and GD are such singular edges in
the other two directions. For simplicity of notation, we consider the case of GD
depicted in Figure 10, where we assume D is the origin, and the two cubes sharing
D are unit ones. Here GD is the intersection of two planes, ZGAD and HGCD.
We first see why it is called a singular edge. At any point x0 internal to the edge
GD, for any vh ∈ Vh,k, we write

(3.32) vh = u1

⎛

⎝

0

1/
√
2

1/
√
2

⎞

⎠+ u2

⎛

⎝

1
0
0

⎞

⎠+ u3

⎛

⎝

0

−1/
√
2

1/
√
2

⎞

⎠ =: u1 + u2 + u3,

where u1 is a global Pk polynomial on four tetrahedra sharing edge GD, while u2

and u3 are continuous piecewise-Pk on the four tetrahedra. By the continuity of
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vh, we have

divu1|AGDH(x0) = divu1|AGDC(x0) = divu1|ZGDH(x0) = divu1|ZGDC(x0),

divu2|AGDH(x0) = divu2|ZGDH(x0), divu2|AGDC(x0) = divu2|ZGDC(x0),

divu3|AGDH(x0) = divu3|AGDC(x0), divu3|ZGDH(x0) = divu3|ZGDC(x0).

Therefore, the dimension of the linear vector space of

(3.33) {div vh|AGDH(x0), divvh|AGDC(x0), divvh|ZGDH(x0), div vh|ZGDC(x0)}
is 3, not 4. Thus, for any point on edge GD, we have a checkerboard mode, which
is limited by the constraint (cf. [11])

(3.34)
∑

i

(−1)i div vh|Ti
(x0) = 0,

where Ti stands for one of four tetrahedra around the edge GD. We need to
construct local basis functions for each of three linearly independent vectors in
(3.33). (3.32) provides a construction method. Let us consider first the P4 case.
Let

φ3,s1 =

{

27
4 (x− y)(z − x)(1− z)(1− z), on ZGDH,
27
4 x(z − x)(1 + y − z)(1− z), on AGDH,

(3.35)

φ3,s2 =

{

27
2 (x− y)(z − x)(1− z)x, on ZGDH,
27
2 x(z − x)(1 + y − z)x, on AGDH.

(3.36)

We next define

v3,s1 = q|ZGDH(
1

3
, 0,

1

3
)
1

3

⎛

⎝

0
0

4φ3,s1 − φ3,s2

⎞

⎠ ,

v3,s2 = q|ZGDH(
2

3
, 0,

2

3
)
2

3

⎛

⎝

0
0

φ3,s2 − φ3,s1

⎞

⎠ .

Then, div(v3,s1 + v3,s2) matches q at the two Lagrange points on the edge GD,
in ZGDH. Note that div(v3,s1 + v3,s2) = 0 at the two Lagrange points, on the
other side of plane AGDZ. Similarly, we can define v3,s3 and v3,s4 so that their
divergence matches q at the two Lagrange points inside ZGDH, while not altering
the match done on the other side of plane AGDZ. Hence

(3.37) q3 := q − div(v3,s1 + v3,s2 + v3,s3 + v3,s4)

vanishes on the edge GD on y > 0 side. As we did for the non-singular edge case
AG, the construction (3.35)–(3.37) can be extended to any Pk, k ≥ 4. Again, we
correct q3 on each element to keep (3.21) by P6 bubble functions. By (3.34) and
(3.37), edge GD behaves as a boundary edge for q3. Hence the edge values of q3
can be matched now by the divergence of v3,i, defined in (3.27), (3.29) and (3.30).
Summing over all such v3,i over all edges of Ωh, after adding bubbles to preserve
(3.21), denoted by v3, it satisfies (3.20)–(3.22). �

After we match the element integrals, the vertex values and the edge values of
q ∈ Ph, we will next match q on each face of element. This is the simplest task
among the others. The reason for this is that we can show the next lemma on any
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K̂ :

✲

✻

�

�

��✠
✘✘✘✘✘✘✘✘✘✘✘✘

✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄
✄❅

❅
❅
❅
❅
❅
❅
❅
❅

x̂

ŷ

ẑ

F (x̂)→

❳❳❳❳❳❳❳❳❳❳❳❳

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

✂
✂
✂
✂
✂
✂
✂
✂
✂✂◗◗

◗
◗
◗
◗

◗
◗
◗

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙

A

B

C

D

Figure 11. The affine mapping from K̂ to K.

tetrahedral grid, unlike the other lemmas which are shown for the uniform grid
only.

Lemma 3.4. For any q ∈ Ph defined in (2.4) such that
∫

K
q = 0 ∀K ∈ Ωh, k ≥ 4

and q vanishes at all edges of grid Ωh, there is a function v4 ∈ Vh,k such that

div v4|TK
i

= q|TK
i

∀K ∈ Ωh,(3.38)
∫

K

div v4 = 0 ∀K ∈ Ωh,(3.39)

‖v4‖H1(Ω)3 ≤ C‖q‖L2(Ω).(3.40)

Here TK
i , 1 ≤ i ≤ 4, are the four face triangles of tetrahedron K.

Proof. We note that for k = 1, 2, 3, the lemma holds with v4 = 0 as q ≡ 0. To
understand the analysis better, we first discuss the case k = 4, which is also covered
in the proof for general k ≥ 4 below. For k = 4, let v4 = c0φK , where φK is the
bubble function of P4 on K. Then div v4 is a P3 function with zero integral on
K and zero trace on the 6 edges of K. This is exactly how q is restricted in the
lemma. The three choices in c0 for v4 will provide a unique match to the three
degrees of freedom in defining q on K. We next formalize this argument rigorously
for all k ≥ 4.

For a given q specified in the lemma, we are going to construct v4 in 4 steps:

(3.41) v4 = (v4,1 + v4,2 + v4,3 + v4,4)φK ∈ C0(K) ∩ P 3
k ,

where v4,i are vector Pk−4 polynomials to be specified and φK is the P4 bubble
function on K. Let K = ABCD with 4 face triangles numbered as T1 = ABC,
T2 = ABD, T3 = ACD and T4 = BCD. Let F (x̂) = Bx̂+x0 be an affine mapping

from the reference tetrahedron K̂ = {0 ≤ ẑ ≤ 1−x̂−ŷ, 0 ≤ y ≤ 1−x̂, 0 ≤ x̂ ≤ 1} to
K so that the face triangles of K̂ on the plane x̂ = 0, ŷ = 0, ẑ = 0 and x̂+ ŷ+ ẑ = 1
are mapped to T1, T2, T3 and T4, respectively. This is shown in Figure 11. Mapping
the equation div(v4,4) = q back to the reference element, we have

(3.42) v̂T
4,4B

−T∇φK̂ + φK̂trace
(

B−T∇v̂4,4

)

= q̂(x̂),
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where

∇φK̂ =

⎛

⎝

ŷẑ(1− 2x̂− ŷ − ẑ)
x̂ẑ(1− x̂− 2ŷ − ẑ)
x̂ŷ(1− x̂− ŷ − 2ẑ)

⎞

⎠ .

We choose, if k > 4,

(3.43) v̂4,4 = B

⎛

⎝

x̂
ŷ
ẑ

⎞

⎠u4, for some u4 ∈ Pk−5.

Let x̂i = 〈x̂i, ŷi, ẑi〉 be interior Lagrange points for Pk−1 on the face triangle T̂4 =
F−1(T4) on the plane x̂+ ŷ+ ẑ = 1 of the reference element. We derive the following
from (3.42):

(3.44) u4(x̂i) = − q̂(x̂i)

x̂iŷiẑi
.

Since q̂ = 0 on the three edges of the triangle and mapping back to K, we conclude
that

div v4,4|T4
= q|T4

,

div v4,4|Ti
= 0, i �= 1,

|v4,4|H1 ≤ C‖q‖L2 .

Now, for k = 4 in (3.43), we have to match q on all four faces with only one v4,4

by letting

v̂4,4 = Bc0, where c0 =
[

∇φK̂(x̂i)
]−T

⎛

⎝

q(x̂1)
q(x̂2)
q(x̂3)

⎞

⎠ ,

where x̂i are the barycentric centers of any three-face triangle.
We repeat the construction of v4,4 three more times to get v4,1, v4,2, v4,3 in

(3.41), whose divergence match q on the other three triangles. Similar to (3.43) we
let

v̂4,1 = B

⎛

⎝

1− x̂− ŷ − ẑ
0
0

⎞

⎠u1, for some u1 ∈ Pk−5,

v̂4,2 = B

⎛

⎝

0
1− x̂− ŷ − ẑ

0

⎞

⎠u2, for some u2 ∈ Pk−5,

v̂4,3 = B

⎛

⎝

0
0

1− x̂− ŷ − ẑ

⎞

⎠u3, for some u3 ∈ Pk−5,
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where (cf. (3.44)) ui are determined by the nodal values:

u1(x̂i) =
q̂(x̂i)

ŷiẑi(1− ŷi − ẑi)2
∀x̂i ∈ T̂ 0

1 ,

u2(x̂i) =
q̂(x̂i)

x̂iẑi(1− x̂i − ẑi)2
∀x̂i ∈ T̂ 0

2 ,

u3(x̂i) =
q̂(x̂i)

x̂iŷi(1− x̂i − ŷi)2
∀x̂i ∈ T̂ 0

3 .

By the inverse reference mapping, we get v4,i. Letting v4 =
∑4

i=1 v4,i. The lemma
is proven. �

Lemma 3.5. Let q ∈ Ph defined in (2.4) with k ≥ 4 such that
∫

K
q = 0 ∀K ∈ Ωh

and q vanishes on all triangular faces of grid Ωh. There is a function v5 ∈ Vh,k

such that

div v5(x, y) = q(x, y) ∀(x, y) ∈ Ω,(3.45)

v5(x, y) = 0 ∀(x, y) ∈ ∂K and ∀K ∈ Ωh,(3.46)

‖v5‖H1(Ω)3 ≤ C‖q‖L2(Ω).(3.47)

Proof. Each K ∈ Ωh is a scaling of one of 6 unit tetrahedra shown in Figure 4. The
properties listed in (3.45)–(3.47) are independent of scaling. Because we can work
out the other 5 cases similarly, we show one case in which K is the unit tetrahedron
AEGH shown in Figure 4:

K = AEGH = {(x, y, z) | 0 ≤ x ≤ y, 0 ≤ y ≤ z, 0 ≤ z ≤ 1}.
When restricted on K, we let the pressure space satisfying the lemma be

(3.48) PK =
{

q ∈ Pk−1(K)
∣

∣

∣

∫

K

q = 0, q|∂K = 0
}

.

For any q0 ∈ PK , we have

(3.49) q0 = φKq1, for some q1 ∈ Pk−5,

where φK is the degree-4 polynomial bubble function:

φK = λ1λ2λ3λ4, where(3.50)

λ1 = x, λ2 = y − x, λ3 = z − y,(3.51)

and λ4 = 1− λ1 − λ2 − λ3 = 1− z.

Further, q = 0 for any k ≤ 5, due to
∫

K
q = 0, i.e., the lemma holds trivially for

4 ≤ k ≤ 5. We next introduce a subspace of H1
0 (K)3 ∩ P 3

k whose image under the
divergence operator is inside the space PK defined in (3.48):

(3.52) VK =
{

v ∈ Pk(K)3
∣

∣

∣ v|∂K = 0, div v ∈ PK

}

.

We show next that the divergence operator is also an onto mapping from VK to
PK . Because of divergence-free polynomials, we would reduce the space VK to a
much smaller one which is mapped to the space PK one-to-one by the divergence
operator. To make divv ∈ PK , we can limit

v = φK

⎛

⎝

λ1λ2v1(λ1, λ2, λ3)
λ2λ3v2(λ1, λ2, λ3)
λ3λ4v3(λ1, λ2, λ3)

⎞

⎠ where vi ∈ Pk−6(λ1, λ2, λ3),
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so that div v|∂K = 0. This can be seen by the calculation (3.54) below. After
eliminating divergence-free functions, we let

(3.53) V0 =
{

v ∈ Pk(K)3
∣

∣

∣ v = φK

⎛

⎝

λ1λ2v1(λ1, λ2, λ3)
λ2λ3v2(λ1, λ3)
λ3λ4v3(λ1)

⎞

⎠ , vi ∈ Pk−6(K)4−i
}

.

Indeed, we have div v0 ∈ PK for v0 ∈ V0, as

div v0 = φK [2(λ2 − λ1)v1 + λ1λ2v1x + 2(1− λ1 − 2λ2 − λ3)v2(3.54)

+ 2v3(λ1 + λ2 + 2λ3 − 1)].

Now, for each q0 ∈ PK , we will find a v0 ∈ V0 such that div v0 = q0. This is done
by mathematical induction. We first construct a v0 such that the highest order
terms of div v0 match those of a given q0 ∈ PK . For any q0 ∈ PK , we separate the
degree k − 5 terms of q1 in (3.48) from the rest as follows:

(3.55) q1 =

k−5
∑

i=0

k−5−i
∑

j=0

∑

l=k−5−i−j

qijlλ
i
1λ

j
2λ

l
3 + q2(λ1, λ2, λ3),

where q2 is a degree (k− 6) polynomial. When we compare the degree k− 5 terms
of div v0 in (3.54) and q1 in (3.55), we need to check only the degree (k− 6) terms
in v1, v2 and v3. We let a v0 in (3.53) be

v1(λ1, λ2, λ3) =

k−6
∑

i=0

k−6−i
∑

j=0

∑

l=k−6−i−j

v1,ijl λi
1λ

j
2λ

l
3,

v2(λ1, λ3) =
k−6
∑

i=0

∑

l=k−6−i

v2,i0l λi
1λ

l
3,(3.56)

v3(λ1) =
∑

i=k−6

v3,i00 λi
1.

We note that there are
k−5
∑

i=0

k−5−i
∑

j=0

1 =
k−5
∑

i=0

(i+ 1) =
(k − 3)(k − 4)

2

coefficients of qijl in (3.55), which defines the (k − 3)(k − 4)/2 linear equations for
the unknown coefficients of vi in (3.56):

(

k−6
∑

i=0

k−6−i
∑

j=0

1) + (

k−6
∑

i=0

1) + 1 =
(k − 4)(k − 5)

2
+ k − 5 + 1 =

(k − 3)(k − 4)

2
.

We can list the (k−3)(k−4)/2 linear equations in the following order to get an upper
triangular system except the last three equations involving v1,(k−6)00, v2,(k−6)00 and
v3,(k−6)00:

For i = 0,

−2v2,00(l−1) = qijl, j = 0,(3.57)

2v1,00l = qijl + 4v2,00l, j = 1,(3.58)

2v1,0(j−1)l = qijl, j = 2 : (k − 5).(3.59)
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For i = 1 : (k − 7),

−2v2,i0(l−1) = qijl + 2v1,(i−1)0l − 2v2,(i−1)0l, j = 0,(3.60)

(2 + i)v1,i0l = qijl + 2v1,(i−1)1l + 4v2,i0l, j = 1,(3.61)

(2 + i)v1,i(j−1)l = qijl + 2v1,(i−1)jl, j = 2 : (k − 5− i).(3.62)

For i = k − 6,

−2v2,i00 + 4v3,i00 = qijl + 2v1,(i−1)0l − 2v2,(i−1)0l, j = 0,(3.63)

(2 + i)v1,i00 + 2v3,i00 = qijl + 2v1,(i−1)1l + 4v2,i0l, j = 1.(3.64)

Finally, for i = k − 5,

−2v1,(i+1)00 − 2v2,(i+1)00 + v2,(i+1)00 = qijl + 2v1,(i−1)jl.(3.65)

Here in equations (3.57)–(3.65), the index l = k − 5 − i − j. Also in all of these
equations, all vm,ijl on the right-hand side are resolved by earlier equations. For the
last three equations (3.63)–(3.65), the determinant of the 3 × 3 coefficient matrix
is −4(k − 6). So, for a k ≥ 7, we find a unique v0 so that div v0 and q0 match the
highest order terms. We move the div v0 to the right-hand side of (3.48), combined
into q2 there. We then repeat the above construction for one lower degree q0, until
k = 6. When k = 6, the systems of equations (3.57)–(3.65) become to

−2v2,000 = q001,

2v1,000 = q010 + 4v2,000,

2v3,000 = q100 + 2v1,000 + 2v2,000.

This system is an upper triangular one, and has a unique solution.
Therefore, we constructed a locally supported v5 on one tetrahedron AEGH.

Similar construction can be done on the other five types of tetrahedra. The lemma
is proven. �

Corollary 3.1. Let k ≥ 6. The mixed finite element pair (Vh,k, Ph) are defined

in (2.3) and (2.4). Let n be the number of cubes in each coordinate direction; cf.

Figure 2. The dimensions of Vh,k, Ph and subspace Zh (defined in (2.8)) are

dimVh,k = (nk − 1)3,(3.66)

dimPh =
1

6
n3(k + 2)(k + 1)k − 3kn(n2 + n+ 2) + 5,(3.67)

dimZh = dimVh,k − dimPh.(3.68)
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Proof. We summarize all constraints for divwh = q in the last few lemmas:

Corner vertices – Type (b): 2× 6,

Corner vertices – Type (a): 3× 2,

Mid-edge vertices – Type (c): 4× 6(n− 1),

Mid-edge vertices – Type (d): 3× 6(n− 1),

Mid-face vertices – Type (e): 4× 6(n− 1)2,

Internal vertices – Type (f): 6× (n− 1)3,

One-tetrahedron boundary edges: (k − 2)× 6n,

Diagonal boundary edges: (k − 2)× 6n2,

Internal singular edges: (k − 2)× 3(n− 1)n2,

Global integral constraint: 1.

Deducting the number of constraints from the dimension of discontinuous Pk−1

polynomials on Ωh, we prove the corollary. �

Numerically, we have verified Corollary 3.1:

dimPh =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

269 if k = 6, n = 1,

2405 if k = 6, n = 2,

425 if k = 7, n = 1,

3701 if k = 7, n = 2.

We proved (3.67) for k ≥ 6 only, but it seems to hold for k = 5 as well:

dimPh = 155 and 1445, if n = 1 and 2, respectively.

However, (3.67) no longer holds for k ≤ 4:

dimPh = 75 and 772, if n = 1 and 2, respectively,

while (3.67) gives 76 and 789, respectively.

Theorem 3.1. Let k ≥ 6. The mixed finite element pair (Vh,k, Ph) defined in

(2.3) and (2.4) is stable on the uniform grids, i.e., the following inf-sup condition

holds:

(3.69) inf
q �=0,q∈Ph

sup
vh∈Vh,k

b(vh, q)

‖vh‖H1(Ω)3‖q‖L2(Ω)
≥ C.

Proof. For any q ∈ Ph, we construct a vh ∈ Vh,k to satisfy (3.69). By (3.1), there
is a v1 ∈ Vh such that

∫

K

(q − div v1) = 0 ∀K ∈ Ωh,

‖v1‖H1 ≤ C1‖q‖L2 .

By (3.2), there is v2 ∈ Vh such that

[div v2 − q + div v1]|K (aKi ) = 0 ∀K ∈ Ωh and for all vertices of K,

‖v2‖H1 ≤ C2‖q − div v1‖L2 .
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By (3.20), there is v3 ∈ Vh such that

[div v3 − q + div(v1 + v2)]|K (EK
i ) = 0 ∀K ∈ Ωh and for all edges of K,

‖v3‖H1 ≤ C3‖q − div(v1 − v2)‖L2 .

By (3.38), there is v4 ∈ Vh such that

[div v4 − q + div(v1 + v2 + v3)]|K(FK
i ) = 0 ∀K ∈ Ωh

and for all face triangles of K,

‖v4‖H1 ≤ C4‖q − div(v1 + v2 + v3)‖L2 .

By (3.45), there is a v5 ∈ Vh such that

div v5 = q − div(v1 + v2 + v3 + v4),

‖v5‖H1 ≤ C5‖q − div(v1 + v2 + v3 + v4)‖L2 .

Let v = −v1 − v2 − v3 − v4 − v5. It follows that

‖v‖H1 ≤ ‖v1‖H1 + ‖v2‖H1 + ‖v3‖H1 + ‖v4‖H1 + ‖v5‖H1

≤ C1‖q‖L2 + C2‖q − div v1‖L2 + C3‖q − div(v1 + v2)‖L2 + · · ·
≤ C1‖q‖L2 + C2(‖q‖L2 + ‖ divv1‖L2) + · · ·
≤ C1‖q‖L2 + C2(‖q‖L2 + C1‖q‖L2) + · · ·
≤ C∗‖q‖L2

and that

b(vh, q) = (− div vh, q) = ‖q‖2L2(Ω) ≥ C−1
∗ ‖v‖H1(Ω)3‖q‖L2(Ω).

(3.69) is proved with C = C−1
∗ . �

Theorem 3.2. Let k ≥ 6. The discrete solution (uh, ph) of (2.5) approximate that

of (2.2) in the optimal order:

‖u− uh‖H1(Ω)3 + ‖p− ph‖L2(Ω)(3.70)

≤ Chmin{k,r}(‖u‖Hr+1(Ω)3 + ‖p‖Hr(Ω)), r ≥ 1.

Proof. By the inf-sup condition (3.69) and the standard mixed finite element theory
[10], it follows that

‖u− uh‖H1(Ω)3 + ‖p− ph‖L2(Ω)

≤ C( inf
vh∈Vh,k

‖u− vh‖H1(Ω)3 + inf
qh∈Ph

‖p− qh‖L2(Ω))

≤ C( inf
vh∈Vh,k

‖u− vh‖H1(Ω)3 + inf
qh∈P̃h

‖p− qh‖L2(Ω))

where P̃h is the space of continuous Pk−1 polynomials with mean value zero:

P̃h = Ph ∩ C(Ω) =

{

qh ∈ C(Ω) |
∫

Ω

qh = 0, qh|K ∈ Pk−1 ∀K ∈ Ωh

}

.

The theorem is proven as both spaces Vh,k and P̃h provide the optimal order of
approximation. �
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4. Numerical tests

In this section, we report some numerical tests on the Pk-Pk−1 elements for the
stationary Stokes equations (2.1) on the unit cube, Ω = (0, 1)3. The grids are
obtained by the standard multigrid refinement; cf. [16]. The first three grids are
depicted in Figure 2.

Figure 12. The exact solution, the first component of u and p
in (4.2), restricted on z = 0.33.

We choose the right-hand side function f for (2.1) as

(4.1)

f = −Δ curl

⎛

⎝

0
g
g

⎞

⎠+
1

9
∇gxy

=

⎛

⎝

−gxxy − gyyy − gyzz + gxxz + gyyz + gzzz + gxxy/9
−gxxx − gxyy − gxzz + gxyy/9
gxxx + gxyy + gxzz + gxyz/9

⎞

⎠ ,

where

g = 212(x− x2)2(y − y2)2(z − z2)2.

The exact solution for the Stokes equations (2.1) is

(4.2) u = curl

⎛

⎝

0
g
g

⎞

⎠ , p =
1

9
gxy.

As we are unable to plot a 3D function in 4D, we show the restriction of the
functions u (the first component) and p, on the plane z = 0.33 in Figure 12. We
note that the grids obtained by the intersection of tetrahedra in Ωh and the plane
consist of both rectangles and triangles, shown at the bottom in Figure 12 and in
Figure 13.

In Table 1 we list errors for the Pk-Pk−1 element for k = 6, on three level of grids
Ωh. The iterated penalty method is used to solve the discrete linear equations. The
order of convergence fits the estimate (3.70) well. We show some errors in Figure 14.

Table 1. The errors for the Pk-Pk−1 ( k = 6) element on Figure 2 grids.

|u− uh|H1 hn ‖p− ph‖L2 hn

1 6.73310 29.66007
2 0.23981 4.81 1.13377 4.70
3 0.00421 5.83 0.02196 5.69
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Figure 13. The cut on the third level grid Ωh by plane z = 0.33.

Figure 14. The errors for the first component of u and p re-
stricted on plane z = 0.33.
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