
DIVERGENCE IN RIGHT-ANGLED COXETER GROUPS

PALLAVI DANI AND ANNE THOMAS

Abstract. Let W be a 2-dimensional right-angled Coxeter group. We characterise such W with
linear and quadratic divergence, and construct right-angled Coxeter groups with divergence poly-
nomial of arbitrary degree. Our proofs use the structure of walls in the Davis complex.

1. Introduction

The divergence of a pair of geodesics is a classical notion related to curvature. Roughly speaking,
given a pair of geodesic rays emanating from a basepoint, their divergence measures, as a function
of r, the length of a shortest “avoidant” path connecting their time-r points. A path is avoidant
if it stays at least distance r away from the basepoint. In [15], Gersten used this idea to define a
quasi-isometry invariant of spaces, also called divergence. We recall the definitions of both notions
of divergence in Section 2.

The divergence of every pair of geodesics in Euclidean space is a linear function, and it follows
from Gersten’s definition that any group quasi-isometric to Euclidean space has linear divergence.
In a δ-hyperbolic space, any pair of non-asymptotic rays diverges exponentially; thus the divergence
of any hyperbolic group is exponential. In symmetric spaces of non-compact type, the divergence
is either linear or exponential, and Gromov suggested in [16] the same should be true in CAT(0)
spaces.

Divergence has been investigated for many important groups and spaces, and contrary to Gro-
mov’s expectation, quadratic divergence is common. Gersten first exhibited quadratic divergence
for certain CAT(0) spaces in [15]. He then proved in [14] that the divergence of the fundamental
group of a closed geometric 3-manifold is either linear, quadratic or exponential, and characterised
the (geometric) ones with quadratic divergence as the fundamental groups of graph manifolds.
Kapovich–Leeb [17] showed that all graph manifold groups have quadratic divergence. More re-
cently, Duchin–Rafi [13] established that the divergence of Teichmüller space and the mapping class
group is quadratic (for mapping class groups this was also obtained by Behrstock in [5]). Druţu–
Mozes–Sapir [12] have conjectured that the divergence of lattices in higher rank semisimple Lie
groups is always linear, and proved this conjecture in some cases. Abrams et al [1] and indepen-
dently Behrstock–Charney [2] have shown that if AΓ is the right-angled Artin group associated to
a graph Γ, the group AΓ has either linear or quadratic divergence, and its divergence is linear if
and only if Γ is (the 1-skeleton of) a join.

In this work we study the divergence of 2-dimensional right-angled Coxeter groups. Our first main
result is Theorem 1.1 below, which characterises such groups with linear and quadratic divergence in
terms of their defining graphs. This result can be seen as a step in the quasi-isometry classification
of (right-angled) Coxeter groups, about which very little is known.

We note that by [10], every right-angled Artin group is a finite index subgroup of, and therefore
quasi-isometric to, a right-angled Coxeter group. However, in contrast to the setting of right-angled
Artin groups, where one sees only linear and quadratic divergence, even the class of 2-dimensional
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right-angled Coxeter groups exhibits a greater variety of divergence functions. For example, there
exist 2-dimensional right-angled Coxeter groups that are hyperbolic, and therefore have exponential
divergence. Our second main result provides further evidence of this phenomenon: in Theorem 1.2
below, we construct right-angled Coxeter groups with divergence polynomial of any degree.

Given a finite simplicial graph Γ, the associated right-angled Coxeter group WΓ has generating
set S the vertices of Γ, and relations s2 = 1 for all s ∈ S and st = ts whenever s and t are adjacent
vertices. We restrict attention to WΓ one-ended and of dimension 2; equivalently, Γ is connected,
triangle-free and has no separating vertices or edges. The group WΓ acts geometrically on its Davis
complex ΣΓ. As ΣΓ is a CAT(0) square complex, WΓ is a CAT(0) group. We investigate divergence
by considering geodesics and paths in the Cayley graph of WΓ with respect to the generating set
S. This Cayley graph may be identified with the 1-skeleton of the Davis complex ΣΓ, and we use
many properties of walls in the Davis complex to determine upper and lower bounds on lengths
of avoidant paths. See Section 3 for details and further background on WΓ and ΣΓ, including
references.

By Moussong’s Theorem [9, Corollary 12.6.3], WΓ is hyperbolic if and only if Γ has no embedded
cycles of length four. In order to investigate divergence for WΓ not hyperbolic, we consider the
set of embedded four-cycles in Γ. Each such four-cycle induces a family of isometrically embedded
flats in ΣΓ. In Section 4 we define an explicit, easy-to-check condition, which we call CFS, on the
graph Γ. If Γ is CFS then ΣΓ has a distinguished collection of flats coming from a specific class of
four-cycles in Γ, with these flats intersecting along infinite bands, such that each generator of WΓ

is in the four-cycle for at least one such flat.

Theorem 1.1. Let Γ be a finite, simplicial, connected, triangle-free graph which has no separating
vertices or edges. Let WΓ be the associated right-angled Coxeter group.

(1) The group WΓ has linear divergence if and only if Γ is a join.
(2) The group WΓ has quadratic divergence if and only if Γ is CFS and is not a join.

Note that part (1) is equivalent to saying that WΓ has linear divergence if and only if it is
reducible, since for Γ triangle-free, WΓ is reducible if and only if Γ is a join. Our proof of part (1)
is similar to that of the corresponding result for AΓ in [1].

To establish a quadratic upper bound on divergence when the graph Γ is CFS, we construct,
given a pair of geodesic segments based at a common point, an avoidant path between their end-
points which travels only in flats from the distinguished collection of flats guaranteed by the CFS
condition. Since the divergence within a flat is linear, the quadratic upper bound comes from show-
ing that this path only needs to pass through linearly many flats. As pointed out by the referee,
this quadratic upper bound could also be obtained using the thickness machinery developed by
Behrstock–Druţu [3]. (See Remark 4.8.)

The more delicate direction of part (2) of Theorem 1.1 is proving that CFS graphs are exactly
the class of graphs for which there is a quadratic upper bound on divergence. We in fact establish
a cubic lower bound on divergence when Γ is not CFS. To obtain lower bounds on the lengths of
avoidant paths, we consider van Kampen diagrams whose boundaries consist of a pair of geodesic
segments with common basepoint and an avoidant path between their endpoints. The fact that
the defining graph is not CFS has certain implications on the cell-structure of the van Kampen
diagram, which force a lower bound on the length of its boundary (and therefore of the avoidant
path).

In contrast with the classes of groups discussed above, right-angled Coxeter groups may have
divergence other than linear, quadratic or exponential. We prove:

Theorem 1.2. For all d ≥ 1, there is a right-angled Coxeter group Wd with divergence polynomial
of degree d.
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In [14], Gersten asked whether polynomial divergence of degree ≥ 3 is possible for CAT(0) groups.
Macura [19] constructed a family of CAT(0) groups Gd with divergence polynomial of degree d ≥ 2.
These groups Gd are the same as the “hydra groups” investigated by Dison–Riley [11]. Behrstock–
Druţu [3] subsequently obtained examples of CAT(0) groups Hd with divergence polynomial of
any degree d ≥ 2, with Hd the amalgamated free product of two copies of Hd−1 along an infinite
cyclic subgroup. The groups Wd that we construct are not of this form. Most recently, Behrstock–
Hagen [4] used a similar construction to that of [3] to obtain fundamental groups of CAT(0) cube
complexes with divergence polynomial of any degree. Theorem 1.2 provides an answer to Gersten’s
question within a well-known class of CAT(0) groups.

We prove Theorem 1.2 in Section 5, where we inductively construct a family of graphs Γd such
that Wd = WΓd has divergence polynomial of degree d. We prove upper and lower bounds on the
divergence of Wd in Propositions 5.1 and 5.3 respectively. As discussed in Remark 5.2, the upper
bound for the divergence of Wd could also be derived from thickness considerations. Our arguments
to obtain the lower bounds on divergence are considerably shorter than Macura’s.

After proving Theorem 1.2, we noticed that Macura’s group Gd and our group Wd both act
geometrically on a CAT(0) square complex with all vertex links equal to the graph Γd (namely the
Cayley 2-complex for Gd, and the Davis complex for Wd, respectively). A natural question is thus
whether Gd and Wd are commensurable. Since our techniques for addressing this question are quite
different to those used to prove Theorems 1.1 and 1.2, we discuss this question in Appendix A.
We first show in Proposition A.8, using covering theory and complexes of groups, that G2 and W2

are commensurable. While attempting to prove commensurability of Gd and Wd for d > 2, we
were surprised to discover that their corresponding square complexes are not in fact isometric (see
Corollary ??). Hence the strategy of finding a common finite cover to establish commensurability
fails. We do not know whether Gd and Wd are commensurable or even quasi-isometric for d > 2.

Acknowledgements. We thank the University of Sydney for travel support. We also thank the
organisers of the 2012 Park City Mathematics Institute Summer Program on Geometric Group
Theory, during which part of this work was undertaken, and an anonymous referee for helpful
comments.

2. Divergence

In this section we recall Gersten’s definition of divergence as a quasi-isometry invariant from [15].
We restrict to spaces which are one-ended.

Let (X, d) be a one-ended geodesic metric space. For p ∈ X, let S(p, r) and B(p, r) denote the
sphere and open ball of radius r about p. A path in X is said to be (p, r)-avoidant if it lies in
X −B(p, r). Then, given a pair of points x, y ∈ X −B(p, r), the (p, r)-avoidant distance dav

p,r(x, y)
between them is the infimum of the lengths of all (p, r)-avoidant paths connecting x and y.

Now fix a basepoint e ∈ X. In the rest of the paper we will write r-avoidant or simply avoidant
for (e, r)-avoidant, and dav(x, y) for dav

e,r(x, y), indicating the basepoint and radius only if they differ
from e and r.

For each 0 < ρ ≤ 1, let

δρ(r) = sup
x,y∈S(e,r)

dav
ρr(x, y).

Then the divergence of X is defined to be the resulting collection of functions

divX = {δρ | 0 < ρ ≤ 1}.

The spaces X that we will consider (Cayley graphs of right-angled Coxeter groups) have the
geodesic extension property (i.e. any finite geodesic segment can be extended to an infinite geodesic
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ray). It is not hard to show that in a metric space X with this property, δρ ' δ1 for all 0 < ρ ≤ 1,
where ' is the equivalence on functions generated by:

f � g ⇐⇒ ∃ C > 0 such that f(r) ≤ Cg(Cr + C) + Cr + C.

Thus in this paper, we think of divX as a function of r, defining it to be equal to δ1. We say that
the divergence of X is linear if divX(r) ' r, quadratic if divX(r) ' r2, and so on.

The divergence of X is then, up to the relation ', a quasi-isometry invariant which is independent
of the chosen basepoint (see [15]). Thus it makes sense to define the divergence of a finitely generated
group to be the divergence of one of its Cayley graphs.

The divergence of a pair of geodesic rays α and β with the same initial point p, or of a bi-infinite
geodesic γ are defined as, respectively,

divα,β(r) = dav
p,r(α(r), β(r)) and divγ(r) = dav

γ(0),r(γ(−r), γ(r)).

Note that in a geodesic metric space X, if divα,β(r) ≤ f(r) for all pairs of geodesic rays in X
with initial point e, then divX(r) ≤ f(r). On the other hand, if there exists a pair of geodesic rays
(or a bi-infinite geodesic) such that divα,β(r) � f(r), then divX(r) � f(r). Finally, if X is CAT(0)
and divα,β(r) ≥ f(r), then, using the fact that projections do not increase distances, one can show
that dav

p,r(α(s), β(t)) ≥ f(r) for any s, t ≥ r. These observations will be used repeatedly in proofs.

3. Coxeter groups and the Davis complex

In this section, we recall definitions and results concerning right-angled Coxeter groups (Sec-
tion 3.1) and their associated Davis complexes (Section 3.2). Section 3.3 then gives a careful
discussion of walls in the Davis complex. Section 3.4 discusses paths in the Cayley graph of WΓ

and their relationship to walls in the Davis complex. We mostly follow Davis’ book [9].

3.1. Right-angled Coxeter groups. Let Γ be a finite simplicial graph with vertex set S and let
WΓ be the associated right-angled Coxeter group, as defined in the introduction. The group WΓ is
reducible if S can be written as a disjoint union S1 t S2 of nonempty subsets such that W1 := 〈S1〉
commutes with W2 := 〈S2〉, in which case W = W1 ×W2.

In this paper we restrict to Γ triangle-free. Then it is easy to see that WΓ is reducible if and
only if Γ is a join (i.e. a complete bipartite graph). Also, with this assumption, WΓ is one-ended if
and only if Γ is connected and has no separating vertices or edges (see Theorem 8.7.2 of [9]).

Given T ⊆ S, the subgroup WT := 〈T 〉 of WΓ is called a special subgroup. By convention, W∅
is the trivial group. If Λ is an induced subgraph of Γ with vertex set T , we may write WΛ for the
special subgroup WT . Denote by C2 the cyclic group of order 2 and by D∞ the infinite dihedral
group. Then for each s ∈ S, the special subgroup W{s} is isomorphic to C2. If s and t are adjacent
vertices, then W{s,t} ∼= C2 × C2, while if s and t are non-adjacent vertices, we have W{s,t} ∼= D∞.

Example 3.1. Suppose T = {s, t, u, v} ⊂ S is such that s, t, u and v are, in cyclic order, the
vertices of an embedded four-cycle in Γ. Then WT is reducible with

WT = W{s,u} ×W{t,v} ∼= D∞ ×D∞.

Now suppose T1 and T2 are distinct subsets of S such that T1 ∩ T2 = {s, t, u}, with s and u both
adjacent to t. Since Γ is triangle-free, this implies that s and u are not connected by an edge. Then

WT1∩T2 = W{s,u} ×W{t} ∼= D∞ × C2

and WT1∪T2 splits as the amalgamated free product

WT1∪T2 = WT1 ∗WT1∩T2
WT2

∼= WT1 ∗D∞×C2 WT2 .
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A special subgroup WT is said to be a spherical special subgroup if WT is finite. The set of
spherical subsets of S, denoted S, is the set of subsets T ⊆ S such that WT is spherical. (The
reason for the terminology “spherical” is that if WT is finite, then WT acts as a geometric reflection
group on the unit sphere in R|T |; see Theorem 6.12.9 of [9].) It follows from the paragraph before
Example 3.1 that for Γ triangle-free, the only spherical subsets of S are the empty set, the sets
{s} for s ∈ S, and the sets {s, t} where s and t are adjacent vertices. The corresponding spherical
special subgroups of W are isomorphic to the trivial group, C2, and C2 × C2 respectively.

A word in the generating set S is a finite sequence s = (s1, . . . , sk) where each si ∈ S. We
denote by w(s) = s1 · · · sk the corresponding element of W . The support of a word s is the set
of generators which appear in s. A word s is said to be reduced if the element w(s) cannot be
represented by any shorter word, and a word s is trivial if w(s) is the trivial element. We will later
by abuse of notation write s1 · · · sk for both words and group elements. A word s in the generating
set S of a right-angled Coxeter group is reduced if and only if it cannot be shortened by a sequence
of operations of either deleting a subword of the form (s, s), with s ∈ S, or replacing a subword
(s, t) such that st = ts by the subword (t, s). (This is a special case of Tits’ solution to the word
problem for Coxeter groups; see Theorem 3.4.2 of [9].)

3.2. The Davis complex. From now on, Γ is a finite, simplicial, connected, triangle-free graph
with no separating vertices or edges, and W = WΓ is the associated right-angled Coxeter group.
In this section, we discuss the Davis complex for W .

By our assumptions on Γ, we may define the Davis complex Σ = ΣΓ to be the Cayley 2-complex
for the presentation of WΓ given in the introduction, in which all disks bounded by a loop with
label s2 for s ∈ S have been shrunk to an unoriented edge with label s. Then the vertex set of
Σ is WΓ and the 1-skeleton of Σ is the Cayley graph CΓ of W with respect to the generating set
S. Since all relators in this presentation other than s2 = 1 are of the form stst = 1, Σ is a square
complex. We call this cellulation of Σ the cellulation by big squares, with the big squares being the
2-cells. Note that the link of each vertex in this cellulation is the graph Γ.

We next define the cellulation by small squares of Σ to be the first square subdivision of the
cellulation by big squares, with the small squares being the squares obtained on subdividing each
big square into four. We will use both of these cellulations in our proofs.

We now assign types T ∈ S to the vertices of the cellulation by small squares. If σ is also a
vertex of the cellulation by big squares, then σ has type ∅. If σ is the midpoint of an edge in the
cellulation by big squares, then since CΓ is the 1-skeleton of the cellulation by big squares, σ is the
midpoint of an edge connecting g and gs for some g ∈ W and s ∈ S, and we assign type {s} ∈ S
to σ. Finally if σ is the centre of a big square, then σ is assigned type {s, t} ∈ S, where two of the
vertices adjacent to σ have type {s}, and two of the vertices adjacent to σ have type {t}.

Consider Σ with the cellulation by small squares. The group W naturally acts on the left on
Σ, preserving types, so that the stabiliser of each vertex of type T ∈ S is a conjugate of the finite
group WT . Let σ be the vertex of type ∅ corresponding to the identity element of W . The base
chamber K is the union of the set of small squares which contain σ. Any translate of K by an
element of W is called a chamber. For each T ∈ S, we denote by σT the unique vertex of type
T ∈ S in the base chamber. The quotient of Σ by the action of W is the base chamber K, and the
W -stabiliser of σT is precisely the spherical special subgroup WT .

For s ∈ S, the mirror Ks is the union of the set of edges in the base chamber which contain σ{s}
but not σ∅. The mirror Ks is thus the star graph of valence n, where n is the cardinality of the set
{t ∈ S | st = ts, t 6= s}. Note that n ≥ 2, since Γ has no isolated vertices or vertices of valence one.
The centre of the mirror Ks is the vertex σ{s}. Any translate of Ks by an element of W is called a
panel (of type s).
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Let Σ be the Davis complex cellulated by either big or small squares. We now metrise Σ so that
each big square is a unit Euclidean square, hence each small square is a Euclidean square of side
length 1

2 . By [9, Theorem 12.2.1], this piecewise Euclidean cubical structure on Σ is CAT(0). Since
the group W acts on Σ with compact quotient K and finite stabilisers, W is a CAT(0) group.

Let WT be a special subgroup of W . Then the Cayley graph of WT (with respect to the generating
set T ) embeds isometrically in CΓ ⊂ Σ. Hence for each g ∈ W and each special subgroup WT of
W , left-multiplication of the Cayley graph of WT by g results in an isometrically embedded copy of
the Cayley graph of WT in CΓ ⊂ Σ, which contains the vertex g. We will refer to this copy as the
Cayley graph of WT based at g. For each special subgroup WT of W , and each coset gWT , there is
also an isometrically embedded copy of ΣT in Σ. If Θ is an induced subgraph of Γ, we may denote
by ΣΘ the Davis complex for the special subgroup WΘ, and by CΘ the Cayley graph for WΘ with
generating set the vertices of Θ.

Remark 3.2. Suppose that T is the set of vertices of an embedded four-cycle in Γ, so that
WT
∼= D∞ ×D∞. Then each copy of ΣT in Σ is an isometrically embedded copy of the Euclidean

plane (tessellated by either big or small squares). Consider Σ with the cellulation by big squares
and let T1 and T2 be the sets of vertices of embedded four-cycles in Γ such that WT1∪T2 splits over
WT1∩T2

∼= D∞ ×C2. Then each intersection of a copy of the flat ΣT1 with a copy of the flat ΣT2 in
Σ is an infinite band of big squares corresponding to a copy of ΣT1∩T2 . To be precise, this infinite
band of big squares is the direct product R× [0, 1] tessellated by squares of side length 1.

3.3. Walls. Consider the Davis complex Σ = ΣΓ with the cellulation by small squares. Recall that
an element r ∈ W = WΓ is a reflection if r = gsg−1 for some g ∈ W and s ∈ S. A wall in Σ
is defined to be the fixed set of a reflection r ∈ W . For each reflection r, the wall associated to
r separates Σ, and r interchanges the two components of the complement. Each wall is a totally
geodesic subcomplex of the CAT(0) space Σ, hence each wall is contractible. By the construction
of Σ, each wall in Σ is a union of panels, and so is contained in the 1-skeleton of Σ. Hence each
wall of Σ is a tree.

We now assign types s ∈ S to the walls. To show that this can be done in a well-defined fashion,
suppose first that gsg−1 = s′, where g ∈ W and s, s′ ∈ S. Fix a reduced word (s1, . . . , sk) for g,
and consider the trivial word s = (s1, . . . , sk, s, sk, . . . , s1, s

′), which corresponds to the equation
gsg−1s′ = 1. Since s is non-reduced, by Tits’ solution to the word problem for W (see the final
paragraph of Section 3.1 above), we must be able to reduce s to the empty word by a sequence of
operations of deleting repeated letters, and swapping ut for tu, where u, t ∈ S are adjacent vertices.
It follows that the number of instances of each letter in s must be even. Thus s = s′, in other
words, no two distinct elements of S are conjugate in W . Hence for any reflection r ∈ W , there is
a unique s ∈ S so that r = gsg−1 for some g ∈W . It is thus well-defined to declare the type of the
wall which is the fixed set of the reflection r = gsg−1 to be s. A wall of type s is a union of panels
of type s, and in fact is a maximal connected union of panels of type s. So if each panel of type s
is a star-graph of valence n ≥ 2, each wall of type s will be a (2, n)-biregular tree.

For each generator s ∈ S, we denote by Hs the unique wall of type s which contains a panel of
the base chamber, and by gHs, for g ∈ W , the unique translate of the wall Hs which contains a
panel of the chamber gK. If H is a wall of type s, then all walls that intersect H are of types which
commute with s (and are not equal to s). Since Γ is triangle-free, there are no triples of pairwise
intersecting walls. All intersections of walls consist of two walls intersecting at right angles at the
centre of some big square, thus subdividing it into four small squares.

3.4. Paths. A path in CΓ is a map from an interval (finite or infinite) to CΓ, such that each integer
is mapped to a vertex of CΓ and consecutive integers are mapped to adjacent vertices. Given a path
α, we may use α(i) to denote either the image vertex in CΓ or the group element in WΓ associated
with that vertex.
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As noted in Section 3.2, the Cayley graph CΓ is the 1-skeleton of the cellulation of Σ by big
squares. In this cellulation, each edge of CΓ crosses a unique wall in Σ. Thus the length of a path
in CΓ is equal to its number of wall-crossings (note that a path may cross a given wall more than
once). We will sometimes describe paths using the labels of the walls they cross. For example, by
the statement “α is the geodesic ray emanating from (or based at) g labelled a1a2a3 . . . ” we will
mean that α is a geodesic path such that α(0) = g and α(i) = ga1a2 . . . ai for i > 0. The path will
be a geodesic if each subsegment ai . . . aj is reduced. We will often use the fact that a path is a
geodesic if and only if it does not cross any wall twice (compare Lemma 3.2.14 and Theorem 3.2.16
of [9]). If α is a geodesic, we will use the notation α[i1,i2] to denote the part of α that lies between
α(i1) and α(i2), including these endpoints. The support of a path is the set of labels of the walls
that it crosses.

Since Γ is triangle-free, the set of all generators that commute with a given one, say a, generate a
special subgroup WT of WΓ which is a free product of finitely many copies of C2. Thus the Cayley
graph of WT (with generating set T ) is a tree. Now consider a wall gHa of type a. There is a copy
of the Cayley graph of WT based at g which runs parallel to the wall gHa, at constant distance
1
2 from this wall. We say that a path emanating from g runs along the wall gHa if it is a path
in this copy of the Cayley graph of WT . Equivalently, the path emanates from g and has support
contained in the set of generators labelling the link of a in Γ.

Another fact that will be used repeatedly is the following: Suppose γ is a geodesic segment, and
η is any path between its endpoints. Let H be a wall that is crossed by γ. Then η crosses H at
least once. This is because H (like any wall) separates the Davis complex, and γ, being a geodesic,
crosses H exactly once. Thus the endpoints of γ are in different components of the complement of
H. Since η is a (continuous) path connecting them, η must cross H.

4. Linear and quadratic divergence in right-angled Coxeter groups

In this section we prove Theorem 1.1 of the introduction. We characterise the defining graphs
of 2-dimensional right-angled Coxeter groups with linear and quadratic divergence in Sections 4.1
and 4.2 respectively.

All the graphs Γ considered in this section satisfy our standing assumptions: they are connected,
simplicial, triangle-free and have no separating vertices or edges. Recall from Section 2 that the
divergence of WΓ is by definition the divergence of one of its Cayley graphs. We denote by divΓ

the divergence of the Cayley graph CΓ ⊂ ΣΓ. All distances below will be measured in the Cayley
graph CΓ, that is, using the word metric on WΓ with respect to the generating set S, and all paths
considered will be in CΓ.

4.1. Linear divergence. In this section we prove the following result.

Theorem 4.1. The divergence divΓ is linear (i.e. divΓ(r) ' r) if and only if Γ is a join.

As noted in Section 3.1, the graph Γ is a join if and only if WΓ is reducible (that is, W splits
as a direct product of special subgroups). It is proved in [1, Lemma 7.2] that a direct product
H ×K has linear divergence if both H and K have the geodesic extension property. This property
certainly holds for right-angled Coxeter groups. Thus if Γ is a join, WΓ has linear divergence.

In Proposition 4.3 below, we prove that when Γ is not a join, the Cayley graph of WΓ contains
a bi-infinite geodesic γ such that divγ(r) � r2. This completes the proof of Theorem 4.1, as
divΓ(r) � r2 in this case.

Definition 4.2 (The word w and bi-infinite geodesic γ). Recall that the complementary graph of Γ,
denoted by Γc, is the graph with the same vertex set as Γ, in which two vertices are connected by
an edge if and only if they are not connected by an edge in Γ. Since Γ is not a join, Γc is connected.
Choose a loop in Γc which visits each vertex (possibly with repetitions). Choose a vertex a1 on this
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loop, and let w = a1 . . . ak be the word formed by the vertices of this loop in the order encountered
along the loop, where ak is the last vertex encountered before the loop closes up at its starting
point a1. We assume that the loop is never stationary at a vertex, so that ai 6= ai+1 for any i. Then
w is a word in the generators of Γ such that no two consecutive generators commute, and ak does
not commute with a1. It follows that wn is reduced for all n ∈ Z. Let γ be the bi-infinite geodesic
in CΓ which passes through e and is labelled by . . . wwww . . . , so that γ(0) = e, γ(i) = a1 · · · ai for
1 ≤ i ≤ k, γ(−1) = ak, and so on.

Proposition 4.3. If Γ is not a join, and γ is the bi-infinite geodesic in CΓ from Definition 4.2,
then divγ(r) � r2.

The idea of the proof is similar to that of the corresponding result for right-angled Artin groups
in Lemma 7.3 in [1], although we write it in terms of crossings of walls rather than van Kampen
diagrams. We include the proof here because it sets the stage for the proof of Proposition 4.9.

Proof. It is enough to obtain a lower bound on dav(γ(−nk), γ(nk)) as a quadratic function of n
(where k is the length of the word w from Definition 4.2). Let η be an arbitrary avoidant path
from γ(−nk) to γ(nk). Since γ[−nk,nk] is a geodesic and η is a path with the same endpoints, η
must cross each wall crossed by γ at least once. For notational convenience, we will focus on the
walls wiHa1 for 0 ≤ i ≤ n − 1 which are crossed by γ[0,nk]. Now let (gi, gia1) be the edge of CΓ at

which η first crosses wiHa1 , where gi is the vertex in the component of the complement of wiHa1

containing e. Let ηi be the part of η between gi and gi+1 (so that the first edge of ηi is (gi, gia1)).
For 0 ≤ i ≤ n− 1, let νi denote the geodesic connecting wi and gi which runs along wiHai , and

let Hi be the first wall crossed by νi, with type aj for some j. We claim that Hi does not intersect
νi+1. Since aj belongs to the support of w, the segment of γ between wi and wi+1 crosses a wall of
type aj . By the construction of w, this wall cannot intersect wiHa1 . It is therefore distinct from Hi

and consequently separates Hi from νi+1. It follows that no subsequent wall crossed by νi intersects
νi+1 either. Thus each wall crossed by νi separates gi and gi+1 into distinct components. Since ηi
is a path from gi to gi+1, it must cross all of these walls. Thus `(ηi) ≥ `(νi) ≥ k(n− i), and

`(η) ≥
n−1∑
i=0

`(ηi) ≥
n−1∑
i=0

k(n− i) ≥ k

2
n2

which completes the proof. �

4.2. Quadratic divergence. We first introduce the CFS terminology for the graphs which give
rise to right-angled Coxeter groups with quadratic divergence. The main result of this section is
Theorem 4.6. below.

Given a graph Γ, define the associated four-cycle graph Γ4 as follows. The vertices of Γ4 are
the embedded loops of length four (i.e. four-cycles) in Γ. Two vertices of Γ4 are connected by an
edge if the corresponding four-cycles in Γ share a pair of adjacent edges. For example, if Γ is the
join K2,3, then Γ4 is a triangle. Given a subgraph Θ of Γ4, we define the support of Θ to be the
collection of vertices of Γ (i.e. generators of WΓ) that appear in the four-cycles in Γ corresponding
to the vertices of Θ.

Definition 4.4 (CFS). A graph Γ is said to be CFS if there exists a component of Γ4 whose
support is the entire vertex set of Γ, i.e., there is a “Component with Full Support”.

Figures 4.1 and 4.2 show some examples of CFS graphs and non-CFS graphs respectively. Note
that any join is CFS. The last example in Figure 4.1 shows that the four-cycle graph of a CFS
graph need not be connected. However, the following observation will be useful in what follows:
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Figure 4.1. Some CFS graphs. (The middle two are actually the same graph.)

Figure 4.2. Some non-CFS graphs. (The four-cycle graph of the first one is empty.
In the second one the four-cycle graph is connected but does not have full support,
while in the third, the four-cycle graph has full support, but is not connected and
does not have a component with full support.)

Observation 4.5. The graph Γ is CFS if and only it if has a subgraph Λ such that Λ4 is connected,
and the support of Λ4 is the vertex set of Γ. The graph Λ is obtained from Γ by (possibly) deleting
some edges, while keeping all the vertices.

We now characterise the graphs which give rise to right-angled Coxeter groups with quadratic
divergence.

Theorem 4.6. The divergence divΓ is quadratic (i.e. divΓ(r) ' r2) if and only if Γ is CFS and
not a join.

In Proposition 4.7 below we obtain a quadratic upper bound on divΓ when Γ is a CFS graph.
On the other hand, Proposition 4.3 above shows that if Γ is not a join, then there is a quadratic
lower bound on divΓ. This proves one direction of Theorem 4.6. The other direction follows from
Proposition 4.9 below, in which we show that if Γ is not CFS then CΓ contains a bi-infinite geodesic
whose divergence is at least cubic.

Proposition 4.7. If Γ is CFS then divΓ(r) � r2.

Proof. By Example 3.1, a four-cycle in Γ corresponds to a subgroup W ′ isomorphic to D∞ ×D∞.
Recall from Section 3.2 that for every g ∈ W , there is an isometrically embedded copy of the
Cayley graph of W ′ based at g ∈ CΓ By Theorem 4.1, divD∞×D∞(r) ' r. In fact it is not hard to
see directly that given a pair of geodesic rays α and β emanating from e in CD∞×D∞ , there is an
r-avoidant path connecting α(r) and β(r) of length at most 2r.

Step 1: We first address the case that Γ4 has a single component. Fix a 4-cycle Θ in Γ and a
geodesic ray α emanating from e ∈ CΓ whose support is contained in the set of vertex labels of Θ.
Thus α lies in the copy of CΘ based at e. We show below that if β is an arbitrary geodesic ray in
CΓ emanating from e, then divα,β(r) ≤ Mr2 for every r, where M = 2 diam(Γ4). This proves the
quadratic upper bound on divΓ, since it implies that if β1 and β2 are arbitrary geodesic rays based
at e, then divβ1,β2(r) ≤ 2Mr2.

Now let β be an arbitrary geodesic ray labelled b1b2b3 . . . and emanating from e. We first divide
β[0,r] into pieces as follows, then carry out induction on the number of pieces. Starting at b1, choose
the first piece to be the maximal word b1 . . . bi such that {b1, b2, . . . , bi} is contained in the set of
vertex labels of a single 4-cycle of Γ. Now repeat this procedure starting at bi+1, and continue until
β[0,r] is exhausted.

If β[0,r] consists of a single piece, then b1, . . . , br are among the vertices of a single 4-cycle Θ′

of Γ. Since Γ4 is connected, it contains a path connecting the fixed vertex Θ to Θ′. Let Θ =
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Θ1,Θ2, . . . ,Θl = Θ′ be the vertices of Γ4 along this path. For each 1 ≤ i ≤ l− 1, since Θi and Θi+1

are joined by an edge in Γ4, the intersection WΘi ∩WΘi+1 is isomorphic to WΘi∩Θi+1
∼= C2 ×D∞.

Recall from Remark 3.2 that each ΣΘi is an isometrically embedded Euclidean plane tesselated
by big squares, and ΣΘi and ΣΘi+1 intersect in an infinite band of big squares corresponding
to a copy of ΣΘi∩Θi+1 . We proceed below by introducing geodesic rays νi based at e, where
νi lies in CΘi∩Θi+1 ⊂ ΣΘi∩Θi+1 for 1 ≤ i ≤ l − 1. Since successive geodesics in the sequence
α = ν0, ν1, . . . νl−1, νl = β lie in a Euclidean plane, there are linear length avoidant paths between
them, and concatenating these gives an avoidant path between α and β.

Let ν denote the geodesic in CC2×D∞ based at the identity and labelled g1g2g1g2 . . . , where g1

and g2 are the generators of the D∞ factor. For 1 ≤ i ≤ l − 1, let νi denote the image of this
geodesic in the copy of CΘi∩Θi+1 based at e in CΓ (for some identification of g1 and g2 with the
Coxeter generators of the D∞ factor of WΘi ∩WΘi+1). Define ν0 = α and νl = β, and observe that
for 1 ≤ i ≤ l, the geodesics νi−1 and νi are supported on a single 4-cycle of Γ, namely Θi. Thus
νi−1(r) and νi(r) can be connected by an avoidant path of length at most 2r in the copy of CΘi

based at e. Concatenating all of these paths, one obtains an r-avoidant path connecting α(r) and
β(r), with length at most 2rl ≤Mr, since l ≤ diam(Γ4).

We now induct on the number of pieces of β[0,r] to show that dav(α(r), β(r)) is at most Mr times
the number of pieces. Suppose β[0,r] has k + 1 pieces and is labelled by w1w2 . . . wkwk+1, where
each wi is a piece. Then it is not hard to construct a word w such that:

(1) the support of w is contained in the support of the 4-cycle corresponding to the piece wk;
(2) the word wkw is reduced; and
(3) |w| = |wk+1| (so that |w1w2 . . . wkw| = r).

It follows that the path µ emanating from e labelled w1w2 . . . wkw is a geodesic of length r with k
pieces. By the inductive hypothesis, there is an r-avoidant path connecting α(r) to µ(r) of length
at most Mkr.

Further, if s = r − |wk+1|, then β[s,r] and µ[s,r] are supported on 4-cycles Ψ and Ψ′ respectively,
and β(s) = µ(s). A more careful version of the construction for the base case yields an r-avoidant
path from µ(r) to β(r), as follows. As before, choose a path in Γ4 which visits the vertices Ψ =
Ψ1,Ψ2 . . . ,Ψm = Ψ′, and for each i, choose a geodesic ray νi emanating from β(s) in the copy
of CWΨi

∩WΨi+1
based at β(s), but this time require νi to have the additional property that β[0,s]

concatenated with νi is a geodesic. (This will be true for at least one of the two possibilities for νi.)
Now the construction from the base case (applied with basepoint β(s) instead of e) yields a path
that avoids not only the ball of radius |wk+1| based at β(s), but also the ball of radius r based at
e. The length of this path is at most M |wk+1| ≤ Mr. Concatenating the paths from α(r) to µ(r)
and from µ(r) to β(r), one has the desired r-avoidant path, with length clearly bounded above by
M(k + 1)r.

Finally, since the total number of pieces is bounded above by r, the length of this avoidant path
is bounded above by Mr2.

Step 2: Now suppose that Γ is CFS but Γ4 is not connected. Then by Observation 4.5, there
exists a subgraph Λ of Γ, such that Λ4 is connected, and Γ is obtained from Λ by adding edges
(between vertices that are at least distance 3 apart in Λ). Since the effect of adding edges is to
add more commuting relations in the presentation, there is a natural quotient map q : WΛ → WΓ.
Hence if β1 and β2 are arbitrary geodesic rays emanating from e in CΓ, they have pullbacks β′1 and
β′2 which are geodesic rays emanating from e in CΛ.

We claim that the pushforward of the r-avoidant path constructed in Step 1 between β′1(r) and
β′2(r) is r-avoidant in CΓ. The path was constructed by concatenating several sub-paths, each of
which was r-avoidant in a sub-graph CΨ, where Ψ is a single four-cycle. The claim follows from
the observation that if Ψ is an embedded four-cycle in Λ then it is an embedded four-cycle in Γ,
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and the composition of the induced map q : CΛ → CΓ with the inclusion CΨ ↪→ CΛ is actually an
isometric embedding of CΨ into CΓ. �

Remark 4.8. Proposition 4.7 is a special case of the upper bound on divergence given by Theo-
rem 4.9 of [3]. To see this, suppose Γ is CFS and let H be the collection of special subgroups of
WΓ generated by the embedded four-cycles in Γ which are the vertices of a component of Γ4 with
full support. Then it is easy to see that WΓ is strongly algebraically thick of order at most 1 with
respect to H. Hence by results in [3], the divergence of WΓ is at most quadratic. In fact, together
with Proposition 4.3 above, one sees that WΓ is strongly algebraically thick of order exactly equal
to 1 if and only if Γ is CFS but not a join.

We now show that graphs which are not CFS give rise to right-angled Coxeter groups with
super-quadratic divergence. If Γ is not CFS, then, in particular, it is not a join, and there is a
word w (of length k) and bi-infinite geodesic γ in CΓ as described in Definition 4.2. We show that
in this setting, the divergence of γ is at least cubic.

Proposition 4.9. If Γ is not CFS, and γ is the bi-infinite geodesic in CΓ from Definition 4.2, then
divγ(r) � r3.

Proof. Let η be an arbitrary avoidant path from γ(−nk) to γ(nk). We begin exactly as in the first
paragraph of the proof of Proposition 4.3 and define the sub-paths ηi of η as we did there. However,
this time we use the fact that Γ is not CFS to obtain a quadratic lower bound on `(ηi). This is a
consequence of the following lemma, which is proved separately below.

Lemma 4.10. Suppose Γ is a graph that is not CFS and w is the word from Definition 4.2. Let α
be an arbitrary geodesic ray emanating from e that travels along Ha1 and let β be a path emanating
from e consisting of a geodesic segment labelled w followed by an arbitrary geodesic ray emanating
from w that travels along wHa1. Then β is a geodesic, and for any r > 2k,

divα,β(r) ≥ 1

16
r2.

Note that γ crosses the wall wiHa1 at the edge (wi, wia1). Let νi denote the geodesic segment
that connects wi to gi and runs along wiHa1 . Let µi be the path emanating from wi consisting of
the part of γ between wi and wi+1 concatenated with νi+1. Lemma 4.10, applied with basepoint
wi instead of e, implies that µi is a geodesic, and that for 0 ≤ i ≤ n− 2, and n > 2,

`(ηi) ≥ dav
wi(gi, gi+1) ≥ dav

wi(νi(kn− ki), µi(kn− ki)) ≥
k2

16
(n− i)2.

For the middle inequality above, we use the observation in the last paragraph of Section 2. In
conclusion,

`(η) ≥
n−2∑
i=0

`(ηi) ≥
n−2∑
i=0

k2

16
(n− i)2.

This is a cubic function of n. �

Proof of Lemma 4.10. We first show that β is a geodesic ray. Since β[0,k] (which is labelled by
w) and β[k,∞] are geodesics, the only way β can fail to be a geodesic is if there is a wall which
intersects both of these. Recall that w = a1 . . . ak, so that the walls crossed by β[0,k] are β(i−1)Hai

for 1 ≤ i ≤ k, where β(0) = e and β(i) = a1 . . . ai. By construction, ai and ai+1 don’t commute
for any i (mod k), so it follows that these walls are pairwise disjoint, and are all disjoint from
wHa1 . On the other hand every wall that intersects β[k,∞] necessarily crosses wHa1 , since β[k,∞]

runs along wHa1 . It follows that no wall can cross both β[0,k] and β[k,∞]. Similarly, since α is a
geodesic emanating from e along the wall Ha1 , the same argument shows that no wall can cross
both β[0,k] and α, a fact that will be useful later in this proof.
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To obtain a lower bound on divα,β, choose an arbitrary r-avoidant path η between α(r) and β(r).
Then one obtains a loop in CΓ by concatenating α[0,r], followed by η, followed by β[0,r] traversed in
the negative direction. There is a van Kampen diagram D with boundary label equal to the word
encountered along this loop. Note that by construction, α[0,r], β[0,r] and η do not have any common
edges in CΓ. It follows that every edge of ∂D is part of a 2-cell of D, and that D is homeomorphic
to a disk. We will abuse notation and use α, β and η to denote the parts of ∂D that are labelled
by these paths.

There is a label-preserving combinatorial map from D to ΣΓ with the cellulation by big squares.
Under this map, edges and vertices of D go to edges and vertices of CΓ, which is the 1-skeleton of
the cellulation by big squares. We may assume that each 2-cell in D is a square, since any 2-cell
with boundary label of the form s2 maps to an edge of ΣΓ and can therefore be collapsed to an
edge in D. Thus the map takes each 2-cell of D homeomorphically to a big square of ΣΓ. Further,
if we metrise each square of D as [0, 1]× [0, 1], then we can arrange that the restriction of this map
to a square of D is an isometry onto its image big square.

We will work primarily with a cell structure on D that is dual to the one just described. We first
define walls of D, record some of their properties, and then use them to define the dual structure
on D. The dual structure is then used to divide D into strips, and we will show that the length of
a strip is a lower bound on the length of η. We then finish the proof by inductively estimating the
lengths of the strips. The fact that Γ is not CFS is used to show that the lengths of strips grow
quadratically.

Walls of D. Recall that each big square in ΣΓ is subdivided into four small squares by a pair of
(segments of) walls which intersect at the centre of the big square. For each square in D, we pull
back this pair of segments to D, and label them with the type of the walls they came from. The
types of the two wall-segments in a square of D are necessarily distinct. Now suppose there are two
squares in D which share an edge ε. By construction, both squares contain a wall-segment that
intersects ε at its midpoint, and these wall-segments must have the same label. To see this, recall
that the image of ε in ΣΓ is the side of a big square, and the midpoint of such a side cannot be the
point of intersection of a pair of walls. Thus, starting at any wall-segment in a square of D, one
can continue it through adjacent squares until it eventually meets ∂D. We call a path constructed
in this way a wall of D, and the type of the wall is the type of any of its wall-segments. Walls
are similar to corridors: if one “fattens up” a wall of type a by taking the union of the squares
containing its individual wall-segments, then one has an a-corridor of D.

Two walls of D intersect each other at most once; they intersect only if their types commute and
are distinct. A wall of D cannot intersect itself, as this would require there to be a square in D in
which both the wall-segments have the same type. Thus each wall of D is an embedded interval
connecting a pair of points on ∂D. We record the following observation for future use.

Observation 4.11. Every wall of D has at least one endpoint on η.
To see this, recall from the first paragraph of this proof that in ΣΓ, and therefore in D, any wall

intersecting β[0,k] is disjoint from both β[k,r] and α[0,r]. Thus any wall in D with an endpoint on
β[0,k] has its other endpoint on η. Now suppose there is a wall P in D with one endpoint on α and
the other on β[k,r]. Then P separates D, putting β[0,k] and η in different components. This implies
that every wall with an endpoint on β[0,k] intersects P . However, one of these walls has the same
type as P , since β[0,k], which is labelled by w, has as its support the full vertex set of Γ. This is a
contradiction.

The dual cell structure on D. We now define the dual structure on D. Its 1-skeleton is the union
of the walls of D, together with ∂D; see Figure 4.3. Thus the vertices are points of intersection of
a pair of walls (i.e. centres of squares in the original structure) or points of intersection of a wall
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α
β[k,r]

η

β[0,k]e
S0

S1

S2

Figure 4.3. The van Kampen diagram D. The light edges and bold dots are the
1-cells and 0-cells respectively, of the original cell structure on D. The walls of D,
which bound the dual 2-cells, are shown in bold. The strips are shaded.

with ∂D. Removing the vertices from the 1-skeleton yields several components; the edges are the
closures of these components. The 2-cells are the closures of the components of the complement
of the 1-skeleton in D. We use the terms dual cells and original cells to distinguish between cells
from the two structures on D. A dual cell is called a boundary cell if it intersects ∂D. Otherwise
it is called an interior cell. Since Γ is a triangle-free graph, it is easy to see that the boundary of
any interior dual 2-cell is a polygon with at least four sides.

Strips in D. We now use the dual structure to define strips Si in D, for 0 ≤ i < (r − k)/2.
Define the 0th strip S0 to be the union of all the dual 2-cells intersecting β[0,k]. Define the top

boundary B0 of S0, by B0 = ∂S0 \ ∂D. Let εα(j) (respectively εβ(j)) denote the dual edge of ∂D
containing the original vertex α(j) (respectively β(j)). Observe that:

(1) S0 is connected and consists of an ordered collection of dual 2-cells, each intersecting the
previous one in a dual edge, and going from εα(0) to εβ(k).

(2) If Q is a wall that forms part of B0, then S0 is contained in a single component of D \Q.
(3) B0 is connected, and all but the first and last dual edges of B0 are interior edges.

Note that (1) follows from the fact that every edge of β[0,k] is part of a 2-cell, and that D is
homeomorphic to a disk. If (2) fails, then Q crosses S0 and has an endpoint on β[0,k]. On the other
hand, since it is part of B0, it contributes to the boundary of a boundary 2-cell, and two of the
boundary edges of this 2-cell are parts of walls P1 and P2 which intersect β[0,k]. In order to intersect
S0, the wall Q must cross either P1 or P2. This is a contradiction, since by construction, no two
walls with endpoints on β[0,k] intersect each other. Finally, (3) follows from (1), together with the
fact that the construction forces B0 to consist solely of parts of walls.

Now suppose Si−1 and its top boundary Bi−1 have been defined, with properties analogous to
(1)-(3) above. In particular, the 2-cells of Si−1 go from εα(i−1) to εβ(k+i−1). Define Si to be the
union of all the dual 2-cells intersecting Bi−1. Then Si contains the dual 2-cells whose boundaries
contain the edges εα(i) and εβ(k+i). Define the top boundary Bi to be ∂Si \ {Bi−1, εα(i), εβ(k+i)}.
We claim that if i < (r − k)/2, then Si has properties analogous to (1)-(3) above.

To see (1), note that property (1) for Si−1 implies that Si−1, and therefore Bi−1 separates D.
Let Di be the closure of the component of D \ Bi−1 not containing Si−1 (so that ∂Di consists of
Bi−1 and a part of ∂D). By property (3) for Bi−1, all but the first and last dual edges of Bi−1

are interior edges of D, so every edge of Bi−1 is part of a 2-cell in Di and Di is homeomorphic to
a disk. It follows that Si is connected and consists of an ordered collection of dual 2-cells, each
intersecting the previous one in a dual edge, going from εα(i) to εβ(k+i).

An argument involving intersections of walls similar to the S0 case proves property (2) for Si.
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Property (3) would fail for Bi if one of the dual 2-cells of Si other than the first and the last is
a boundary cell, as this would mean that Bi contains part of α[i+1,r], β[k+i+1,r], or η. (Note that
α[0,i−1], and β[0,k+i−1] cannot be part of Bi since Bi−1 separates Si from these parts of ∂D.)

We first rule out α[i+1,r] and β[k+i+1,r]. Let Ai denote the wall of D with an endpoint at the
intersection of εα(i) and εα(i+1). Note that α[i+1,r] cannot cross Ai by construction. Now Ai is a
part of Bi, so by property (2) for Si it separates α[i+1,r] from Si. This implies that Si cannot have
any boundary cells intersecting α[i+1,r]. By the same argument, Si does not have any boundary
cells intersecting β[k+i+1,r].

The map from D to CΓ takes each original vertex contained in a dual cell of Si into B(e, k+2i) ⊂
CΓ. To see this observe that each original vertex of S0 is mapped into B(e, k), and for j > 0, the
image of an original vertex in Sj is at most distance two from the image of the vertices of Sj−1. So
if i < (r − k)/2, then the original vertices of Si are mapped into B(e, r − 1), and therefore cannot
be vertices of η, which is r-avoidant. Thus Si−1 does not have any boundary cells intersecting η.
This shows that all but the first and last 2-cells of Si are interior cells, which implies (3).

Lengths of strips. Define the length of Si, denoted `(Si), to be the number of interior dual 2-cells
in it.

Claim 4.12. For i < (r − k)/2, we have `(Si) ≤ `(η).

Proof. Let P be a wall of D which is transverse to Si, meaning that it crosses Si at least once,
intersecting both Bi−1 and Bi. We now show that P crosses Si at most twice. Further, the number
of times P crosses Si is equal to the number of endpoints of P on η.

Suppose P crosses Si at least twice. Starting at the endpoint of P on η (guaranteed by Obser-
vation 4.11), follow P till its second crossing of Si, and let Q denote the top boundary wall at the
second crossing. By property (2) for Si, we know that Si is contained in a single component of
D\Q. Thus, in order to cross Si again, P would have to cross Q a second time, which is impossible.
So P crosses Si at most twice.

Now suppose the second endpoint of P is on α. Since Q can cross neither P (a second time)
nor Si, it must also have an endpoint on α. This is a contradiction, since by construction, two
walls with endpoints on α cannot intersect each other. By the same argument, P cannot have an
endpoint on β. Thus, if P crosses Si twice, it has two endpoints on η. If P crosses Si exactly once,
then Observation 4.11 and the fact that Si separates D putting η in a single component imply that
P has exactly one endpoint on η, completing the proof of the second statement above.

Thus there is an injective map from the set of transverse intersections of walls with Si into the set
of walls crossed by η in ∂D. This proves the claim, as the number of such transverse intersections
is `(Si) + 1, and the number of walls crossed by η in ∂D (and therefore in ΣΓ) is `(η). �

Lower bounds. We now inductively obtain lower bounds on the lengths of strips. Define an
interior dual 2-cell to be large if its boundary has five or more sides.

Claim 4.13. Every strip has at least one large 2-cell.

Proof. If not, then there is a strip Si built entirely out of squares. There are two possibilities:
either this strip consists of a single row of squares, or it consists a sequence of such rows of squares,
with each such row connected to the next at right angles as in Figure 4.2.

Since two walls intersect only if the corresponding generators commute, it is possible to recon-
struct a subgraph of Γ using Si, as follows. The vertices of this subgraph are the labels of the
walls which meet Si (either transversely or as part of Bi or Bi−1). We add an edge between two
such vertices of Γ whenever the corresponding walls intersect in Si. It is easy to see that a single
row of squares reconstructs a join subgraph, while a sequence of rows of squares meeting at right
angles reconstructs a CFS subgraph. Every wall which has an endpoint on β[0,k] crosses Si, since
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Figure 4.4. A strip which has no large 2-cells is either a single row of squares (left)
or a sequence of such rows (right).

by Observation 4.11 its other endpoint is on η, and Si separates η from β[0,r]. Thus the generators
corresponding to walls with endpoints on β[0,k] are vertices of the subgraph constructed above. But
the support of β[0,k] is the entire vertex set of Γ, so we obtain a CFS subgraph of Γ which uses all
the vertices of Γ. Then Γ itself is CFS, by Observation 4.5. This is a contradiction. �

An interior dual 2-cell in Si intersects Si−1 in either an edge or a vertex. Define the 2-cell to be
skew if this intersection is a vertex. Let ui denote the number of skew 2-cells in Si.

Claim 4.14. For 1 ≤ i < (r − k)/2, we have ui ≥ i .

Proof. To see that u1 ≥ 1, note that B0 cannot consist of a single wall, by Observation 4.11. So it
contains at least one pair of walls that intersect at a point and then pass through S1, giving rise to
a skew 2-cell whose closure intersects S0 in the point of intersection of the walls.

For the inductive step, observe that a skew 2-cell in Si−1 whose boundary is a j-gon gives rise
to j − 3 skew 2-cells in Si. Since each interior dual 2-cell has at least 4 sides, j − 3 ≥ 1. Similarly,
a non-skew large 2-cell in Si−1 whose boundary is a j-gon gives rise to j − 4 ≥ 1 skew 2-cells in
Si. By Claim 4.13, every strip has at least one large 2-cell. Now if one of the skew cells in Si−1 is
large, it gives rise to at least two skew cells in Si, and we have ui ≥ ui−1 + 1. Otherwise there is a
non-skew large cell in Si−1, which gives rise to a skew cell in Si which does not come from a skew
cell of Si−1, and we have the same relation. It follows that ui ≥ i for 1 ≤ i < (r − k)/2. �

There is a map from the 2-cells of Si to the 2-cells of Si−1 defined as follows. The image of a
skew 2-cell c is the unique 2-cell in Si−1 which shares a vertex with c. The image of a non-skew
2-cell c is the unique 2-cell of Si−1 which shares an edge with c. This is surjective by property (1)
for Si. The cardinality of the preimage is at least 1 for a non-skew 2-cell, and at least 3 for a skew
2-cell of Si−1. Thus one has the relation `(Si) ≥ `(Si−1) + 2ui−1, since the length of a strip is the
number of interior 2-cells in it. Then, using Claim 4.14, we have:

`(Si) ≥ `(Si−1) + 2ui−1 ≥ · · · ≥
i∑

j=1

2uj ≥ 2
i∑

j=1

j ≥ (i)(i+ 1) ≥ i2.

Finally, if r > 2k, then r/4 < (r − k)/2, and by Claim 4.12, we have `(η) ≥ `(Sr/4) ≥ 1
16r

2. �

5. Higher-degree polynomial divergence in right-angled Coxeter groups

We now prove Theorem 1.2 of the introduction, by producing examples to show that the diver-
gence of a 2-dimensional right-angled Coxeter group can be a polynomial of any degree. More pre-
cisely, if Γd is the sequence of graphs shown in Figure 5.1 (d ≥ 1) then we show that divΓd(r) ' rd.
We prove the upper and lower bounds on divΓd(r) in Propositions 5.1 and 5.3 respectively.

Proposition 5.1. divΓd(r) � rd.

Proof. Observe that the statement is true for d = 1 and 2, as Γ1 is a join, and Γ2 is a CFS graph.
We proceed by induction on d. Assume that there is a constant C such that if µ and ν are arbitrary
geodesic rays based at e in CΓd−1

, then dav(µ(r), ν(r)) ≤ Crd−1 for any r.
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Γ1 Γ2 Γ3 Γd

Figure 5.1

Now let α and β be an arbitrary pair of geodesic rays based at e in CΓd . If neither of them crosses
any walls of type ad or bd, then they actually lie in the copy of CΓd−1

based at e, and the induction
hypothesis yields the desired avoidant path.

Thus we may assume that at least one of them, say α, crosses a wall of type ad or bd. Let
H1, . . . ,Hk be the ordered set of walls of type ad or bd that α crosses between e and α(r), and
let xi denote the type of Hi. Then the label on α[0,r] is w1x1w2x2 . . . wkxkwk+1, where each wi is
a (possibly empty) word in the letters a0, a1, . . . ad−1, b0, b1, . . . bd−1, and each xi is ad or bd. For
1 ≤ i ≤ k, let gi denote the word w1x1w2x2 . . . wi. Then there exists a geodesic ray λi emanating
from gi with the following properties:

(1) The path emanating from e consisting of the segment labelled gi followed by λi is a geodesic.
(2) The geodesic λi runs along Hi. (That is, the support of λi is either {a0, b0} or {ad−1, bd−1},

depending on whether xi is ad or bd, respectively.)

If xi = ad, the label of λi must be of the form a0b0a0b0 . . . or b0a0b0a0 . . . . Choose the former if the
projection of gi to the group 〈a0, b0〉 ends with b0 and the latter otherwise. This guarantees that
there is no cancellation when gi is concatenated with the label of λi. The case xi = bd is similar.

For 1 ≤ i ≤ k, let νi be the geodesic ray emanating from gixi with the same label as λi. (See
Figure 5.2.) For 0 ≤ i ≤ k − 1, let µi be the geodesic ray emanating from gixi (or e when i = 0)
consisting of the segment with label wi+1 followed by λi+1. The choice of the λi guarantees that
these are geodesics. Finally define µk to be the infinite part of α emanating from gkxk.

If β does not cross any walls of type ad or bd, then define µ′0 = β. Otherwise define H ′1, . . . H
′
l ,

as well as x′i, g
′
i, u
′
i, ν
′
i, and µ′i analogous to the corresponding objects for α.

By construction, the supports of νi, µi, ν
′
i, µ
′
i are contained in {a0, a1, . . . ad−1, b0, b1, . . . bd−1}.

Thus there exist paths ηi connecting νi(2r) and µi(2r) with length at most C(2r)d−1, which avoid
a ball of radius 2r based at gixi, and therefore avoid a ball of radius r based at e. Similarly, there
are r-avoidant paths η′i and η0 connecting ν ′i(2r) and µ′i(2r) and µ0(2r) and µ′0(2r) respectively,
each with length at most C(2r)d−1.

For each i, the points µi(2r) and νi+1(2r) are connected by an edge, as are µ′i(2r) and ν ′i+1(r).
Using these k + l edges to connect ηi, η

′
i and η0, one obtains an r-avoidant path between µk(2r)

and µ′k(2r). Finally, η is constructed by attaching the segment of α from α(r) to µk(2r) and the
segment of β from β(r) to µ′k(2r), each with length at most 2r. Since k and l are at most r, we
have:

`(η) ≤ 4r + k + l + (k + l + 1)C(2r)d−1 ≤ 6r + (2r + 1)C2d−1rd−1 ≤ C ′rd,
where C ′ = 6 + 2d+1C. �

Remark 5.2. This upper bound could also be obtained by arguments in [3], as the group Wd

is strongly algebraically thick of order at most d − 1. To see this, for each n ≥ d ≥ 1 de-
fine a right-angled Coxeter group Wn,d to be the special subgroup of Wn generated by the set
{a0, a1, . . . , an, b0, b1, . . . , bd}. Note that Wd,d = Wd. Now Wn,2 is strongly algebraically thick of or-
der at most 1 since its defining graph is CFS (see Remark 4.8 above). By induction on d, the group
Wn,d is strongly algebraically thick of order at most d−1 with respect toH = {Wn,d−1, bdWn,d−1bd}.
Hence in particular, Wd is strongly algebraically thick of order at most d− 1.

Proposition 5.3. divΓd(r) � rd.
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Figure 5.2. Construction of the avoidant path η. The geodesic rays µi and µk are
shown in bold.

Proof. We prove the lower bound by producing a pair of geodesic rays in CΓd whose divergence is
bounded below by a constant multiple of rd. This will follow from a more general statement about
the divergence of certain pairs of geodesics in CΓd+2

.
For 1 ≤ n ≤ d, let αn and βn be any geodesic rays in CΓd+2

satisfying the following conditions:

(1) αn emanates from e and travels along Hbn+1 ; and
(2) βn emanates from e and travels along one of Han , Hbn , or Hbn+2 . (Note that {an, bn, bn+2}

is exactly the set of types of walls which can intersect Hbn+1 .)

Then we show below that

(5.1) dav(αn(r), βn(r)) ≥ 1

2n(n+1)
rn.

When n = d, one can take αd to be the geodesic ray based at e with label bdadbdad . . . , as this
travels along Hbd+1

, and βd to be the geodesic ray based at e with label bd−1ad−1bd−1ad−1 . . . , as
this travels along Hbd . Observe that these geodesics are actually in the copy of CΓd based at e.
Any avoidant path between αd(r) and βd(r) in CΓd remains avoidant under the isometric inclusion

CΓd ↪→ CΓd+2
, and therefore has length bounded below by (1/2d(d+1))rd, by (5.1). This completes

the proof of the proposition.
We establish (5.1) by proving the following equivalent statement by induction on k: for all

1 ≤ k ≤ d and all k ≤ n ≤ d, if αn and βn satisfy the conditions (1) and (2) respectively, then

dav(αn(r), βn(r)) ≥ (1/2k(k+1))rk.
Observe that for any n, if αn and βn are chosen as above, then αn concatenated with βn at e is

a bi-infinite geodesic, since αn and βn have disjoint supports, regardless of the type of wall along
which βn travels. Thus any avoidant path between αn(r) and βn(r) must cross the 2r walls crossed
by this bi-infinite geodesic. This proves the case k = 1, as dav(αn(r), βn(r)) ≥ 2r > (1/4)r for all
n ≥ 1.

Now suppose n ≥ k + 1, and let η be an avoidant path connecting βn(r) to αn(r). Focus on
the r/2 walls that αn crosses between αn(0) and αn(r/2). Each of these is of type an, bn, or bn+2.
Since two consecutive walls cannot be of the same type, at most half of these walls are of type an.
Thus, in this range, αn (and hence η) crosses at least r/4 walls of type b∗, where the subscript is
either n or n+ 2. Call them H1, . . . ,Hl, where l ≥ r/4. Let (gi, gib∗) be the edge where αn crosses
Hi and let (hi, hib∗) be the first edge where η crosses Hi, going from βn(r) to αn(r). Let µi denote
the unique geodesic connecting gi to hi that travels along Hi. (See Figure 5.3.) Define µ0 = βn
and h0 = βn(r).

For 1 ≤ i ≤ l, let H ′i denote the second wall crossed by µi starting at gi. Note that H ′i intersects
Hi, and therefore cannot intersect αn, since no two walls crossed by αn intersect. We claim that

17



Hi

H ′i

Hi−1 Hi+1

νi

e

µi

βn

αn αn(r/2)gi

hi

pi

gib∗

hib∗

pixi

ηi

Figure 5.3. Construction of µi and νi. Here µi(0) = gi and νi(0) = µi(1).

H ′i also does not intersect µi−1. The support of µi is contained in either {an−1, bn−1, bn+1} or
{an+1, bn+1, bn+3} depending on the type of Hi. If the first wall crossed by µi doesn’t intersect
µi−1, then H ′i can’t either, as H ′i is separated from µi−1 by the first wall. Otherwise, the first wall
crossed by µi has to be of type bn+1, which means that H ′i is not of type bn+1. If the types of Hi

and Hi−1 are different, then the type of H ′i is not in the support of µi−1, so H ′i cannot intersect
µi−1. Finally, if the types of Hi and Hi−1 are the same, then they must be separated by a wall of
type an, since αn can’t cross two consecutive walls of the same type. Now H ′i can’t intersect this
wall, since it is not of type a0, b0 or bn+1. So H ′i can’t intersect µi−1 either.

It follows that for 1 ≤ i ≤ l, the wall H ′i separates the points hi−1 and hi, since the path formed
by concatenating µi−1, the part of αn between gi−1 and gi, and µi crosses H ′i exactly once. Now
η contains a sub-path connecting hi−1 and hi, so η must cross H ′i. Let (pi, pixi) be the first edge
along which it crosses H ′i, where xi is the type of H ′i. Let ηi denote the part of η between pi and
hi, and let νi denote the unique geodesic connecting µi(1) to pi, which travels along H ′i.

Observe that µi is a geodesic that travels along a wall of type bn or bn+2, and νi is a geodesic that
travels along a wall that intersects it. This means that the pair µi and νi is either of the form αn−1

and βn−1 or αn+1 and βn+1 (if we allow the geodesics to emanate from µ(1) instead of e). Since

n−1 ≥ k, the inductive hypothesis applies, and we have that dav
µ(1)(µi(s+ 1), νi(s)) ≥ (1/2k(k+1))sk

for all s. Since we restricted to the walls H1, . . . ,Hl crossed by αn between e and αn(r/2), we know
that |gi| ≤ r/2. On the other hand, since hi and pi are r-avoidant, the lengths of µi and νi are at

least r/4. By the observation and the end of Section 2, `(ηi) ≥ (1/2k(k+1))(r/4)k for all i. So, since
l ≥ 4, we have

`(η) ≥
l∑

i=1

`(ηi) ≥ l
(

1

2k(k+1)

)(r
4

)k
≥
(r

4

)( rk

2k(k+1)+k

)
=

1

2(k+1)(k+2)
rk+1

as required. �

Appendix A. Relationship with examples of Macura

In this appendix we discuss the relationship between our constructions of CAT(0) groups with
divergence polynomial of any degree, and those of Macura [19].

For d ≥ 2, we denote by Gd the group constructed in [19] with presentation

Gd = 〈a0, a1, . . . , ad | a0a1 = a1a0 and a−1
i a0ai = ai−1 for 2 ≤ i ≤ d〉.
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Let Xd be the presentation 2-complex for this presentation of Gd. Then Xd has a single vertex v,
d+ 1 oriented edges labeled by a0, a1, . . . , ad, and d squares with boundary labels a0a1a

−1
0 a−1

1 and

a−1
i a0aia

−1
i−1 for 2 ≤ i ≤ d. Equip Xd with the metric such that each square is a unit Euclidean

square. Then the universal cover X̃d is a CAT(0) square complex, in which the link of every vertex
is the graph Γd from Figure 5.1 above. The link of any vertex in the Davis complex for Wd = WΓd
with the cellulation by big squares is also Γd. This observation is why we consider the relationship
between Gd and Wd. To avoid confusion with Macura’s notation, in this section we relabel the
vertices of Γd by si+ = ai and si− = bi for 0 ≤ i ≤ d.

We would like to use covering theory to investigate common finite index subgroups of Gd and
Wd. Any finite index subgroup of Gd is the fundamental group of a finite square complex Q such
that there is a combinatorial covering map Ψ : Q → Xd. However since the group Wd has torsion
a more sophisticated covering theory is needed; as we explain below, its finite index subgroups
correspond to finite-sheeted covers of complexes of groups. We first recall some background on
complexes of groups in Section A.1. We then use this theory to show in Section A.2 that W2

and G2 are commensurable, and to explain in Section A.3 why for d > 2 the covering-theoretic
arguments used to find a common finite index subgroup in the case d = 2 cannot be applied.

A.1. Complexes of groups. We adapt the theory of complexes of groups and their coverings to
our situation. The general theory and details can be found in [7, Chapter III.C]. Throughout this
section, W = WΓ is a right-angled Coxeter group with Γ satisfying the hypotheses of Theorem 1.1,
and Σ is the associated Davis complex.

Let Y be a square complex. Assume that the edges of Y may be oriented so that:

(∗) for each square of Y , if the positively oriented edge labels of this square are a, b, a′ and b′,
then b′a′a−1b−1 is the boundary label.

For an oriented edge e of Y , we denote by i(e) its initial vertex and by t(e) its terminal vertex.

Examples A.1. Two important examples of square complexes with edge orientations satisfying
(∗) are the following.

(1) Let Y be the chamber K with the cellulation by small squares. For all pairs of spherical
subsets T ′ ( T , we orient the edge of Y connecting the vertices σT ′ and σT so that this
edge has initial vertex σT ′ and terminal vertex σT . Note that every edge incident to σ∅ has
initial vertex σ∅.

(2) Similarly, if Y = Σ with the cellulation by small squares, then the edges of Σ may be
oriented by inclusion of type.

Now suppose that Y and Z are square complexes with edge orientations satisfying (∗).

Definition A.2. A nondegenerate morphism f : Y → Z is a map taking vertices to vertices and
edges to edges, such that:

(1) for each square of Y , the restriction of f to this square is a bijection onto a square of Z;
and

(2) for each vertex σ of Y , the restriction of f to the set of edges with initial vertex σ is a
bijection onto the set of edges of Z with initial vertex f(σ).

For example, if Y = Σ and Z = K with the orientations specified in Examples A.1 above, then the
quotient map f : Y → Z induced by the action of W on Σ is a nondegenerate morphism.

Definition A.3. Let Y be a square complex with edge orientations satisfying (∗). A complex of
groups G(Y ) = (Gσ, ψe) over Y consists of:

(1) a group Gσ for each vertex σ of Y , called the local group at σ; and
(2) a monomorphism ψe : Gi(e) → Gt(e) along each edge e of Y .
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A complex of groups is trivial if each local group is trivial.

Example A.4. We construct a canonical complex of groups W(K) over K as follows. For each
spherical subset T ∈ S, the local group at the vertex σT is the special subgroup WT . All monomor-
phisms along edges are inclusions.

The complex of groups W(K) in Example A.4 is canonically induced by the action of W on Σ.
More generally, if G is a subgroup of W then the action of G on Σ induces a complex of groups
G(Y ) over Y = G\Σ, such that for each vertex σ of Y , the G-stabiliser of each lift σ of σ in Σ is a
conjugate of the local group Gσ of G(Y ). A complex of groups is developable if it is isomorphic to
a complex of groups induced by a group action. Complexes of groups, unlike graphs of groups, are
not in general developable.

See [7] for the definition of the fundamental group π1(G(Y )) and universal cover of a (developable)
complex of groups G(Y ). The universal cover of G(Y ) is a connected, simply-connected square
complex X, equipped with an action of G = π1(G(Y )) so that Y = G\X.

Examples A.5.

(1) The complex of groups W(K) has fundamental group W and universal cover Σ.
(2) Let G(Y ) be the trivial complex of groups over a square complex Y . Then π1(G(Y )) is the

(topological) fundamental group of Y , and π1(G(Y )) acts freely on the universal cover of
G(Y ).

If a complex of groups G(Y ) is developable, then each local group Gσ naturally embeds in the
fundamental group π1(G(Y )).

We now discuss coverings of complexes of groups. We will only need to construct coverings
G(Y )→W(K) where G(Y ) is a trivial complex of groups, and so do not give the general definition,
which is considerably more complicated.

Definition A.6. Let Y be a square complex with edge orientations satisfying (∗). Let G(Y ) be the
trivial complex of groups over Y . A covering of complexes of groups Φ : G(Y ) → W(K) consists
of:

(1) a nondegenerate morphism f : Y → K; and
(2) for each edge e of Y , with f(t(e)) = σT , an element φ(e) ∈WT ;

such that for each vertex σ of Y and each edge e′ of K, with t(e′) = f(σ) = σT and i(e′) = σT ′ ,
the map

Φσ/e′ : {e ∈ f−1(e′) | t(e) = σ} →WT /WT ′

induced by e 7→ φ(e) is a bijection.

Observe that if e′ is an edge of K with t(e′) = σT and i(e′) = σT ′ , then |T | = |T ′| + 1, hence if
T = T ′ ∪ {t} we have WT /WT ′

∼= 〈t〉 ∼= C2. So the condition in Definition A.6 that Φσ/e′ is a

bijection is equivalent to the condition that the set {e ∈ f−1(e′) | t(e) = σ} has two elements say e1

and e2, such that without loss of generality φ(e1) ∈WT ′ and φ(e2) ∈ tWT ′ . In particular, it suffices
to put φ(e1) = 1 and φ(e2) = t. A covering Φ : G(Y )→W(K) as in Definition A.6 is finite-sheeted
if Y is finite.

The following result is a special case of a general theorem on functoriality of coverings of com-
plexes of groups. The general result is implicit in [7], and stated and proved explicitly in [18].

Theorem A.7. Let Kd be the chamber for Wd, cellulated by small squares. Let W(Kd) be the
complex of groups over Kd described in Example A.4 above, with fundamental group Wd. Then any
subgroup of Wd is the fundamental group of a complex of groups G(Y ′) (not necessarily trivial) over
a square complex Y ′, such that there is a covering of complexes of groups Φ : G(Y ′) → W(Kd).
Moreover, a subgroup of Wd has finite index if and only if it is the fundamental group of G(Y ′) such
that there is a finite-sheeted covering Φ : G(Y ′)→W(Kd).
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A.2. Commensurability in the case d = 2. We now use covering theory to prove the following.

Proposition A.8. The groups G2 and W2 are commensurable.

Proof. Denote by Z2 the first square subdivision of the presentation 2-complex X2. We will con-
struct a finite square complex Y such that:

(1) there is a combinatorial covering map Ψ : Y → Z2; and
(2) there is a covering of complexes of groups Φ : G(Y ) → W(K2), where G(Y ) is the trivial

complex of groups over Y .

Since G(Y ) is the trivial complex of groups, the fundamental group of G(Y ) is just the (topological)
fundamental group of Y . It follows that G2 and W2 are commensurable.

The square complex Y will be the first square subdivision of the square complex Q constructed
below. We will show that there is an 8-sheeted combinatorial covering map from Q to X2, which
implies (1). See Figure A.1; the complex Q is obtained by carrying out some further edge identifi-
cations on this square complex.

v1 v2 v1

v4 v3 v4

v5 v6 v5

v8 v7 v8

v5 v6 v5

v1 v2 v1

v4 v3 v4

v1 v2 v1

Figure A.1. The square complex Q, with vertices labelled and edges oriented, prior
to some edge identifications. All squares except for the four squares with vertex set
{v5, v6, v7, v8} are shaded.

The complex Q has 8 vertices v1, . . . , v8, which each get mapped to the vertex v of X2. There
are 24 oriented edges of Q which form three families as follows. Here, ai,j = (vk, vl) means that the
edge ai,j is the unique edge of Q with initial vertex vk and terminal vertex vl.

(1) The following 8 edges get mapped to the edge a0 of X2: a0,1 = (v1, v2), a0,2 = (v2, v1),
a0,3 = (v4, v3), a0,4 = (v3, v4), a0,5 = (v6, v7), a0,6 = (v7, v6), a0,7 = (v5, v8), a0,8 = (v8, v5).

(2) The following 8 edges get mapped to the edge a1 of X2: a1,1 = (v1, v4), a1,2 = (v4, v1),
a1,3 = (v2, v3), a1,4 = (v3, v2), a1,5 = (v5, v6), a1,6 = (v6, v5), a1,7 = (v8, v7), a1,8 = (v7, v8).

(3) The following 8 edges get mapped to the edge a2 of X2: a2,1 = (v1, v5), a2,2 = (v5, v1),
a2,3 = (v4, v8), a2,4 = (v8, v4), a2,5 = (v3, v7), a2,6 = (v7, v3), a2,7 = (v2, v6), a2,8 = (v6, v2).

We then attach 16 squares along the following edge labels, forming two families as follows.
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Table 1. Types of vertices in Y which are midpoints of edges of Q

Midpoint of edges Type Midpoint of edges Type Midpoint of edges Type
a1,1, a1,3, a0,5, a0,7 0+ a0,1, a0,3, a1,5, a1,7 1+ a2,2, a2,4, a2,6, a2,8 2+

a1,2, a1,4, a0,6, a0,8 0− a0,2, a0,4, a1,6, a1,8 1− a2,1, a2,3, a2,5, a2,7 2−

Table 2. Nontrivial values of φ(a), for representatives a of certain parallelism
classes of edges

Vertex i(a) Type of t(a) φ(a) Vertex i(a) Type of t(a) φ(a)
v1 0+ s0+ v1 2− s2−

v4 0− s0− v4 2− s2−

v1 1+ s1+ v5 2+ s2+

v2 1− s1− v6 2+ s2+

(1) The following 8 squares get mapped to the square of X2 attached along a0a1a
−1
0 a−1

1 :

a0,1a1,3a
−1
0,3a

−1
1,1, a0,2a1,1a

−1
0,4a

−1
1,3, a0,3a1,4a

−1
0,1a

−1
1,2, a0,4a1,2a

−1
0,2a

−1
1,4,

a0,7a1,7a
−1
0,5a

−1
1,5, a0,8a1,5a

−1
0,6a

−1
1,7, a0,5a1,8a

−1
0,7a

−1
1,6, a0,6a1,6a

−1
0,8a

−1
1,8.

(2) The following 8 squares get mapped to the square of X2 attached along a−1
2 a0a2a

−1
1 :

a−1
2,1a0,1a2,7a

−1
1,5, a−1

2,7a0,2a2,1a
−1
1,6, a−1

2,3a0,3a2,5a
−1
1,7, a−1

2,5a0,4a2,3a
−1
1,8,

a−1
2,2a0,7a2,4a

−1
1,1, a−1

2,4a0,8a2,2a
−1
1,2, a−1

2,8a0,5a2,6a
−1
1,3, a−1

2,6a0,6a2,8a
−1
1,4.

This completes the construction of Q, together with a combinatorial covering Q→ X2.
Now let Y be the first square subdivision of Q and let G(Y ) be the trivial complex of groups over

Y . We assign types T ∈ S to the vertices of Y , as follows. If a vertex of Y is one of the vertices of
Q, it has type ∅. Next consider the vertices of Y which are midpoints of edges of Q. Table 1 shows
the assigned types of these vertices. To simplify notation, we write i± for the type {si±} ∈ S, for
i = 0, 1, 2. Finally consider the vertices of Y which are at the centres of squares of Q. Let σ be
such a vertex. Then for some pair of types iεi and jεj with i, j ∈ {0, 1, 2}, i 6= j, and εi, εj ∈ {±},
two of the vertices of Y which are adjacent to σ are of type iεi , and two of the vertices of Y which
are adjacent to σ are of type jεj . Moreover, {iεi , jεj} ∈ S. We then assign type {iεi , jεj} to the
vertex σ.

After assigning these types, it may be verified that Y is obtained by taking 8 copies of the
chamber K2 and gluing together certain pairs of mirrors of the same type. We note also that the
above assignment of types allows us to orient the edges of Y in the same way as in K2, that is, an
edge a has initial vertex of type T ′ and terminal vertex of type T if and only if T ′ ( T .

Next, define f : Y → K2 to be the only possible type-preserving morphism. It may be checked
that f is a nondegenerate morphism. We construct a covering of complexes of groups Φ : G(Y )→
W(K2) over f . In order to define the elements φ(a) for the edges a of Y , we put an equivalence
relation, parallelism, on the set of edges of Y , so that if a and b are parallel then we will have
φ(a) = φ(b). The relation is generated by saying that two edges are parallel if they are opposite
edges of a (small) square of Y . The values of φ(a) for representatives a of certain of the parallelism
classes of edges in Y are specified in Table 2. For all edges a of Y which are not parallel to an edge
appearing in Table 2, we put φ(a) = 1.

To verify that Φ is a covering of complexes of groups, we simplify notation and write s for the
vertex σ{s} of the chamber K2. For each vertex siε of K2, where i ∈ {0, 1, 2} and ε ∈ {±}, there

is a unique edge b of K2 such that siε is the terminal vertex of b. Fix a vertex σ ∈ f−1(siε).
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Then there are two edges a1 and a2 of Y with terminal vertex σ such that f(a1) = f(a2) = b. By
construction, without loss of generality we have φ(a1) = siε and φ(a2) = 1. Therefore Φσ/b is a
bijection to 〈siε〉 ∼= C2 as required. Now consider a vertex σT of K2 where T ∈ S with |T | = 2.
Write T = {iεi , jεj}. If b is an edge of K2 with terminal vertex σT , then without loss of generality
b has initial vertex of type iεi . Fix a vertex σ ∈ f−1(σT ). Then there are two edges a1 and a2 of Y
with terminal vertex σ such that f(a1) = f(a2) = b. By construction, without loss of generality we
have φ(a1) = sjεj and φ(a2) = 1. Thus Φσ/b is a bijection to WT /〈siεi 〉 ∼= 〈sjεj 〉 ∼= C2 as required.
Therefore Φ is a covering of complexes of groups. �

A.3. Discussion of case d > 2. We conclude with a discussion of whether Gd and Wd are com-
mensurable when d > 2.

The first result in this section says that in order to use covering-theoretic arguments to find a
common finite index subgroup of Gd and Wd, it suffices to consider coverings Φ : G(Y ′)→W(Kd)
where G(Y ′) is a trivial complex of groups. We denote by Zd the first square subdivision of Xd.

Lemma A.9. Let d ≥ 2. Suppose that Y and Y ′ are finite square complexes, such that for some
complex of groups G(Y ′) over Y ′, all of the following hold:

(1) there is a combinatorial covering map Ψ : Y → Zd;
(2) there is a covering of complexes of groups Φ : G(Y ′)→W(Kd); and
(3) the fundamental group of Y is isomorphic to the fundamental group of G(Y ′).

Then G(Y ′) is the trivial complex of groups.

Proof. Since Gd is torsion-free, these assumptions imply that the fundamental group of G(Y ′) is
torsion-free.

Assume that G(Y ′) is not the trivial complex of groups. Then there is a vertex σ of Y ′ such that
the monomorphism φσ : Gσ →WT has nontrivial image, for some T ∈ S. But WT is a finite group,
and so Gσ is finite. Since G(Y ′) is developable, we thus have a nontrivial finite group Gσ which
embeds in the torsion-free group π1(G(Y ′)). This is a contradiction. �

We now show that the strategy used to prove that G2 and W2 are commensurable cannot be
implemented for d > 2. By Lemma A.9, we need only consider coverings Φ : G(Y )→W(Kd) where
G(Y ) is the trivial complex of groups.

Proposition A.10. If d > 2 there is no square complex Y such that both of the following conditions
hold:

(1) there is a combinatorial covering map Ψ : Y → Zd; and
(2) there is a covering of complexes of groups Φ : G(Y ) → W(Kd), where G(Y ) is the trivial

complex of groups over Y .

Note that this statement does not require Y to be finite. This shows that, in particular, the

universal cover X̃d is not isometric to Σd, even though both are CAT(0) square complexes with
all vertex links the graph Γd. After proving Proposition A.10, we discuss the possibility that Gd
has finite index subgroup π1(Y ) and Wd has finite index subgroup π1(Y ′) with Y 6= Y ′ but π1(Y )
isomorphic to π1(Y ′).

Proof. Assume by contradiction that there is a square complex Y such that both (1) and (2) hold.
We will assign a type to each vertex σ of Y in two different ways, and then establish the

relationship between these types in Corollary A.14 below. First, if Ψ(σ) is respectively a vertex,
midpoint of an edge or centre of a face of Xd, then σ has type respectively V , E or F . The following
lemma is immediate from the construction of Xd.

Lemma A.11. Let σ be a vertex of Y .
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(1) If σ is of type V then σ is contained in 4d small squares.
(2) If σ is of type E then σ is contained in:

(a) 2(d+ 1) small squares if Ψ(σ) is the midpoint of a0;
(b) 6 small squares if Ψ(σ) is the midpoint of ai for 1 ≤ i < d; and
(c) 4 small squares if Ψ(σ) the midpoint of ad.

(3) If σ is of type F then σ is contained in 4 small squares.

Second, let the covering Φ : G(Y ) → W(Kd) be over the nondegenerate morphism f : Y → Kd,
and assign type T ∈ S to each vertex σ ∈ f−1(σT ). Recall that Σ may be viewed as the universal
cover of the complex of groupsW(Kd). Since there is a covering Ψ : G(Y )→W(Kd), it follows that
the complex of groups G(Y ) is induced by the action of its fundamental group π1(G(Y )), which is
a subgroup of Wd, on its universal cover, which is Σ.

Lemma A.12. Let σ be a vertex of Y , of type T ∈ S. Then the number of small squares containing
σ in Y is equal to the number of small squares containing each lift of σ in Σ.

Proof. Since G(Y ) is the trivial complex of groups, the quotient map Σ→ Y induced by the action
of π1(G(Y )) is a combinatorial covering map, and the result follows. �

Now let τ be a vertex of Σ with the cellulation by small squares. Then by construction:

• if τ has type ∅, then the link of τ is Γd, and so τ is contained in 4d small squares;
• if τ has type T = {s}, and the panel containing τ is the star graph of valence n, equivalently

the vertex s of Γd has valence n, then τ is contained in 2n small squares; and
• if τ has type T ∈ S with |T | = 2, then τ is contained in 4 small squares.

Corollary A.13. Let σ be a vertex of Y .

(1) If σ is of type ∅ then σ is contained in 4d small squares.
(2) If σ is of type T ∈ S with |T | = 1 then σ is contained in:

(a) 2(d+ 1) small squares if f(σ) ∈ {s0+ , s0−};
(b) 6 small squares if f(σ) ∈ {si+ , si−} for 1 ≤ i < d; and
(c) 4 small squares if f(σ) ∈ {sd+ , sd−}.

(3) If σ is of type T ∈ S with |T | = 2 then σ is contained in 4 small squares.

The relationship between the two type-systems is thus as follows.

Corollary A.14. Let σ be a vertex of Y . Then:

(1) σ has type V if and only if it has type ∅;
(2) σ has type E if and only if it has type T ∈ S with |T | = 1; and
(3) σ has type F if and only if it has type T ∈ S with |T | = 2.

Proof. Part (1) is immediate from Lemma A.11 and Corollary A.13. Parts (2) and (3) follow from
these results, together with the observations that vertices of types V and F are never adjacent
while every vertex of type E is adjacent to at least one vertex of type V , and similarly for the types
T ∈ S. �

To complete the proof of Proposition A.10, fix a vertex σ in Y of type V , equivalently of type ∅,
and consider the set of vertices of Y which are adjacent to σ. These vertices are all of type E, and
so by part (2) of Lemma A.11 they are all of type T ∈ S with |T | = 1. Since f is a nondegenerate
morphism and Gσ is trivial, the restriction of f to the set of edges of Y which are incident to σ is
a bijection to the set of edges of Kd which are incident to σ∅, and this bijection of edges induces a
bijection from the set of vertices adjacent to σ to the set of vertices adjacent to σ∅. In particular,
for each vertex adjacent to σ, there is a unique edge of Y containing both σ and this vertex. By
definition of types T ∈ S, it also follows that no two vertices adjacent to σ have the same type
T ∈ S.
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Therefore, by part (2)(c) of Corollary A.13, there are exactly 2 vertices adjacent to σ which are
contained in exactly 4 small squares of Y , and we may denote these vertices by σd+ and σd− where
without loss of generality f(σd+) = sd+ and f(σd−) = sd− . Similarly, since d > 2, there are exactly
2 vertices adjacent to σ which are contained in exactly 2(d + 1) small squares of Y , and we may
denote them by σ0+ and σ0− , such that f(σ0+) = s0+ and f(σ0−) = s0− .

By part (2) of Corollary A.14 and part (2)(c) of Lemma A.11, Ψ(σd+) is the midpoint of the
edge ad of Xd. Now there is a unique edge of Y containing both σ and σd+ , and so as Ψ is a
combinatorial covering map, there is a unique vertex σ′ in Y which is of type V , is adjacent to σd+

and is not equal to σ. There are thus 2 small squares in Y which contain both σd+ and σ′.
Let σE be the unique vertex in Y of type E such that σE and σd+ are both adjacent to σ′, and

σE , σ0+ and σd+ are all adjacent to the same vertex, say σF , of type F . Now, by Lemma A.11, we
have that Ψ(σ0+) is the midpoint of a0 and Ψ(σd+) is the midpoint of ad. Thus Ψ(σF ) is the centre
of the only big square in Xd with both a0 and ad as edges, namely the square with boundary label
a−1
d a0ada

−1
d−1. Therefore Ψ(σE) is the midpoint of ad−1. Thus the vertex σE is contained in 6 small

squares, and so by part (2)(b) of Corollary A.13, since d > 2 we have f(σE) ∈ {si+ , si−} for some
1 ≤ i < d. That is, σE is of type i+ or i− for some 1 ≤ i < d.

By part (3) of Corollary A.14, the vertex σF has type some T ∈ S with |T | = 2. Since σF is
adjacent to vertices of types 0+ and d+, the vertex σF is of type {0+, d+}. But σF is also adjacent
to vertices of types d+ and i± with 1 ≤ i < d, so σF is of type {i±, d+}. This is impossible.
Therefore there is no square complex Y such that both (1) and (2) of Proposition A.10 hold. �

For d > 2 we do not know if Gd and Wd are commensurable, or even quasi-isometric. If they
are commensurable, then there are finite square complexes Y and Y ′ with isomorphic fundamental
groups, such that there is a combinatorial covering map Y → Zd and a covering of complexes
of groups G(Y ′) → W(Kd), with G(Y ′) the trivial complex of groups over Y ′ by Lemma A.9.
By Proposition A.10, we know that Y 6= Y ′ and that the universal covers of Y and Y ′ are not
isometric. Hence if there is some Mostow-type rigidity result which implies that the isomorphism
π1(Y ) ∼= π1(Y ′) is induced by an isometry of universal covers, we would obtain that Wd and Gd
are not in fact commensurable. However, the only Mostow-type rigidity results for CAT(0) square
complexes that we know of are Theorem 1.4.1 of [8], for certain uniform lattices on products of
trees, and Corollary 1.8 of [6], concerning right-angled Artin groups, and neither of these results
can be applied here.
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