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Abstract

We analyze a class of L∞ vector fields, called divergence-measure fields. We
establish the Gauss-Green formula, the normal traces over subsets of Lipschitz
boundaries, and the product rule for this class of L∞ fields. Then we apply this
theory to analyze L∞ entropy solutions of initial-boundary-value problems for hy-
perbolic conservation laws and to study the ways in which the solutions assume
their initial and boundary data. The examples of conservation laws include multidi-
mensional scalar equations, the system of nonlinear elasticity, and a class ofm×m
systems with affine characteristic hypersurfaces. The analysis in L∞ also extends
to Lp.

1. Introduction

In this paper we analyze a class ofL∞ vector fields, called divergence-measure
fields, defined in some domain of RN . This class of L∞ vector fields especially
includes the class of BV vector fields and shares some important features with it,
although there are essential differences between them. Our main motivation for
studying the divergence-measure fields is from hyperbolic conservation laws to
analyze the behavior of weak entropy solutions in L∞, determined by the Lax en-
tropy inequality for convex entropy-entropy flux pairs in the sense of distributions.
For this purpose, we establish the Gauss-Green formula, the normal traces, and
the product rule for the divergence-measure fields. Then we apply this theory to
establish a general framework for L∞ entropy solutions of initial-boundary-value
problems for hyperbolic systems of conservation laws in several space variables,
and to study the ways in which the solutions assume their initial and boundary data.
We also discuss some examples of conservation laws and show that L∞ weak en-
tropy solutions satisfying (4.7)–(4.9) behave as one expects, when approaching the
boundary. The existence of normal traces of the divergence-measure fields and the
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way by which we obtain the normal traces are the decisive tools for our applications
given here. This theory has been also applied to studying the asymptotic behavior
and uniqueness of L∞ entropy solutions of conservation laws in [4]. Some results
in this paper were announced in [3].

Definition 1.1. Let D ⊂ RN be an open set. For F ∈ L∞(D; RN), set

|divF |(D) = sup
{ ∫

D
F · ∇φ dx | φ ∈ C1

0(D; R),

|φ(x)| 5 1, x ∈ D }
.(1.1)

Definition 1.2. We say that F is a divergence-measure field over D if

F ∈ L∞(D; RN), |divF |(D) < ∞.(1.2)

We define DM(D) as the space of divergence-measure fields over D. In par-
ticular, if F ∈ DM(D), then divF is a Radon measure over D.

Remark 1.1. This class of vector fields was first considered by Anzellotti [1].
We emphasize that the notion of normal traces is introduced here with a different
point of view from that in [1], in which a normal trace was defined as a repre-
sentation function of a linear functional, in a more abstract fashion. However, the
Gauss-Green Theorem (Theorem 2.2 below) is the same, which means that both
notions are consistent. Our new notion has the advantage of providing essential
information about the normal trace on a certain hypersurface from the knowledge
of the normal traces on its neighboring hypersurfaces. This advantage is made pos-
sible by introducing deformations, which are important not only for our definition
of the normal traces, but also for all the applications of this theory here and in [4].
Compare the discussions here with those in Anzellotti [1].

Remark 1.2. TheL∞ assumption onF in Definitions 1.1, 1.2 can be relaxed. Many
results in this paper also hold for F ∈ Lp.

Theorem 1.1. Let D ⊂ RN be an open set. Let {Fj } be a sequence of fields in
DM(D) converging in L1

loc(D; RN) to a field F . Then

|divF |(D) 5 lim inf
j→∞ |divFj |(D).

Proof. Let φ ∈ C1
0(D), |φ(x)| 5 1. Then∫

D

F · ∇φ dx = lim
j→∞

∫
D

Fj · ∇φ dx 5 lim inf
j→∞ |divFj |(D). ut

Corollary 1.1. Under the norm

‖F‖DM = ‖F‖L∞ + |divF |(D),
DM(D) is a Banach space.
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Proof. Let {Fj } be a Cauchy sequence in DM(D). Since L∞ is complete, there
exists a field F ∈ L∞(D; RN) such that Fj → F inL∞. By Theorem 1.1, we have

|divF |(D) 5 lim inf
j→∞ |divFj |(D),

which implies that F ∈ DM(D). Furthermore, for any ε > 0, we use Theorem
1.1 again and the fact that |div (Fj − Fk)|(D) → 0 when j , k → ∞ to find

|div (Fj − F)|(D) 5 lim inf
k→∞ |div (Fj − Fk)|(D) < ε,

for sufficiently large j . Therefore, Fj → F in DM(D). ut
Another consequence of Theorem 1.1 is given in the following proposition,

which is in the line of analogous results known in the theory of BV functions
(compare with Proposition 1.13 of [15]).

Proposition 1.1. Suppose {Fj } is a sequence in DM(D) such that Fj → F in
L1

loc(D) and

lim
j→∞

∫
D

|divFj | =
∫
D

|divF |.

Then, for every open set A ⊂ D,∫
Ā∩D

|divF | = lim sup
j→∞

∫
Ā∩D

|divFj |.(1.3)

In particular, if
∫
∂A∩D |divF | = 0, then∫

A

|divF | = lim
j→∞

∫
A

|divFj |.(1.4)

Proof. Let B = D − Ā. Then, by Theorem 1.1,∫
A

|divF | 5 lim inf
j→∞

∫
A

|divFj |,
∫
B

|divF | 5 lim inf
j→∞

∫
B

|divFj |.

On the other hand, we have∫
Ā∩D

|divF | +
∫
B

|divF | =
∫
D

|divF | = lim
j→∞

∫
D

|divFj |

= lim sup
j→∞

∫
Ā∩D

|divFj | + lim inf
j→∞

∫
B

|divFj |

= lim sup
j→∞

∫
Ā∩D

|divFj | +
∫
B

|divF |,

and then (1.3) follows. ut
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We use the so-called positive symmetric mollifiers ω : RN → R satisfying
ω(x) ∈ C∞

0 (R
N), ω(x) = 0, ω(x) = ω(|x|), ∫

RN ω(x) dx = 1, supp ω(x) ⊂
B1 ≡ {x ∈ RN | |x| < 1}. A standard example of such mollifiers is

ω(x) =



0, |x| = 1,

C exp
( 1

|x|2 − 1

)
, |x| < 1,

where C is the constant such that
∫

RN ω(x) dx = 1. We set ωε(x) = ε−Nω(x/ε)
and Fε = ωε ∗ F , that is,

Fε(x) = ε−N
∫

RN
ω

(x − y

ε

)
F(y) dy =

∫
RN
ω(y)F (x + εy) dy.

We use some well-known properties of the mollifiers. In particular, we recall that,
for any f (x), g(x) ∈ L1(RN),∫

RN
fεg dx =

∫
RN
fgε dx.(1.5)

We now establish a fact for DM fields, which is analogous to a well-known
property of BV functions.

Theorem 1.2 (Approximation by C∞ functions). Let F ∈ DM(D). Then there
exists a sequence {Fj } in C∞(D; RN) such that

lim
j→∞

∫
D

|Fj − F | dx = 0, lim
j→∞

∫
D

|divFj | dx = |divF |(D).

Proof. The proof is similar to that for BV functions (cf., e.g., [15]). Let ε > 0.
There exists an M > 0 such that

|divF |(D −Dk) < ε,

where k = 0, 1, 2, . . . , and

Dk =
{
x ∈ D | dist(x, ∂D) >

1

M + k

} ⋂
{ x ∈ RN | |x| < M + k }.

Consider the sets �1 = D2 and �i = Di+1 − D̄i−1, i = 2, 3, . . . . Let {ϕi} be a
partition of unity subordinate to the covering {�i}, that is,

ϕi ∈ C∞
0 (�i), 0 5 ϕi 5 1,

∞∑
i=1

ϕi = 1.

Letω be a positive symmetric mollifier. For every index i, we can choose εi ∈ (0, ε)
such that

supp ωεi ∗ (Fϕi) ⊂ Di+2 − D̄i−2 (D−1 = ∅),(1.6)
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∫
D

|ωεi ∗ (Fϕi)− Fϕi | dx < ε

2i
,(1.7)

∫
D

|ωεi ∗ (F · ∇ϕi)− F · ∇ϕi | dx < ε

2i
.(1.8)

Finally, let

Fε =
∞∑
i=1

ωεi ∗ (Fϕi).

It follows from (1.6) that the sum defining Fε is locally finite. Hence Fε ∈
C∞(D; RN), and {Fε} is uniformly bounded. Moreover, since F = ∑∞

i=1 Fϕi ,
we have ∫

D

|Fε − F | dx 5
∞∑
i=1

∫
D

|ωεi ∗ (Fϕi)− Fϕi | dx < ε,

that is, Fε − F → 0 in L1(D; RN) when ε → 0. Theorem 1.1 indicates that

|divF |(D) 5 lim inf
ε→0

|divFε|(D).(1.9)

Now let φ ∈ C1
0(D), |φ| 5 1. We have

∫
D

Fε · ∇φ dx =
∞∑
i=1

∫
D

ωεi ∗ (ϕiF ) · ∇φ dx =
∞∑
i=1

∫
D

ϕiF · ∇(ωεi ∗ φ) dx.

Thus∫
D

Fε · ∇φ dx =
∫
D

F · ∇(ϕ1ωε1 ∗ φ) dx +
∞∑
i=2

∫
D

F · ∇(ϕiωεi ∗ φ) dx

−
∞∑
i=1

∫
D

(ωεi ∗ (
F · ∇ϕi)− F · ∇ϕi

)
φ dx,

from the identity
∑∞
i=1 ∇ϕi = 0. Since |ϕiωεi ∗ φ| 5 1, we obtain∫
D

F · ∇(ϕ1ωε1 ∗ φ) dx 5 |divF |(D).

That the intersection of more than any three of the sets Dk is empty yields

∞∑
i=2

∫
D

F · ∇(ϕiωεi ∗ φ) dx 5 3|divF |(D −D0) < 3ε.

Therefore, we obtain
∫
D
Fε · ∇φ dx 5 |divF |(D)+ 4ε, and hence

|divFε|(D) 5 |divF |(D)+ 4ε.(1.10)

Thus (1.9) and (1.10) give the desired result. ut
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2. The Gauss-Green Formula and Normal Traces

The main difference between DM fields and BV fields is that the former may
have much worse behavior. One obvious example of such a DM field in R2 is
(v(x − y), v(x − y)), where v is any function in L∞(R).

Our motivation for studying this class of fields comes from the entropy inequal-
ity in the distributional sense, characterizing admissible solutions for hyperbolic
systems of conservation laws. In this case, applying Schwartz’s lemma on nonneg-
ative distributions [26], one concludes that, if u(t, x) ∈ L∞((0, T ) × Rn; Rm) is
an entropy solution of a hyperbolic system of conservation laws in (0, T ) × Rn,
then, for any entropy-entropy flux pair (η, q), q = (q1, · · · , qn), of the system,
the field (η(u(t, x)), q(u(t, x))) is in DM((0, T )×V ), for any bounded open set
V ⊂ Rn. As we will see, for such a field, one can define its normal traces through
Lipschitz hypersurfaces and extend the Gauss-Green Theorem.

Given F ∈ DM(D), we fix a precise representative F ∗ for F chosen as
follows. By the definition of the sequence Fj in the proof of Theorem 1.2, it is clear
that the C∞ field sequence Fj converges a.e. in D. Actually, given an element in
the class F (characterized by equality almost everywhere), it converges pointwise
to this member of the class F at all its Lebesgue points. Denote by F a specific
member in this class.

Let N be a Borel set of measure zero containing the set of all points that are
not Lebesgue points of this specific member F . We define

F ∗(x) =
{
F(x), x ∈ D − N ,

0, x ∈ N .

In particular, F ∗ is Borel measurable, since it is a pointwise limit of C∞ functions
in D − N . We drop * and simply denote F ∗ = F .

Definition 2.1. Let � be an open subset in RN . We say that ∂� is a deformable
Lipschitz boundary provided that the following conditions hold.

(i) For each x ∈ ∂�, there exist r > 0 and a Lipschitz mapping γ : RN−1 → R
such that, upon rotating and relabeling the coordinate axes if necessary,

� ∩Q(x, r) = { y ∈ RN | γ (y1, . . . , yN−1) < yN } ∩Q(x, r),
where Q(x, r) = { y ∈ RN | |yi − xi | 5 r, i = 1, . . . , N }. We denote by γ̃ the
map ỹ 7→ (ỹ, γ (ỹ)), ỹ = (y1, . . . , yN−1).

(ii) There exists a map Ψ : ∂� × [0, 1] → �̄ such that Ψ is a homeomorphism
bi-Lipschitz over its image and Ψ (·, 0) ≡ I , where I is the identity map over ∂�.

Denote ∂�τ ≡ Ψ (∂�× {τ }), τ ∈ [0, 1], and denote �τ the open subset of �
whose boundary is ∂�τ . We call Ψ a Lipschitz deformation of ∂�.

Definition 2.2. We say that the Lipschitz deformation is regular if

lim
τ→0+ ∇Ψτ ◦ γ̃ = ∇γ̃ in L1

loc(B),(2.1)
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where γ̃ is a map as in condition (i) of Definition 2.1, and Ψτ denotes the map of
∂� into �, given by Ψτ (x) = Ψ (x, τ). Here B denotes the greatest open set such
that γ̃ (B) ⊂ ∂�.

Remark 2.1. It should be recognized that bounded domains with smooth boundaries
(say,C2) always have regular deformable Lipschitz boundaries. Indeed, since there
is an everywhere defined (say, outward) unit normal field ν(r), one can define the
deformation Ψ (y, τ) = y − ετν(y), which satisfies all the required conditions for
sufficiently small ε > 0.

Remark 2.2. Conditions (i), (ii) of Definition 2.1 are also satisfied for star-shaped
domains and for the domains whose boundaries satisfy the cone property. For the
former, there exists a point y0 ∈ � such that, for any y ∈ ∂�, one has y+θ(y0−y) ∈
� for θ ∈ (0, 1) and can then define Ψ (y, τ) = y + 1

2τ(y0 − y). For the latter,
there exists a vector v0 ∈ RN such that, for any y ∈ ∂� and any 0 < s 5 1, one
has y+ sv0 ∈ � and then takes Ψ (y, τ) = y+ τv0. In both cases, the deformation
is regular.

Remark 2.3. It is also clear that if � is the image under a bi-Lipschitz map of a
domain �̄ with a (regular) Lipschitz deformable boundary, then � itself possesses
a (regular) Lipschitz deformable boundary.

Lemma 2.1. Let F ∈ DM(D). Assume that {Fj } is the sequence in C∞(D; RN)

given by Theorem 1.2. Let � ⊂ D be an open set with a deformable Lipschitz
boundary and a Lipschitz deformationΨ of ∂�. Then there exists a set T ⊂ [0, 1]
with meas ([0, 1] − T ) = 0 such that, for all τ ∈ T , Fj converges to F HN−1-
almost everywhere in ∂�τ .

Proof. Let N be the null set in the definition of the precise representative of F
and V = Ψ (∂�× [0, 1]). Let h : V → [0, 1] be the Lipschitz function given by
h(y) = τ if y ∈ ∂�τ . We extend h to all RN by setting h(y) = 0, for y |∈ �, and
h(y) = 1, for y ∈ �− V . Let Jh(y) denote the Jacobian of h at y. By the Coarea
Formula for Lipschitz functions (see [13, 14]), we have

0 =
∫

RN
χN ∩V (y)Jh(y) dy =

∫ 1

0
dτ

∫
h−1(τ )

χN (ω) dHN−1(ω).

Thus, for almost all τ ∈ (0, 1), we must have

HN−1(N ∩ ∂�τ ) =
∫
h−1(τ )

χN (ω) dHN−1(ω) = 0. ut

Lemma 2.2. Let F ∈ DM(D). Let � ⊂ D be an open set with a deformable
Lipschitz boundary and a Lipschitz deformation Ψ of ∂�. Then, there exists a
countable set J ⊂ (0, 1) such that |divF |(∂�τ ) = 0, for every τ ∈ (0, 1)− J .

Proof. Since ∂�τ1 ∩ ∂�τ2 = ∅, if τ1 |= τ2, τ1, τ2 ∈ (0, 1), then, for each n ∈ N,
the cardinality of the set

{ τ ∈ (0, 1) | |divF |(∂�τ ∩ B(0; n)) > 1/n }
must be finite, because |divF | is a Radon measure. ut
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Theorem 2.1. Let F ∈ DM(D). Let � ⊂ D be an open set with deformable
Lipschitz boundary. Let Ψ be a Lipschitz deformation of ∂�. Let T ,J ⊂ (0, 1)
be as in Lemmas 2.1, 2.2, and T ∗ = T − J . Then, for every τ ∈ T ∗ and all
φ ∈ C1

0(R
N),

〈divF |�τ , φ〉 =
∫
∂�τ

φ(ω)F (ω) · ντ (ω) dHN−1(ω)−
∫
�τ

F (y) · ∇φ(y) dy,
(2.2)

where ντ is a unit outward normal field defined HN−1-almost everywhere in ∂�τ .

Proof. It suffices to consider the case where � is bounded. Take the sequence
Fj ∈ C∞(D; RN) given by Theorem 1.2. Let τ ∈ T ∗ and take n ∈ N such that
τ > 1/n. The classical Gauss-Green formula gives

∫
�τ

φ divFj dy =
∫
∂�τ

φ(ω)Fj (ω) · ντ (ω) dHN−1(ω)−
∫
�τ

Fj (y) · ∇φ(y) dy,
(2.3)

for any φ ∈ C1
0(R

N). Since τ ∈ T , the right-hand side of (2.3) converges to
the right-hand side of (2.2) when j → ∞, where Lemma 2.1 is used for the
convergence of the first term. Now, for j large enough, we have

Fj (x) = ωj ∗ (Fϕj )(x), for x ∈ �1/n,(2.4)

where ωj (x) = ε−Nj ω(x/εj ), ω is a symmetric mollifier, εj → 0 as j → ∞, and

ϕj ∈ C∞
0 (D) satisfy ϕj (x) = 1, for x ∈ �1/n. We denote by µj the divergence of

the right-hand side of (2.4). Then µj = divFj over C0(�1/n), and

µj ⇀ divF as j → ∞, in M(�1/n).(2.5)

Now, viewed as (signed) Radon measures over RN , µj is clearly a sequence uni-
formly bounded in M(RN). Consider a Jordan decomposition of µj as µj =
µ
j
+ − µ

j
−, with nonnegative Radon measures µj+ and µj−. That is,

µ
j
±

(
suppµj− ∩ suppµj+

)
= 0, |µj | = µ

j
+ + µ

j
−.

Since µj+ and µj− are uniformly bounded in M(RN), passing to a subsequence if
necessary, we may assume that there exist µ+, µ− ∈ M(RN) such that

µ
j
+ ⇀ µ+, µ

j
− ⇀ µ− in M(RN).

In particular, we must have µ+ −µ− = divF in M(�1/n), because of (2.5). Let
µ = µ+ + µ−. We claim that µ(∂�τ ) = 0. Indeed, let Aiδ = �τ−iδ − �τ+iδ ,
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i = 1, 2, with 1/n < τ − 2δ < τ + 2δ < 1. Hence,

µ±(Aδ) 5 lim sup
j→∞

µ
j
±(Aδ)

5 lim sup
j→∞

|divFj |(Aδ)

5 |divF |(Āδ) (by Proposition 1.1)

5 |divF |(A2δ) → 0, as δ → 0.

Therefore, for τ ∈ T ∗, we have (see, e.g., [13])

µ
j
+(�τ ) → µ+(�τ ), µ

j
−(�τ ) → µ−(�τ ), as j → ∞.

Consequently, for τ ∈ T ∗,

divFj (�τ ) = µ
j
+(�τ )− µ

j
−(�τ ) −→ µ+(�τ )− µ−(�τ ) = divF(�τ ),

as j → ∞. More generally, the same arguments lead to

(φ divFj )(�τ ) → (φ divF)(�τ ), as j → ∞,(2.6)

for τ ∈ T ∗ and any φ ∈ C1
0(R

N). This means that the left-hand side of (2.3)
converges as j → ∞ to the left-hand side of (2.2), for τ ∈ T ∗. ut

Now we use (2.2) to define the normal trace of F through ∂� so that (2.2) holds
for τ = 0, that is, the Gauss-Green formula holds for any open set � ⊂ D with
Lipschitz deformable boundary. Specifically, given an outward unit normal field
ν defined HN−1-almost everywhere in ∂�, we define F · ν as a Radon measure
over ∂� (actually an element of L∞(∂�)) in the following way. Using a Lipschitz
deformation Ψ for ∂�, we may regard any function φ ∈ C0(∂�) as an element
of C0(∂�τ ) through the mapping φ 7→ φ ◦ Ψ−1

τ . And, conversely, we may regard
any element of C0(∂�τ ) as an element of C0(∂�) through the inverse mapping
φ 7→ φ ◦Ψτ . Now, since F · ντ is defined HN−1-almost everywhere on ∂�τ , for
τ ∈ T ∗ with T ∗ given by Theorem 2.1, we may regard F · ντ as either a Radon
measure over ∂�τ or a Radon measure over ∂�. We then define

F · ν|∂� = w- lim
τ→0 τ∈T ∗ F · ντ , in M(∂�).(2.7)

We justify (2.7) in

Theorem 2.2 (Gauss-Green Formula for DM Fields). Let F ∈ DM(D) and let
� ⊂ D be an open set with deformable Lipschitz boundary. The limit in (2.7) exists
when F · ντ are regarded as Radon measures on ∂� through the formula

〈F · ντ , φ〉 ≡
∫
∂�τ

φ(Ψ−1
τ (ω))F (ω) · ντ (ω) dHN−1(ω),(2.8)
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where Ψτ : ∂� → ∂�τ is given by Ψτ (ω) = Ψ (ω, τ). This definition for F · ν
over ∂� yields the Gauss-Green formula

〈divF |�, φ〉 =
∫
∂�

φ(ω)F (ω) · ν(ω) dHN−1(ω)−
∫
�

F(y) · ∇φ(y) dy(2.9)

for any φ ∈ C1
0(R

N), where, in the first integral, we use the formal notation
F(ω) · ν(ω) dHN−1(ω) ≡ F · ν for the normal trace measure justified in (i)
below.

The normal trace measure F · ν has the following properties:

(i) F · ν does not depend on the particular Lipschitz deformation for ∂� and is
absolutely continuous with respect to HN−1

∣∣
∂�;

(ii) If ∂� ⊂ D and |divF |(∂�) = 0, the density of F ·ν coincides with the function
F · ν, HN−1- a.e. in ∂�, whenever HN−1(∂�∩N ) = 0, where N is the null
set in the definition of the precise representative of F ;

(iii) Let F · ν also denote the corresponding density. Then F · ν ∈ L∞(∂�), and
for some C > 0,

‖F · ν‖L∞(∂�) 5 C‖F‖L∞(�).(2.10)

If there exists a regular deformation Ψ of ∂�, C can be taken = 1, and

F · ν = w∗ − ess lim
τ→0+(F · ντ ) ◦ Ψτ , in L∞(∂�).(2.11)

Proof. Let φ be any function in C1
0(R

N). Take τ → 0 in (2.2), with τ ∈ T
given in the proof of Theorem 2.1. Using the Dominated Convergence Theorem
in the left-hand side for the measure divF and the sequence of functions χ�τ φ,
converging pointwise to χ�φ, and in the right-hand side for the Lebesgue measure
and the sequence χ�τ∇φ · F , we see that the first term on the right-hand side of
(2.2) must converge as τ → 0. Since φ|∂�τ in (2.2) can be replaced by φ|∂� ◦Ψ−1

τ

with an error that goes to 0 when τ → 0, we see that the limit in (2.7) exists if φ is
the restriction of a function in C1

0(R
N). Since the set of such functions is dense in

C0(∂�) and the measures in ∂�, given by F ·ντ as in (2.8), are uniformly bounded,
this limit exists for all φ ∈ C0(∂�). Now, we can take τ → 0 in (2.2) to obtain the
Gauss-Green formula (2.9).

For assertion (i), the fact thatF ·ν does not depend on the particular deformation
for ∂� is a direct consequence of (2.9), since the latter does not involve the defor-
mation. For the remaining part of (i), we must prove that |F · ν|(A) = 0 provided
that A ⊂ ∂� is a Borel set such that HN−1(A) = 0. Since |F · ν| is a Radon
measure over ∂�, it suffices to prove this fact in the case whereA is compact. Given
ε > 0, we can cover A with a finite number J of balls Bi = B(xi; ri) with radius
ri < ε such that HN−1

(∪Ji=1Bi
⋂
∂�

)
< ε. Now, for any φ ∈ C0

(∪Ji=1Bi ∩∂�
)
,

∫
∂�τ

φ(Ψ−1
τ (ω))F (ω) · ντ (ω) dHN−1(ω) 5 ε‖φ‖ ‖F‖ Lip(Ψ )N−1.
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Thus 〈F · ν, φ〉 5 Cε‖φ‖ ‖F‖, with C = Lip(Ψ )N−1, and then

|F · ν|(A) 5 |F · ν|(∪Ji=1Bi ∩ ∂�) 5 Cε‖F‖.
Taking ε to 0 gives the expected result.

To prove (ii), let ∂� ⊂ D, |divF |(∂�) = 0, and HN−1(N ∩ ∂�) = 0.
Using the same arguments as in the proof of Theorem 2.1, we can prove that the
Gauss-Green formula holds in the usual sense, i.e., with F · ν given by the same
scalar product of the restriction of F over ∂� and the outward unit field ν normal
to ∂�, both defined HN−1-a.e. on ∂�. Indeed, taking the sequence of C∞ vector
fields Fj approaching F in D, given by Theorem 1.2, for j large enough, we have

Fj (x) = ωj ∗ (Fϕj )(x) for x ∈ �,(2.12)

where ωj (x) = ε−Nj ω(x/εj ), ω is a symmetric mollifier, εj → 0 as j → ∞, and
ϕj ∈ C∞

0 (D) satisfy ϕj (x) = 1 for x ∈ �. Defining µj and µ as in the proof of
Theorem 2.1 and following the same lines, but this time taking Aδ = {x ∈ D :
dist (x, ∂�) < δ}, for δ sufficiently small, we arrive at

(φ divFj )(�) → (φ divF)(�) as j → ∞,

and so we can get (2.9) from the classical Gauss-Green formula for Fj , with F · ν
satisfying the assertion.

Let us consider assertion (iii). For any ω0 ∈ ∂� and r > 0, sufficiently small,
out of a countable set, we have∣∣∣ 1

HN−1 (B(ω0; r) ∩ ∂�)
∫

B(ω0;r)∩∂�
F · ν dHN−1(ω)

∣∣∣
= lim
τ→0

∣∣∣ 1

HN−1 (B(ω0; r) ∩ ∂�)
∫

Ψτ (B(ω0;r)∩∂�)
F · ντ dHN−1(ω)

∣∣∣
5 ‖F‖∞Lip(Ψ )N−1.

(2.13)

Then, from the Radon-Nikodym Theorem on the differentiation of measures [13],
we get the first part of assertion (iii). Identity (2.11) follows from the area formula
(see [14]). Indeed, if φ ∈ L1(∂�) and B = suppφ ⊂ graph γ , with γ as in
condition (i) of Definition 2.1, then∫

∂�

F (ω) · ν(ω)φ(ω) dHN−1(ω) = lim
τ→0+

∫
∂�τ

F · ντ φ ◦ Ψ−1
τ dHN−1(ω)

= lim
τ→0+

∫
γ̃−1(B)

(F · ντ ) ◦ (Ψτ ◦ γ̃ ) φ ◦ γ̃ JΨτ ◦ γ̃ dL N−1(ω)

= lim
τ→0+

∫
B

(F · ντ ) ◦ Ψτ φ dHN−1(ω),

which is the desired conclusion, where we have used the area formula [14] and
(2.1). Here, Jf denotes the Jacobian of the Lipschitz map f (see [13, 14]). The
fact that we can take C = 1 in inequality (2.10), in this case, follows immediately
from (2.11). This concludes the proof. ut
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Remark 2.4. It is important to observe that, in general, one cannot define the trace
for each of the components of a DM field over any Lipschitz boundary, as op-
posed to the case of BV fields. This fact can be easily seen through the example
provided by the DM field F(x, y) = (sin 1

x−y , sin 1
x−y ); it is impossible to define

any reasonable notion of trace over the line x = y for the component sin 1
x−y . Nev-

ertheless, the unit normal ντ to the line x − y = τ is the vector (−1/
√

2, 1/
√

2)
so that the scalar product F(x, x − τ) · ντ is identically zero over this line. Hence,
we find that F · ν ≡ 0 over the line x = y and the Gauss-Green formula implies in
this case that, for any φ ∈ C1

0(R
2),

0 = 〈divF |x>y, φ〉 = −
∫
x>y

F · ∇φ dxdy.

This identity could also be directly obtained by applying the Dominated Conver-
gence Theorem to the analogous identity obtained from the classical Gauss-Green
formula for the domain { (x, y) | x > y + τ } when τ → 0.

As a corollary of the extended Gauss-Green formula, we have

Proposition 2.1. Let� ⊂ RN be a bounded open set with Lipschitz boundary and
F1 ∈ DM(�), F2 ∈ DM(RN − �̄). Then

F(y) =
{
F1(y), y ∈ �,
F2(y), y ∈ RN − �̄

(2.14)

belongs to DM(RN), and

‖F‖DM(RN) 5 ‖F1‖DM(�) + ‖F2‖DM(RN−�̄)

+‖F1 · ν − F2 · ν‖L∞(∂�)HN−1(∂�).

Proof. Obviously, F ∈ L∞(RN ; RN) and

‖F‖L∞(RN) 5 ‖F1‖L∞(�) + ‖F2‖L∞(RN−�̄).

Now, choosing φ ∈ C1
0(R

N) such that |φ| 5 1 and using the Gauss-Green formula,
we have∫

RN

F · ∇φ dy =
∫
�

F1 · ∇φ dy +
∫

RN−�̄
F2 · ∇φ dy

= −〈divF1|�, φ〉 − 〈divF2|RN−�̄, φ〉 +
∫
∂�

{F1 · ν − F2 · ν}φ dHN−1(ω)

5 |divF1|(�)+ |divF2|(RN − �̄)+ ‖F1 · ν − F2 · ν‖L∞(∂�)HN−1(∂�).

Hence, by the definition of the DM norm in Corollary 1.1 and that of |divF |(RN)

in Definition 1.1, we conclude the desired result. ut
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3. Product Rule

Theorem 3.1. Letg ∈ BV (D)∩L∞(D)andF ∈ DM(D). ThengF ∈ DM(D).
Moreover, if g is also Lipschitz continuous over any compact set in D, then

div (gF ) = gdivF + F · ∇g.(3.1)

Proof. Let Fj be as in Theorem 2.1. Let gj be the analogous sequence for g. We
have∫
D

|div (gjFj )|dx = sup
{ ∫

D
gjFj · ∇φdx | φ ∈ C1

0(D), |φ| 5 1
}

5 3‖g‖∞ sup
{ ∫

D
Fj · ∇φdx | φ ∈ C1

0(D), |φ| 5 1
}

+ 3‖F‖∞ sup
{ ∫

D
∇gj · φdx | φ ∈ C1

0(D; RN), |φ| 5 1
}

5 3{‖g‖∞|divFj |(D)+ ‖F‖∞‖∇gj‖µ}.
Here in the first inequality we just divided gj by its L∞ norm, which is less than
3‖g‖∞ by the construction, and then we considered gjφ/‖gj‖∞ as a test function.
We similarly handle Fj to obtain the second term in the right-hand side of the same
inequality. Hence, for any φ ∈ C1

0(D) with |φ| 5 1, we have∫
D

gF · ∇φ dx = lim
∫
D

gjFj · ∇φ dx 5 3{‖g‖∞|divF |(D)+ ‖F‖∞‖∇g‖µ},

|div (gF )|(D) < ∞.

Since gF ∈ L∞(D; RN), we have gF ∈ DM(D). Now Theorem 1.2 implies that
divFj ⇀ divF as Radon measures over D. Hence, if g is Lipschitz continuous
over all compact sets contained in D, then

gdivFj + Fj · ∇g ⇀ gdivF + F · ∇g in M(D).

On the other hand, clearly div (gFj ) ⇀ div (gF ) in the sense of distributions.
Taking the limit in the identity

div (gFj ) = gdivFj + Fj · ∇g
in the sense of distributions and using the fact that C∞

0 (D) is dense in C0(D), we
obtain (3.1). ut

In fact, we can refine the above result and prove that (3.1) holds a.e. in the
general case, not only for local Lipschitz functions. In this case, we must take the
absolutely continuous part of ∇g. To show this, we establish a preliminary result,
which is of interest in itself.

Proposition 3.1. Let F ∈ DM(D) and let A ⊂ D be a Borel measurable set
such that HN−1(A) = 0. Then |divF |(A) = 0.
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Proof. Since there are Borel measurable sets D+ and D−, D+ ∪ D− = D, such
that divF is a nonnegative measure over D+ and a nonpositive measure over D−,
we may assume that A ⊂ D+ and hence |divF |(A) = (divF)+(A) = divF(A).
Also, since (divF)+ is a Radon measure, it suffices to prove the assertion for any
compactA. Now, for any ε > 0, we can find a finite number J of balls of radius less
than ε such that A ⊂ ∪Ji=1B(xi; ri) and

∑J
i=1 r

N−1
i < ε, since HN−1(A) = 0.

Now we may apply the Gauss-Green formula (2.9) with � = �ε ≡ ∪Ji=1B(xi; ri)
and any function φ in C1

0(R
N) that identically equals one over �̄ε. Then

|divF(�ε)| 5 ‖F‖∞HN−1(∂�ε) 5 C‖F‖∞
J∑
i=1

rN−1
i 5 εC‖F‖∞.

Now, since χ�ε → χA pointwise in D as ε → 0 (recall that A is compact), we
have |divF |(A) = divF(A) = 0. ut

For g ∈ BV , let (∇g)ac and (∇g)sing denote the absolutely continuous part and
the singular part of the Radon measure ∇g. We can now state the refinement of
Theorem 3.1.

Theorem 3.2. Given F ∈ DM(D) and g ∈ BV (D) ∩ L∞(D), the identity

div (gF ) = ḡdivF + F · ∇g
holds in the sense of Radon measures in D, where ḡ is the limit of a mollified
sequence for g through a positive symmetric mollifier, and F · ∇g is a Radon
measure absolutely continuous with respect to |∇g|, whose absolutely continuous
part with respect to the Lebesgue measure in D coincides with F · (∇g)ac almost
everywhere in D.

Proof. Let gδ = ωδ ∗ g, where ωδ(x) = δ−Nη(x/δ) with a positive symmetric
mollifier ω. From Theorem 3.1, we have

div (gδF ) = gδdivF + F · ∇gδ.
Now, it is well known that gδ converges to a Borel function ḡ, HN−1-a.e. in D
(this function equals g a.e. in D). Then, using Proposition 3.1, we get

gδdivF ⇀ ḡdivF in M(D),

as a consequence of the Dominated Convergence Theorem applied to the measure
divF . On the other hand, as in the proof of Theorem 3.1, we can easily show that
{div (gδF )} is uniformly bounded in M(D).

Now, this sequence converges to div (gF ) in the sense of distributions over D.
Then, we must have div (gδF ) ⇀ div (gF ) in M(D). Hence,

F · ∇gδ ⇀ F · ∇g ≡ div (gF )− ḡdivF.

Now we pass to the proof of the assertions about F · ∇g. Let A ⊂ D be such that
|∇g|(A) = 0. We are going to prove that |F · ∇g|(A) = 0. Again, it suffices to
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consider any compact set A with |∇g|(A) = 0. Given ε > 0, we can cover A by a
finite number J of balls so that

A ⊂ ∪Ji=1B(xi; ri), ri < ε; |∇g|(∪Ji=1B(xi; ri)
)
< ε.

We may assume without loss of generality that |∇g|(∂B(xi; ri)) = 0, i = 1, . . . , J .
Let φ ∈ C0(∪Ji=1B(xi; ri)). Thus

〈F · ∇g, φ〉 = lim
δ→0

∫
φ(x) F (x) · ∇gδ(x) dx

5 ‖φ‖∞‖F‖∞ lim sup
δ→0

|∇gδ|
(∪Ji=1B(xi; ri)

)

= ‖φ‖∞‖F‖∞|∇g|(∪Ji=1B(xi; ri)
)

5 ε‖φ‖∞‖F‖∞,

from the fact that |∇gδ|(B) → |∇g|(B), for all open setsB ⊂ D with |∇g|(∂B) =
0 (see [15]). Hence, we obtain

|F · ∇g|(A) 5 |F · ∇g|(∪Ji=1B(xi; ri)
)

5 ε‖F‖∞.

Taking ε → 0, we obtain the desired result.
We now prove the last assertion about F · ∇g. Let x ∈ D be such that the limit

lim
r→0

1

α(N)rN

∫
B(x;r)

F · ∇g(y)dy

exists, and

lim
r→0

1

α(N)rN

∫
B(x;r)

|(∇g)sing(y)|dy = 0,(3.2)

lim
r→0

1

α(N)rN

∫
B(x;r)

|F(y) · (∇g)ac(y)− F(x) · (∇g)ac(x)| dy = 0.(3.3)

Almost every x ∈ D has this property. Fix r > 0 such that

|(∇g)sing|(∂B(x; r)) = 0.(3.4)

We have

∇(ωδ ∗ g) = ωδ ∗ ∇g = ωδ ∗ (∇g)ac + ωδ ∗ (∇g)sing.

Hence, for any φ ∈ C0(B(x; r)), we use |ωδ ∗ (∇g)sing(y)| 5 ωδ ∗ |(∇g)sing(y)|
to find∣∣∣ 1

α(N)rN

∫
B(x;r)

φ(y){F(y) · ωδ ∗ (∇g)(y)− F(x) · (∇g)ac(x)}dy
∣∣∣

5 1

α(N)rN

∫
B(x;r)

|φ(y){F(y) · ωδ ∗ (∇g)ac(y)− F(x) · (∇g)ac(x)}| dy

+ ‖φ‖∞‖F‖∞
α(N)rN

∫
B(x;r)

ωδ ∗ |(∇g)sing(y)|dy.
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Now, the last term of the right-hand side in the inequality converges to

‖φ‖∞‖F‖∞
α(N)rN

∫
B(x;r)

|(∇g)sing(y)|dy,

since ωδ ∗ |(∇g)sing| ⇀ |(∇g)sing| and (3.4) holds. Then we take δ → 0 to obtain

∣∣∣ 1

α(N)rN

∫
B(x;r)

φ(y){F · ∇g(y)− F(x) · (∇g)ac(x)}dy
∣∣∣

5 ‖φ‖∞‖F‖∞
α(N)rN

∫
B(x;r)

|(∇g)sing(y)|dy

+ 1

α(N)rN

∫
B(x;r)

|φ(y){F(y) · (∇g)ac(y)− F(x) · (∇g)ac(x)}| dy.

Now, taking φ → 1 pointwise in B(x; r) so that ‖φ‖ 5 1, we get∣∣∣ 1

α(N)rN

∫
B(x;r)

(
F · ∇g(y)− F(x) · (∇g)ac(x)

)
dy

∣∣∣
5 ‖F‖∞
α(N)rN

∫
B(x;r)

|(∇g)sing(y)|dy

+ 1

α(N)rN

∫
B(x;r)

|F(y) · (∇g)ac(y)− F(x) · (∇g)ac(x)| dy,(3.5)

by the Dominated Convergence Theorem. Finally, we take r → 0 in (3.5) and use
(3.2), (3.3) to get the desired result. ut

4. Applications to Initial-Boundary-Value Problems
for Hyperbolic Conservation Laws

In this section we apply the theory developed in §§1–3 to establish a general
framework for L∞ weak entropy solutions of initial-boundary-value problems for
hyperbolic conservation laws. LetQ ⊂ Rn+1 be a domain, whose points are denoted
by (t, x), with � ≡ Q ∩ {t = 0} |= ∅, 0 = ∂Q. Consider

∂tu+ ∇x · f (u) = 0 in Q ∩ {t > 0},(4.1)

u|t=0 = u0,(4.2)

u|0∩{t>0} = ub.(4.3)

Here u ∈ U ⊂ Rm, f ∈ C1(U ; (Rm)n) for some domain U ⊂ Rm. We assume
that the initial-boundary data satisfy

u0 ∈ L∞(�; Rm), ub ∈ L∞(0 ∩ {t > 0}; Rm).(4.4)
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We consider the domain Q of the following form. Let L : Rn+1 → Rn+1 be
a bi-Lipschitz map:

L (t, x) = (t, y(t, x)) for all (t, x) ∈ Rn+1,

where y : Rn+1 → Rn is a certain Lipschitz map satisfying y(t, x) = x, for t 5 0.
Let� ⊂ Rn be an open domain with regularly deformable Lipschitz boundary ∂�.
Set

Q = L (R ×�), 0 = L (R × ∂�),

QT = L ((0, T )×�), 0T = L ((0, T )× ∂�).

Assume that 2 : ∂�× [0, 1] → �̄ is a regular Lipschitz deformation for ∂�. We
fix a standard regular Lipschitz deformation Ψ : 0 × [0, 1] → Q for 0 given by

Ψ (r, s) = L
(
π1(r),2(π2 ◦ L −1(r), s)

)
,

where π1 : Rn+1 → R and π2 : Rn+1 → Rn are given by π1(t, x) = t , π2(t, x) =
x. We set Ψs(r) = Ψ (r, s), 0s = Ψs(0), and 0sT = Ψs(0T ). By A b B we denote
that A is an open subset of B and its closure Ā is a compact subset of B.

The discussion which follows is partly motivated by the analysis carried out
by Otto [25] for the initial-boundary-value problem for multidimensional scalar
conservation laws in cylindric domains of the form (0, T )×�,� having a smooth
boundary. In [25], the existence and uniqueness of entropy solutions of the initial-
boundary-value problem were established for L∞ initial and boundary conditions.
This result extends the earlier one for BV initial and boundary conditions, by
Bardos, Leroux & Nedelec [2]. Other attempts to extend partially in various
ways the results in [2] have been made in some references such as in [12, 7, 18, 28]
and those cited therein.

4.1. General Framework

Definition 4.1. We say that η ∈ C1(Rm) is an entropy for (4.1), with associated
entropy flux q = (q1, · · · , qn) ∈ C1(Rm; Rn), if

∇qi(u) = ∇η(u)∇fi(u), i = 1, . . . , n.(4.5)

We call F(u) = (η(u), q(u)) an entropy pair. If η(u) is convex, we say that F(u)
is a convex entropy pair. An entropy pair F (u, v) = (α(u, v), β(u, v)) is called a
boundary entropy pair if, for each fixed v ∈ Rm, α(u, v) is convex with respect to
u, and

α(v, v) = β(v, v) = ∂uα(v, v) = 0.(4.6)

We say that F (u, v) = (α(u, v), β(u, v)) is a generalized boundary entropy pair
if it is the uniform limit of a sequence of boundary entropy pairs over compact sets.

In this section, with the aid of the theory of divergence-measure fields, we focus
on any weak entropy solution u ∈ L∞(QT ; Rm) of (4.1)–(4.3) inQT , in the sense
given by the following definition.
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Definition 4.2. We say that u(t, x) ∈ L∞(QT ; Rm) is a weak entropy solution of
(4.1)-(4.3) in QT if it satisfies

• Conservation Laws (4.1): For all φ ∈ C∞
0 (QT ), φ = 0, and any convex entropy

pair (η, q), ∫ ∫
QT

(η(u)φt + q(u) · ∇xφ) dx dt = 0.(4.7)

• Initial Condition (4.2): For any �̃ b �,

ess lim
t→0+

∫
�̃

|u(t, x)− u0(x)| dx = 0.(4.8)

• Boundary Condition (4.3): For any γ ∈ L1(0T ), γ = 0 H n-a.e., and any
boundary entropy flux F = (α, β),

ess lim
s→0+

∫
0T

F (u ◦ Ψs(r), ub(r)) · νs(Ψs(r))γ (r) dH n(r) = 0,(4.9)

where νs is the outward unit normal field defined H n-a.e. in 0sT .

The main focus in this section is to investigate classes of equations and the
boundary data for which the solutions satisfying (4.7)–(4.9) assume their boundary
data in the usual sense, with the aid of the theory of divergence-measure fields.

For convenience of presentation, we extend the weak entropy solution u(t, x) ∈
L∞(QT ; Rm) to u(t, x) ∈ L∞(Q; Rm) by setting

u(t, x) = 0, (t, x) ∈ Q−QT .

We observe from Proposition 2.1 that if uj and fj denote the j th component ofu and
the j th row of them× nmatrix f , respectively, j = 1, · · · , m, and if (η(u), q(u))
is any convex entropy pair for (4.1), then (4.7) implies that the fields

Ej(u) ≡ (
uj , fj (u)

) ∈ DM(D), F (u) ≡ (
η(u), q(u)

) ∈ DM(D)

for any bounded open set D ⊂ Q as a consequence of the Schwartz lemma on
nonnegative distributions [26]. In particular, the normal traces Ej(u) · ν|S, j =
1, · · · , n, andF(u)·ν|S are defined for any open subset S of the Lipschitz boundary
of any open set D b Q.

We next establish the first important fact about the solutions of (4.1)–(4.3) in
the sense of (4.7)–(4.9).

Theorem 4.1. Assume that (4.1) is endowed with a strictly convex entropy. A func-
tion u(t, x) ∈ L∞(QT ; Rm) satisfies (4.7)–(4.9) if and only if it satisfies:

1. Equation (4.1) holds in QT in the sense of distributions.
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2. Given any boundary entropy pair (α(u, v), β(u, v)), there is a constant M > 0
such that, for any nonnegative φ(t, x) ∈ C∞

0

(
(−∞, T )× Rn

)
,

∫∫
QT
(α(u(t, x), v)φt + β(u(t, x), v) · ∇xφ) dx dt
+ ∫

�
α(u0(x), v)φ(0, x) dx +M

∫
0T

|ub(r)− v|φ(r) dH n(r) = 0,

(4.10)

for any constant v ∈ Rm.

Proof. Given any convex entropy pair (η, q),

α(u, v) = η(u)− η(v)− ∇η(v)(u− v),(4.11)

β(u, v) = q(u)− q(v)− ∇η(v)(f (u)− f (v))(4.12)

form a boundary entropy pair. Since u satisfies (4.1) in the sense of distributions,
we easily deduce (4.7) from (4.10).

We now prove (4.8). We consider α and β as in (4.11), (4.12) for a strictly
convex entropy η. Let δ < T be small enough. Choose φ(t, x) = ζ(t)ξ(x), with
ζ ∈ C∞

0 (−∞, δ), ξ ∈ C∞
0 (�), ζ = 0, ξ = 0. We get

∫ δ

0
ζ ′(t)

∫
�

α(u, v)ξ(x) dx dt + C

∫ δ

0
ζ(t) dt +

∫
�

α(u0(x), v)ξ(x) dx = 0.

Hence, choosing ζ = χ(−δ,δ) (after mollifying and passing to the limit) and making
δ → 0, we get

ess lim
t→0+

∫
�

α(u(t, x), v)ξ(x) dx 5
∫
�

α(u0(x), v)ξ(x) dx,

where the limit on the left-hand side exists because of Theorem 2.2. Proceeding as
above, we conclude from the last inequality that, for any ξ, v0 ∈ L1(�), we have

ess lim
t→0+

∫
�

α(u(t, x), v0(x))ξ(x) dx 5
∫
�

α(u0(x), v0(x))ξ(x) dx.

Therefore, choosing v0 = u0, and using the strict convexity of η and the fact that
u and u0 are uniformly bounded, we arrive at (4.8).

We finally prove (4.9). Let h : Rn+1 → [0, 1] be defined by setting h(t, x) = s

if (t, x) ∈ 0s ; h(t, x) = 0 if (t, x) |∈ Q, and h(t, x) = 1 otherwise. In (4.10), we
choose

φ(t, x) = γ (Ψ−1
h(t,x)(t, x))ζ(h(t, x)) for (t, x) ∈ Image(Ψ ),

where γ ∈ Lip(0), supp γ ⊂ 0T , γ = 0, ζ ∈ C∞
0 (−∞, 1), and φ(t, x) is set

equal to 0 for (t, x) ∈ Q− Image(Ψ ). We then extend φ to all Rn+1 as a Lipschitz
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function with compact support contained in (0, T )× Rn. With this choice of φ in
(4.10), using the coarea formula [13, 14], we obtain∫ 1

0

∫
0s

F (u(r), v) · νs(r)γ (Ψ−1
s (r)) dH n(r)ζ ′(s) ds

+ C

∫ 1

0
ζ(s) ds +M

∫
0T

|ub(r)− v|γ (r) dH n(r)ζ(0) = 0.

Choosing ζ(s) = χ(−δ,δ), 0 < δ < 1 (mollifying and passing to the limit), and then
making δ → 0, we get

ess lim
s→0+

∫
0s

F (u(r), v) · νs(r)γ (Ψ−1
s (r)) dH n(r)

= −M
∫
0T

|ub(r)− v|γ (r) dH n(r),

where we used Theorem 2.2 to ensure the existence of the limit on the left-hand side.
By approximation, we conclude that this inequality holds for any γ ∈ L1(0T ), γ =
0,H n-a.e. Using the area formula [14], we obtain

ess lim
s→0+

∫
0T

F (u ◦ Ψs(r), v) · νs(Ψs(r))γ (r) dH n(r)

= −M
∫
0T

|ub(r)− v|γ (r) dH n(r).

Now, considering first simple functions vb(r) and using a standard approximation
argument again, we deduce from the last inequality that

ess lim
s→0+

∫
0T

F (u ◦ Ψs(r), vb(r)) · νs(Ψs(r))γ (r) dH n(r)

= −M
∫
0T

|ub(r)− vb(r)|γ (r) dH n(r)

for any vb ∈ L1(0T ). Taking vb = ub, we then recover (4.9).

Conversely, from (4.7) with η(u) = ±u, we deduce that u is a solution of (4.1)
in the sense of distributions. Also, (4.7) and (4.8) imply that∫ ∫

QT

(η(u)ψt + q(u) · ∇xψ) dx dt +
∫
�

η(u0(x))ψ(0, x) dx = 0(4.13)

for any ψ ∈ C∞
0 (Q ∩ {t < T }) with ψ = 0. Now we choose (η(u), q(u)) =

(α(u, v), β(u, v)) and ψ in (4.13) as ψ(t, x) = φ(t, x)(1 − ζ(h(t, x))), with φ ∈
C∞

0 ((−∞, T )×Rn), φ = 0, ζ and h as above. Again, choosing ζ(s) = χ(−δ,δ)(s),
0 < δ < 1, letting δ → 0, and arguing as above, we arrive at

(4.14)
∫ ∫

QT

(α(u, v)φt + β(u, v) · ∇xφ) dx dt +
∫
�

α(u0(x), v)φ(0, x) dx

− ess lim
s→0+

∫
0T

F (u ◦ Ψs(r), v) · νs(Ψs(r))φ(r) dH n(r) = 0.
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Observe that there is an M > 0, depending on F and an L∞ bound for u, such
that

|F (u ◦ Ψs(r), v)− F (u ◦ Ψs(r), ub(r))| 5 M|ub(r)− v|.
Thus, using (4.9) and the above inequality, we finally obtain (4.10) from
(4.14). ut

We now investigate some cases in which the boundary data turn out to be
assumed in a way closer to the usual sense. We start with a result for the scalar case
m = 1, which extends that in [25] to the present context of non-cylindric domains
with Lipschitz boundary.

For m = 1, we denote by 0act the subset of 0T given by

0act = { r ∈ 0T | u 7→ E(u) · ν(r) is decreasing },
whereE(u) = (u, f (u)), and ν(r) is the outward unit normal field defined H n-a.e.
in 0T .

Proposition 4.1. If u ∈ L∞(QT ) and ub ∈ L∞(0T ) satisfy (4.9) for any boundary
entropy pairs associated with (4.1), then

ess lim
s→0+

∫
0act

|u ◦ Ψs(r)− ub(r)| dH n(r) = 0.

Proof. The entropy pair

F (u, v) = (|u− v|, sign(u− v)(f (u)− f (v)))

is the uniform limit of boundary entropy pairs. Hence, (4.9) implies that

ess lim
s→0+

∫
0T

F (u ◦ Ψs(r), ub(r)) · νs(Ψs(r))γ (r) dr = 0

for all γ ∈ L1(0T ), γ = 0, H n-a.e. Now, choose γ as the characteristic function
of 0act and observe that

F (u, v) · ν(r) = −|E(u) · ν(r)− E(v) · ν(r)|
for all r ∈ 0act. The regularity of the deformationΨ implies that νs(Ψs(r)) → ν(r)

as s → 0+, for H n almost all r ∈ 0T . Hence, the Dominated Convergence
Theorem gives

ess lim
s→0+

∫
0act

|E(u ◦ Ψs(r)) · ν(r)− E(ub(r)) · ν(r)| dH n(r) = 0.

Now, given any sequence {sl} in [0, 1], converging to 0, which is not contained in
a certain fixed set of measure zero, we may extract a subsequence (still denoted sl)
such that

lim
l→∞E(u ◦ Ψsl (r)) · ν(r) = E(ub(r)) · ν(r), H n − a.e. r ∈ 0act.
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By the definition of 0act, we deduce that liml→∞ u ◦Ψsl (r) = ub(r), for H n-a.e.
r ∈ 0act. By the Dominated Convergence Theorem, we then conclude that

lim
l→∞

∫
0act

|u ◦ Ψsl (r)− ub(r)| dH n(r) = 0,

which gives the desired result. ut
We now look for an analogue of Proposition 4.1 in the general case of systems,

m > 1. For each v ∈ Rm, let (w1(u, v), . . . , wm(u, v)) denote a certain change of
coordinates for Rm. Let F j (u, v), j = 1, . . . , m, be a certain fixed generalized
boundary entropy pair associated with (4.1). We also assume that there are given
certain functions

ρj ∈ L∞(
0T ;C(R2; [0,∞))

)
,

satisfying ρj (r)(λ, µ) > 0, if λ |= µ, and ρj (r)(λ, λ) = 0, H n a.e. r ∈ 0T ,
j = 1, . . . , m. Corresponding to wj , F j , and ρj , we define

0act
j = {

r ∈ 0T | F j (u, v) · ν(r) 5 −ρj (r) (wj(u, v), wj (v, v)) }
,

j = 1, . . . , m, and, for any subset {j1, . . . , jk} ⊂ {1, 2, . . . , m}, we set

0act
j1,··· ,jk = 0act

j1 ∩ · · · ∩ 0act
jk .

The following proposition is the result analogous to Proposition 4.1. The proof
is entirely similar and so we omit it.

Proposition 4.2. If u ∈ L∞(QT ) and ub ∈ L∞(0T ) satisfy (4.9) for all boundary
entropy pairs associated with (4.1), then

ess lim
s→0+

∫
0act

j
|wj(u ◦ Ψs(r), ub(r))− wj(ub(r), ub(r))| dH n(r) = 0,

j = 1, . . . , m.

We now give some examples of applications of Proposition 4.2.

4.2. Hyperbolic Systems with Space-like Boundary Data

First we analyze whether the boundary condition (4.9) can recover the intuitive
notion for space-like boundaries, in the context of one-dimensional systems of
hyperbolic conservation laws. In other words, suppose the space domain at each
time t is a bounded interval �(t), whose, say, left-hand extreme y0(t) moves with
speed less than the minimum of the slowest characteristic speed, in the region of
the phase space where the solution assumes its value, for t in a certain subset of
(0,∞). Then one expects that the boundary condition is assumed in a strong sense,
say, that of convergence in L1

loc.
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Consider a one-dimensional m×m hyperbolic system of conservation laws:

∂tu+ ∂xf (u) = 0,(4.15)

endowed with a strictly convex entropy pair (η(u), q(u)). Let λ1(u) 5 · · · 5 λm(u)

be the eigenvalues of ∇f (u), which is diagonalizable for allu, and r1(u), . . . , rm(u)
be the corresponding eigenvectors forming a basis of Rm. We take � = [0, 1],
consider L as above, and denoteQ∞ = L ((0,∞)×�),0− = L ((0,∞)×{0}),
0+ = L ((0,∞) × {1}). We form the initial-boundary-value problem for (4.15)
with initial data:

u|t=0 = u0(x)(4.16)

and the boundary data:

u|x=y0(t) = u[(t), u|x=y1(t) = u](t),(4.17)

where y0(t) = y(t, 0) and y1(t) = y(t, 1). Then we have

Theorem 4.2. Let U be a bounded domain in Rm and M > 0 be such that
|β(u, v)| 5 Mα(u, v), for u, v ∈ U , where α, β are given by (4.11), (4.12) for
given strictly convex entropy η. Suppose u ∈ L∞(Q∞) satisfies (4.17) in the sense
of (4.9) and takes its values in U . Assume that B is a Borel subset of (0,∞) such
that y′

0(t) 5 −M − δ0 for a.e. t ∈ B, for some δ0 > 0. Then

ess lim
s→0+

∫
L (B×{0})

|u ◦ Ψs(r)− u[ ◦ π1(r)| dH 1(r) = 0.(4.18)

Furthermore, let λ− = infu∈U λ1(u). Then, given ū ∈ U , for any ε > 0, there
exists δ > 0 such that, if y′

0(t) < λ− − ε for a.e. t ∈ B, and if

‖u− ū‖∞, ‖u[ − ū‖∞, ‖u] − ū‖∞ < δ,(4.19)

then (4.18) holds.

Proof. Set F (u, v) = (α(u, v), β(u, v)). For the first part, we observe that√
1 + y′

0(t)
2 F (u, v) · ν(r)

= y′
0(t)α(u, v)− β(u, v) 5 −δα(u, v) 5 −cδ|u− v|2,

where t = π1(r). In particular, this shows that L (B×{0}) ⊂ 0act
1,...,m, if we take

F j (u, v) = F (u, v), wj = uj , ρj (r)(λ, µ) = (λ − µ)2, j = 1, . . . , m. Hence
Proposition 4.2 applies. For the second part, we first observe that√

1 + y′
0(t)

2 F (u, v) · ν(r) 5 (λ− − ε)α(u, v)− β(u, v).

Proceeding as in [11, p. 155], we show that, forp(u, v) = (λ−−ε)α(u, v)−β(u, v),
we have p(u, v) 5 − 1

2εα(u, v), provided that |u− v| is sufficiently small. Hence,
as in the proof of the first part, we can apply Proposition 4.2 to get (4.18). ut
Remark 4.1. The analogous statements for the right-hand boundary curve are ob-
tained by changing x by −x and f (u) by −f (u) and applying the result for the
left-hand boundary curve.
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4.3. Systems with Affine Characteristic Hypersurfaces

Now we apply Proposition 4.2 to initial-boundary-value problems for the one-
dimensionalm×m systems introduced in Temple [31], which are strictly hyperbolic
and endowed with a complete set of independent Riemann invariants wj , j =
1, . . . , m, whose level sets are affine hyperplanes.

Again, let � = [0, 1], and let L , Q∞, and 0± be as before. Assume now
that (4.15) is a system with affine characteristic hypersurfaces. We consider again
the boundary-value problem (4.15)–(4.17). Let λj (u) be the eigenvalues of ∇f (u),
lj (u) the associated left-eigenvectors, andwj(u) the associated Riemann invariants,
j = 1, · · · , m, respectively. For the purpose of this section, it is convenient to
assume that lj (u) = ∇wj(u) without loss of generality by normalization. Then the
following are entropy pairs (see, e.g., [27, 17]):

αj (u, v) = |lj (v) · (u− v)|,
βj (u, v) = sign(lj (v) · (u− v))(lj (v) · (f (u)− f (v))),

(4.20)

α+
j (u, v) = (lj (v) · (u− v))+,
β+
j (u, v) = H(lj (v) · (u− v))(lj (v) · (f (u)− f (v))),

(4.21)

α−
j (u, v) = (lj (v) · (u− v))−,
β−
j (u, v) = H(lj (v) · (v − u))(lj (v) · (f (u)− f (v))),

(4.22)

where (s)+ = max{s, 0}, (s)− = max{−s, 0}, and H(s) = χ(0,∞)(s) denotes the
Heaviside function.

We will need

Lemma 4.1. Let F j ≡ (αj , βj ) and F j
± ≡ (α±

j , β
±
j ). Then F j and F j

± are
generalized boundary entropy pairs.

Proof. Indeed, let us consider first the case of F j
+ . Let ζ : Rm → R denote a

symmetric mollifier. Define

α+ε
j (u, v) =

∫ (
lj (U(w)) · (u− U(w))

)
+ ζε(w −W(v + cεlj (v))) dw,

β+ε
j (u, v) =

∫
H

(
lj (U(w)) · (u− U(w))

)
× lj (U(w)) · (f (u)− f (U(w))) ζε(w −W(v + cεlj (v))) dw,

where u = U(w) and w = W(u) are the changes of coordinates from w to u and
vice-versa, and c will be suitably chosen. We denote F jε

+ = (α+ε
j , β+ε

j ). Since
W is a bi-Lipschitz map, there exists δ > 0 such that |W(v)−W(ṽ)| = δ|v − ṽ|.
Taking ṽ as v+ cεlj (v), we see that it is possible to choose c as a positive constant
independent of ε such that |W(z) − W(v + cεlj (v))| = ε, for any point z with
wj(z) 5 wj(v). Here we have used the fact that W(v) is the point of the image of
the hyperplane wj(z) = wj(v) which has the smallest distance from v + cεlj (v).
Therefore, α+ε

j (v, v) = β+ε
j (v, v) = 0 for any ε > 0.
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We now pass to the verification of the second condition that ∇uα+ε
j (v, v) = 0.

Notice that

α+ε
j (u, v) =

∫
wj5wj (u)

lj (U(w)) · (u− U(w))ζε(w −W(v + cεlj (v))) dw,

and so we have

∇uα+ε
j (v, v) =

∫
wj5wj (v)

lj (U(w))ζε(w −W(v + cεlj (v))) dw,

where we used that lj (U(w)) · (v − U(w)) vanishes identically on the hyperplane
wj = wj(v). By the reasoning above, it follows that the right-hand side of the last
identity is zero, so the second condition is verified.

Finally, the fact that the Hessian ∇2
uα

+ε
j (u, v) is a nonnegative matrix follows

from the formula

∇2
uα

+ε
j (u, v){ξ, ξ}

=
∫
wj=wj (v)

(lj (U(w)) · ξ)2ζε(w −W(v + cεlj (v))) dHm−1(w)

for any ξ ∈ Rm. Hence, F jε
+ are boundary entropy pairs, for any ε > 0, j =

1, . . . , m. It is now evident that F jε
+ converges uniformly over compact sets to

F j
+ as ε → 0+ for j = 1, . . . , m. So we have proved that F j

+ are generalized
boundary entropy pairs.

Analogously, define

α−ε
j (u, v) =

∫ (
lj (U(w)) · (u− U(w))

)
− ζε(w −W(v − cεlj (v))) dw,

β−ε
j (u, v) =

∫
H

(
lj (U(w)) · (U(w)− u)

)
× lj (U(w)) · (f (u)− f (U(w))) ζε(w −W(v − cεlj (v))) dw,

and F jε
− = (α−ε

j , β−ε
j ). We can show that F jε

− are boundary entropy pairs and

consequently that F j
− are generalized boundary entropy pairs. Finally, defining

F jε = F jε
− +F jε

+ , we conclude that F j are also generalized boundary entropy
pairs, j = 1, . . . , m. ut

The existence of solutions of the initial-boundary value problem (4.15)–(4.17),
satisfying (4.7)–(4.9), for such a system can be established as in [5], for u[, u] ∈
L∞(R+), u0 ∈ L∞(0, 1), in non-cylindric domains with Lipschitz boundaries. We
are now ready to establish our application of Proposition 4.2.

Theorem 4.3. Assume that u ∈ L∞(Q∞; R2), and u[, u] ∈ L∞(0±; R2) satisfy
(4.17) in the sense of (4.9). Let u, u[, u] assume their values in a domain O of the
form

O = { u ∈ Rm : |wj(u)− wj(ū)| < Mj, j = 1, . . . , m },
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where ū is a given constant state and Mj , j = 1, . . . , m, are given positive con-
stants, in which

λ1(u) 5 · · · 5 λk(u) 5 κ− < 0 < κ+ 5 λk+1(u) 5 · · · 5 λm(u)

for certain positive constants κ±. Then there exists a positive constant δ such that,
if ‖yt ( · , 0)‖∞, ‖yt ( · , 1)‖∞ < δ, then

ess lim
s→0+

∫
0−

|ll(u[ ◦ π1(r)) · (
u ◦ Ψs(r)− u[ ◦ π1(r)

)| dH 1(r) = 0,

for l = k + 1, . . . , m,(4.23)

ess lim
s→0+

∫
0+

|lj (u] ◦ π1(r)) · (
u ◦ Ψs(r)− u] ◦ π1(r)

)| dH 1(r) = 0,

for j = 1, . . . , k.(4.24)

Proof. Again our task is to find suitable (generalized) boundary entropy pairs F j ,
corresponding to which 0−, 0+ are 0act

k+1,... ,m, 0act
1,... ,k , respectively. We use a

lemma in Heibig [17] which asserts that, if (4.15) is a Temple system, then there
exists a smooth matrix-valued function M : Rm × Rm → Mm×m(R), with the
following properties:

1. For u, v ∈ Rm, f (u)− f (v) = M(u, v)(u− v) and M(u, u) = ∇f (u).
2. M(u, v) and ∇f (v) have the same (left and right) eigenvectors.

Here Mm×m(R) denotes the space of m×m real matrices. Furthermore, a lemma
in [4] states that the eigenvalues of M(u, v), λ̄j (u, v), satisfy

min
z∈O

λj (z) 5 λ̄j (u, v) 5 max
z∈O

λj (z), for all u, v ∈ O, j = 1, . . . , m.

In particular, we have λ̄j (u, v) 5 κ−, for j = 1, . . . , k, and λ̄l(u, v) = κ+, for
l = k + 1, . . . , m, for all u, v ∈ O. Now, let F j = (αj , βj ) be the generalized
boundary entropy pairs given in (4.20). Then

βj (u, v) = λ̄j (u, v)|lj (v) · (u− v)| 5 κ−|lj (v) · (u− v)|, j = 1, . . . , k,

βl(u, v) = λ̄l(u, v)|ll(v) · (u− v)| = κ+|ll(v) · (u− v)|, l = k + 1, . . . , m.

Now it is easy to deduce that, if ‖yt ( · , 0)‖∞, ‖yt ( · , 1)‖∞ < δ, for δ < κ0 =
min{|κ−|, κ+}, then

F l (u, v) · ν(r) 5 −c|ll(v) · (u− v)|, for r ∈ 0−, l = k + 1, . . . , m,

F j (u, v) · ν(r) 5 −c|lj (v) · (u− v)|, for r ∈ 0+, j = 1, . . . , k,

where c may be taken as (κ0 − δ)/
√

1 + δ2. Hence, for the changes of coordinates
wj(u, v) = lj (v) · u, j = 1, . . . , m, for the boundary entropy pairs F j (u, v)

given in (4.20), and for ρj (r)(µ, λ) = c|µ− λ|, j = 1, . . . , m, Proposition 4.2 is
applicable.
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4.4. Remarks on 2 × 2 Systems of Conservation Laws

One cannot expect to extend Theorem 4.3 to general systems endowed with
globally defined Riemann-invariant coordinates. The following simple example
serves to illustrate this fact.

Let (4.15) be any 2 × 2 strictly hyperbolic system of conservation laws. We
consider the initial-boundary-value problem in the domain x > 0, t > 0, with
boundary data given by a constant state uL and initial data by a constant state
uR. Assume that uL can be connected to uR by an admissible 1-shock with speed
σ < 0. Then it is desirable that u(t, x) ≡ uR, t, x > 0, be a solution of this problem
satisfying (4.7)–(4.9). This fact can be shown for quite general cases. Then, except
in the case of a system for which the 1-shock and 1-rarefaction curves coincide, one
would be able to choose uL and uR such that w2(uR) |= w2(uL), in contradiction
to (4.23).

Nevertheless, it has been shown by Lax [20], in the case where the first char-
acteristic field is genuinely nonlinear, that |w2(uL)−w2(uR)| = O(|uL−uR|3) if
|uL−uR| is small. This confronts us with the question whether, for general bound-
ary and initial data, condition (4.9) implies a certain smallness of |w2(u)−w2(u[)|,
near the boundary x = 0, compared with the oscillation of the solution. This ques-
tion can be generalized to more general domains.

Consider the problem (4.15)–(4.17) satisfying

λ1(u) < −k0 < 0 < k0 < λ2(u)(4.25)

for u in some domain U ⊂ R2 and for a certain positive constant k0.
A typical example is the 2 × 2 system of nonlinear elasticity:

∂tu1 − ∂xu2 = 0, ∂tu2 − ∂xσ (u1) = 0,(4.26)

where σ ∈ C2(R) satisfies σ ′(κ) > 0, for all κ ∈ R, and κσ ′′(κ) > 0, for κ |= 0.
For (4.26), we have f (u) = (−u2,−σ(u1))

>. For each u ∈ R2, the Jacobian
matrix ∇f (u) of f has two eigenvalues

λ1(u) = −√
σ ′(u1), λ2(u) = √

σ ′(u1).

The functions

w1(u) = u2 +
∫ u1 √

σ ′(κ) dκ, w2(u) = u2 −
∫ u1 √

σ ′(κ) dκ

are two independent smooth Riemann invariants satisfying

∇wi(u)∇f (u) = λi(u)∇wi(u), i = 1, 2.

The function

η(u) = u2
2 +

∫ u1

σ(κ) dκ(4.27)
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is a strictly convex entropy for (4.26) with associated entropy flux

q(u) = u2σ(u1).(4.28)

The existence of a solution of (4.26) and (4.16), (4.17) satisfying (4.7)–(4.9)
can be established as in [5] for u[, u] ∈ L∞(R+), u0 ∈ L∞(0, 1), even in non-
cylindric domains with Lipschitz boundaries. Regarding the question mentioned
above, we have

Proposition 4.3. Assume that (4.15) is a 2×2 strictly hyperbolic system satisfying
(4.25). Suppose that u ∈ L∞(Q∞; R2), that u[, u] ∈ L∞(0±; R2) satisfy (4.9),
and that B ⊂ (0,∞) is a bounded Borel set such that ‖y′

0(t)‖∞ 5 k∗ < k0 for
a.e. t ∈ B. Given any constant state ū ∈ U, there exists a positive constant δ0 such
that, for any δ < δ0, if

‖u− ū‖∞, ‖u[ − ū‖∞, ‖u] − ū‖∞ < δ,
then

ess lim sup
s→0+

∫
L (B×{0})

|w2(u ◦ Ψs(r))− w2(u[ ◦ π1(r))|2 dH 1(r) < Cδ3,

(4.29)

where C > 0 depends only on f , k∗, and B.

Proof. We first construct a boundary entropy pair, F 1, associated with 0−. We
recall from [11] that, for 2 × 2 strictly hyperbolic systems, in a sufficiently small
neighborhood of a constant state ū, there exist the entropy pairs ηj (u,wk(v)),
qj (u,wk(v)), j, k = 1, 2, j |= k, with the following properties:

c1(wk(u)− wk(v))
2 5 ηj (u,wk(v)) 5 c2(wk(u)− wk(v))

2, k |= j,(4.30)

∇2
uηj (ū, wk(ū)) = 0, j = 1, 2, k |= j,(4.31)

q1(u,w2(v)) = c3η1(u,w2(v)), q2(u,w1(v)) 5 −c4η2(u,w1(v)),(4.32)

for certain positive constants cl , l = 1, . . . , 4. Although the pairs

Gj (u, v) = (α̃j (u, v), β̃j (u, v))

≡ (
ηj (u,wk(v)), qj (u,wk(v))

)
, j, k = 1, 2, j |= k,(4.33)

fail to be boundary entropy pairs since α̃j , j = 1, 2, are not convex functions of
u, property (4.30) indicates that the other conditions for a boundary entropy pair
are satisfied by Gj , j = 1, 2. Let (α(u, v), β(u, v)) be obtained from (η(u), q(u)),
by (4.11), (4.12). Property (4.31) ensures that there exists δ0 > 0 such that, when
δ < δ0, the entropies

αj (u, v) = α̃j (u, v)+ cδα(u, v), j = 1, 2,

are convex functions of u, for some positive constant c depending only on f , so
that F j (u, v) = (αj (u, v), βj (u, v)), j = 1, 2, are boundary entropy pairs, where

βj (u, v) = β̃j (u, v)+ cδβ(u, v), j = 1, 2.
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Now, by the assumption on y′
0, one easily sees that

F 1(u, v) · ν(r) 5 −c5|w2(u)− w2(v)|2 + c6δ
3, for r ∈ L (B × {0}),

where c5 and c6 are positive constants depending only on f and k∗. Hence, using
(4.9) and the regularity of the deformation to assure that ν(Ψs(r)) → ν(r), in
L1

loc(0
±) as s → 0+, we obtain (4.29). ut

Remark 4.2. An entirely similar statement concerning the first Riemann invariant
holds at the right-hand boundary curve.
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