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* This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across
China. 780 tap water samples have been collected from 95 cities across China from December 2014 to
December 2015. (1) Results yielded the Tap Water Line in China is 8?H =7.72 30 + 6.57 (r*=0.95).
(2) SITW spatial distribution presents typical “continental effect”. (3) SITW seasonal variations indicate
clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts
with geographic or meteorological factors. This work presents the first SITW map in China, which
sets up a benchmark for further stable isotopes research across China. This is a critical step toward
monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological
system. These findings could be used in the future to establish water management strategies at a
national or regional scale.

Stable isotopes in water (e.g., 6?H and §'0) are important indicators of hydrological and ecological patterns
and processes’. Stable isotopic composition in environmental waters changes as a result of fractionation driven
by multiple hydrological and ecological processes. With this unique characteristic, water isotopes have been
frequently used to trace atmospheric moisture source>?, identify source of groundwater*® and surface water
recharge”?®, partition evapotranspiration®'?, and reconstruct paleoclimate''.

Stable isotopes have been widely used in geoscience, today, the increasing interest of researchers is focused
on addressing issues at national, continental or global scales rather than local'2 Isoscapes, or mapping large scale
spatiotemporal distributions of stable isotope compositions in various environments'?, provide a framework for
large scale fundamental and applied research in a wide range of fields'*'>.

The Global Network of Isotopes in Precipitation (GNIP), established in 1961 by International Atomic Energy
Agency (IAEA), is the largest database constituted for monitoring isotopic compositions of precipitation. GNIP
has contributed to many studies related to water cycle and climate in different regions all around the world.
Additional work on other types of water sources (river, groundwater, etc.) has been frequently conducted at
national scale. Kendall and Coplen’® provided detailed distribution map of §*H and 6'®0 in US rivers. They
showed river water isotopes can act as a proxy for modern precipitation. Katsuyama et al.'* also analyzed spatial
distribution of 8180 in stream waters of Japan. Groundwater isoscape was mapped in Mexico!” and South Africa’,
and compared to precipitation.

Natural or artificial mixing of different waters from various origins will propagate the isotopic “signatures” of
water source'®. As a mixture of locally available freshwater (including rivers, lakes, wells and springs), tap water
likely reflects integrated features of regional hydrological processes and human activities. Tap water sampling on
large scales is more easily achieved than other environmental sources, such as precipitation, groundwater and
rivers. Although the isotopic information provided by tap water is not as straightforward as other environmental
waters, analyzing tap water isotopic compositions would still provide information on isotopic signals of initial
water sources and transport. Bowen et al.'® presented the first national isoscape map of tap water in US. They
found the large extended isotope sampling network can be a useful tool to identify and characterize regional water
resource issues within complex human-hydrological system.
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China is a large country with significant meteorological and geographical variations, representative of Eastern
Asian Monsoon Region. Previous studies on stable water isotopes in the country have mainly focused on precipi-
tation isotopes analysis!®, moisture tracing on regional scale?*?! and paleoclimate reconstructions based on GNIP
stations.

Built from the six GNIP stations in China, Chinese Network of Isotopes in Precipitation (CHINP), which
consists of 29 stations, was established in 2004, which provides basis for analyzing meteorological factors influ-
encing isotope distributions and modelling isotopic composition'?. In addition to precipitation isotopes research,
analysis of deuterium and oxygen-18 in thermal groundwater was conducted in 2008%*. Based on 90 samples
across China, the research discussed the origin of thermal groundwater of different types.

The former studies reveal relations between natural water and environmental factors without taking
human-hydrological system into consideration. This study established the first nation-wide network of tap water
isotopes in China. The purpose is to set the basis for isotope studies in China and demonstrate the capabilities
of network-based isotopic composition data in improving understanding of climate-sensitive, regional water
resources. This work may cover the shortage of current data and constitutes a critical step toward monitoring
and investigating water consumption system across China. In fine, these findings could be used in the future to
establish water management strategies

Data and Methodology

Tap water sample acquisition. Characterization of tap water isotope ratio has been realized from
December 2014 by nation-wide data collection network representative of spatiotemporal distribution and diver-
sity. Volunteers across China were recruited to collect tap water samples in their living places, from large cities to
small rural counties. Volunteers were finally identified for a total number of 95 locations in 32 provinces of China
(Fig. 1). This sampling campaign lasted from December 2014 to December 2015. Every month, each volunteer
received a returnable plastic box containing one 100 ml plastic bottle with narrow-mouth and an information
sheet with instruction. Volunteers were instructed to collect tap water from one tap (home or office) after 5s of
water running?. The sampling bottle was filled for approximately four fifths volume in case of breakage caused by
the possible freezing during transport. Also the cap was screwed tightly to prevent leakage and eliminate evapora-
tion. Volunteers were asked to record sampling date on a log sheet and indicate whether the water supply is from
surface water (including rivers, lakes and reservoirs), groundwater or mixed source. If unknown, detailed infor-
mation about local drinking water supply system was investigated through internet and expert consultation. All
samples were returned to lab in the firm plastic box by express delivery. Tap water samples were prepared, sealed
and stored in a cool and dark place a few weeks before analyze. By December 2015, 64 of 95 sampling locations
managed to return data for more than 7 months during the 13-month period. A total number of 780 tap water
samples have been collected and analyzed for isotopic composition. Table 1 lists location and general climate
information of all the sampling locations.

Isotope analysis and meteorological data. §'®0 and §?H values of collected samples were analyzed
by the Hydrology Laboratory in Tsinghua University. A wavelength-scanned cavity ring-down spectroscopy
(WS-CRDS, Picarro L2130i)! was used to analyze all the samples. The measurement precision (standard devia-
tion) is £20.1%o and £1%o for 60 and 8°H, respectively. The isotope values of tap water are reported as per mil
(%o) unit relative to the Vienna Standard Mean Ocean Water or VSMOW?,

R — R
§"A(%0) = Sample  VSMOW x 1000

Rysmow (1)

where n is the atomic mass of the heavy isotope of element A, Rg,, the ratio of heavy to light isotope (?_H or 12_0)

H (¢]
in a sample, and Rygyow the ratio of heavy to light isotope in international isotopic measurement standard Vienna
Standard Mean Ocean Water.

To ensure the accuracy of isotope analysis, each vial was analyzed 6 times. The first three results were aban-
doned to eliminate memory influence of former sample?”. During one analysis of a batch of sample vials, the
first and last four vials constitutes the standard (Vienna Standard Mean Ocean Water). Regression analysis was
conducted to check whether the samples in measure process were problematic®. As expected, no samples were
identified as problematic.

In order to examine the relationships between tap water isotope and meteorological factors, meteorological
data - including the precipitation amount (P, mm), temperature (T, °C), relative humidity (RH, %) and air pres-
sure (PR, kpa) - were collected at observation station in the same city of each sampling location. All the meteoro-
logical data were collected from the China Meteorological Data System (http://data.cma.cn/).

Results and Discussion

Spatial pattern of tap water isotopes. There was a large range in 5'*0 and §?H values in tap water
samples across China. For 6'80, the values varied from —17.74%o to —3.8%o with an average of —8.75%o. For
8%H, the values varied from —132.09%o to —22.98%o with an average of —60.92%o. Deuterium excess (calculated
as d-excess ,, = 6°H,,, — 88'%0,,,)** ranged from —5.86%o to 20.6%o with an average of 9.3%o. The Tap Water
Line (TWL) of China based on the 780 tap water analyses was: 8H =7.726!30 + 6.57 (r*=0.95) (Fig. 2). The tap
water data clustered near Global Meteoric Water Line (GMWL: 6°H = 86'0 + 10)*. Both slope and intercep-
tion in the equation were lower than those in GMWL, which may reflect the effects of evaporation in tap water
sources®!. Compared with Chinese Precipitation Meteoric Water Line®, §*H = 7.486'¥0 + 1.01, TWL exhibited
different intercept at 6.57. Although both tap and precipitation datasets were collected across China, the dataset
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Figure 1. Location and elevation (meters above sea level) of tap water sample locations in China, sampling
locations with names mentioned in context are presented as rhombuses in different colors and other
general sample locations are presented as circles in royal blue. The elevation map here is presented to give an
overview of the China landscape and surrounding environment of the sampling locations. (All of the items were
generated with Arcgis 9.3, https://www.arcgis.com/features/index.html).

we presented was collected in sequential months from 2014 to 2015. The precipitation data presented in previous
study was collected in 29 stations from 2005 to 2010 (no data from 2008). The linear relationship of §?H and
6'%0 in the previous study in the USA collected from 349 tap water samples is: 5" Hy gy = 8.028'30 sy +8.21,
" Hiepruary = 812 8"%0 pepryary + 9.49. Compared with GWML, the slope of their dataset is quite similar while the
interception is a bit lower. Obviously, there is significant difference in tap water isotopic composition between
China and USA as a result of different water supply sources.

Spatial patterns in the isotope values were analyzed using Moran’s test*2. Moran’s I for 8°H and 6'*0 were 0.3
and 0.4, Z=8.08 and 7.1 respectively, p < 0.01 for both, which means the spatial distribution of tap water iso-
topes is not random. Figure 3 shows a geospatial interpolation mapping of mean annual 6'30, 5*H and d-excess
in contiguous China. Individual tap water’s annual average values are presented on a background colored using
Inverse Distance Weighted interpolation model (IDW) in ArcGIS 9.3 (https://www.arcgis.com/features/index.
html). In general, tap water isotope values decrease from coastal regions with low latitude and low elevation to
inland regions with high latitude and high elevation. This spatial pattern, decrease of isotope values from coastal
to inland areas (“continental effect”®) is analogous to results in the previous study in the USA8.

The highest §'%0 and §?H values in annual average (—4.75%o and —30.69%o) appeared in Shanghai on Yangtze
River Delta. Other samples with relatively high values were mainly obtained from coastal area in southeastern
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1 Heihe 50.24 127.49 139 679.2 2.39 66.12 98.56
2 Harbin 45.74 126.64 147 414 5.61 64.19 100.03
3 Karamay 45.60 84.86 410 106.4 10.01 50.13 96.68
4 Urumchi 43.79 87.61 883 585.5 3.67 59.79 80.75
5 Aksu 41.17 80.26 1107 82.2 12.17 50.96 89.13
6 Korla 41.76 86.13 940 92.7 13.46 42.47 91.01
7 Kashgar 39.47 75.99 1296 59.6 13.11 43.98 86.16
8 Jiuquan 39.74 98.51 1470 83.4 8.75 43.53 85.25
9 Delingha 37.37 97.36 2995 229.3 5.16 36.14 70.89
10 Golmud 36.43 94.89 2803 72.6 6.92 31.10 72.50
11 Xining 36.61 101.79 2261 304.9 6.40 55.11 77.09
12 Lanzhou 36.07 103.75 1543 189.2 8.32 56.60 83.30
13 Baiyin 36.54 104.18 1713 350.2 8.82 57.79 82.59
14 Baotou 40.67 109.85 1068 225.7 8.35 55.75 90.23
15 Hohhot 40.82 111.66 1057 361.1 7.66 46.90 88.66
16 Linhe 40.76 107.39 1040 133.5 8.71 48.95 89.81
17 Yinchuan 38.47 106.27 1113 219.8 10.71 49.96 89.06
18 Yulin 38.30 109.76 1121 445.7 10.03 49.42 88.56
19 Taiyuan 37.87 112.57 797 401.2 11.32 57.64 92.74
20 Jinzhong 37.68 112.75 800 515.8 7.71 64.97 88.67
21 Shijiazhuang 38.05 114.49 80 552.2 14.36 56.87 101.06
22 Anyang 36.10 114.35 78 463.2 14.72 58.73 99.38
23 Pingliang 35.54 106.68 1365 487 10.28 62.72 86.64
24 Ulanhot 46.07 122.07 273 440.2 8.12 48.24 98.37
25 Xilinhot 43.94 116.07 988 408.4 3.89 56.90 90.09
26 Tongliao 43.61 122.26 181 475.6 8.17 54.18 99.42
27 Changchun 43.89 125.32 227 520.8 7.17 60.09 98.71
28 Chifeng 42.27 118.95 572 377.6 8.00 49.68 93.91
29 Shenyang 41.80 123.41 50 564.8 9.02 61.66 101.06
30 Chengde 40.97 117.92 361 549.6 9.49 56.16 96.72
31 Dandong 40.14 124.38 18 908.9 9.55 68.74 102.73
32 Beijing 40.12 116.30 31 456.8 13.69 54.89 101.32
33 Tianjin 39.13 117.20 9 576 13.66 58.82 101.69
34 Tangshan 39.63 118.20 23 527.9 12.20 64.37 101.43
35 Baoding 38.86 115.50 21 534.4 13.00 65.66 101.51
36 Cangzhou 38.31 116.86 8 715 14.05 60.80 101.58
37 Dalian 38.92 121.60 21 579.6 12.11 62.42 100.60
38 Hengshui 37.73 115.71 26 480.4 14.17 61.79 102.12
39 Dongying 37.46 118.50 5 560.6 14.30 62.89 101.65
40 Yantai 37.54 121.38 43 636.3 13.28 66.67 100.74
41 Weifang 36.70 119.11 28 523.1 14.10 63.13 101.48
42 Lhasa 29.66 91.13 3657 339.7 9.47 34.38 65.32
43 Gannan 35.20 102.51 3012 447.3 3.60 63.18 71.61
44 Dingxi 35.58 104.62 1905 382.6 9.33 62.15 82.72
45 Longnan 33.39 104.93 1174 450 15.97 52.84 89.36
46 Chengdu 30.66 104.08 497 872.3 16.78 81.39 95.11
47 Nyingchi 29.58 94.48 3310 934 9.44 62.83 71.02
48 Xichang 27.90 102.27 1563 980.8 17.87 59.27 83.81
49 Panzhihua 26.55 101.70 1064 1049.9 21.20 56.77 87.46
50 Baoshan 25.12 99.17 1667 832.4 17.31 66.11 83.47
51 Kunming 25.04 102.70 1907 1162.9 16.22 69.87 81.11
52 Qujing 25.50 103.79 1868 1191.1 16.20 66.18 80.98
53 Simao 22.80 100.98 1336 1482 19.49 76.45 86.98
54 ‘Wenshan 23.37 104.24 1268 1103.1 18.75 78.15 87.07
55 Tianshui 34.58 105.72 1176 372.6 12.47 67.18 88.76
56 Zhengzhou 34.76 113.65 106 688.2 15.87 61.64 100.40
Continued
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No | Sample Location | Latitude | Longtitude | Elvation | MAP (mm) | MAT (°C) | MARH (%) | MAPR (Kpa)
57 Kaifeng 34.79 114.35 70 581.9 15.42 63.56 100.83
58 Hanzhong 33.08 107.03 515 838.7 15.88 76.54 95.71
59 Xianyang 34.34 108.71 384 550 15.22 61.97 96.88
60 Enshi 30.27 109.48 421 1193.3 17.23 78.32 96.27
61 Wuhan 30.57 114.29 16 1421.1 16.83 81.41 101.33
62 Chongqing 29.56 106.51 157 1250.3 18.12 78.89 96.00
63 Yueyang 29.37 113.10 46 1687.1 18.02 79.90 100.97
64 Changsha 28.20 112.98 54 1452.8 17.42 82.63 100.14
65 Bijie 27.31 105.28 1478 1043.5 14.04 81.55 84.88
66 Zunyi 27.70 106.93 861 1066.1 15.63 82.18 90.46
67 Tongren 27.72 109.19 274 1195 17.35 78.51 97.41
68 Huaihua 27.55 109.95 227 1372 17.21 84.72 98.36
69 Hong Kong 27.87 112.92 43 1365.7 16.16 83.72 102.05
70 Guiyang 26.58 106.71 1073 1390 15.20 83.75 87.78
71 Guilin 25.28 110.29 160 2894.7 19.92 76.53 99.49
72 Zaozhuang 34.87 117.56 80 727.1 15.03 69.30 100.80
73 Xuzhou 34.27 117.19 35 925 15.31 68.63 101.21
74 Suzhou 33.64 116.97 37 702.1 15.64 69.97 101.39
75 Yancheng 33.39 120.14 5 1582.8 15.34 76.38 101.68
76 Nantong 32.02 120.86 11 1705.1 16.01 77.92 101.64
77 Hefei 31.86 117.28 22 1254.4 16.70 75.68 101.98
78 Maanshan 31.72 118.48 29 1295.8 16.33 77.64 100.73
79 Shanghai 31.24 121.47 16 1573.2 17.01 73.71 101.64
80 Shaoxing 30.01 120.57 11 1755.7 17.86 75.03 101.56
81 Hangzhou 30.27 120.16 18 2030.6 17.49 75.04 101.16
82 Quzhou 28.96 118.87 79 2446.2 18.02 82.09 100.62
83 Lishui 28.45 119.92 64 1522.8 19.09 75.34 100.88
84 Fuzhou 26.08 119.30 18 1655.4 20.69 75.48 100.54
85 Longyan 25.11 117.03 365 1975.4 20.92 76.59 97.11
86 Liuzhou 2431 109.40 65 1889.1 21.55 76.23 100.19
87 Shaoguan 24.81 113.61 65 1953.8 20.78 81.64 100.02
88 Xiamen 24.46 118.09 31 1316.1 21.55 79.01 99.81
89 Bose 23.90 106.61 141 1450.2 22.65 77.79 99.15
90 Guangzhou 23.12 113.26 28 2424 22.26 78.09 100.52
91 Nanning 22.81 108.31 80 1136.2 22.23 83.12 99.83
92 Shenzhen 22.56 114.11 8 1473.6 23.93 71.91 100.60
93 Qinzhou 21.95 108.61 10 2153 23.57 79.45 100.84
94 Zhanjiang 21.19 110.40 17 1316.2 24.26 83.00 100.59
95 Haikou 20.03 110.35 15 1646 2533 81.35 100.44

Table 1. Listing of geographical and meteorological information of each sampling locations, including
latitude, longitude and elevation above sea level in meters, mean annual temperature (MAT), precipitation
(MAP), relative humidity (MARH) and air pressure (MAPR).

China (mainly refers to Fujian and Zhejiang province). The location with the lowest values (—17.26%o for %0
and —129.47%o for §?H) is Lhasa on Tibet Plateau. Samples obtained from northeastern China (Harbin and Heihe
in Heilongjiang province) also presented extremely low values (—12.72%o and —14.64%o for $'*0, —92.56%o and
—108.68%o for 8?H). All the mentioned sample locations with extreme isotope ratios are highlighted in different
colors in Fig. 1.

The extremely low isotope values occurring in these locations could be due to several factors. First, high alti-
tude can lead to extremely low isotopes in precipitation as there is a strong negative correlation between them.
Tap water derived from local source that was initially contributed by local precipitation will probably display
similar isotope composition at very low ratios. This may, to some extent, explain the extremely low isotope ratios
of tap water in Lhasa and Nyingchi (3657 m and 3300 m). Second, in regions with high latitude, e.g., Harbin
and Heihe (44.1°N and 50.2°N), isotope ratios in precipitation is strongly linked to local temperatures in high
latitudes®>*. Tap water derived from regions with high latitude and low temperature tends to have lower isotope
values. In both regions mentioned above, high latitude and altitude are related to low temperature which can
influence isotope fractionation in precipitation.

In contrast with §'*0 and §°H, deuterium excess in China shows no clear pattern with extreme high values
(>14%o) found in northwestern arid region (including Xinjiang, Gansu, Qinghai provinces). This is the same
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Figure 2. Relationship between §'%0 and 3?H values and their frequency distributions in tap water. The
black line represents Tap Water Line (n =780) and the red line represents the Global Meteoric Water Line.

finding for extreme low values (<1%o) found in North China Plain and Inner Mongolia, except for one specific
city named Xichang (—0.77%o) located on Yunnan-Guizhou Plateau in southwestern China (see the dark brown
color site in Fig. 1).

Standard deviation of monthly isotope values of each site were calculated in order to analyze intra-annual var-
iability of tap water in China. The standard deviation values range from 0.06%o to 1.79%o, 0.12%o to 11.83%o and
0.01%o to 6.46%o for 6180, §’H and d-excess, respectively (Table 2). In general, intra-annual variability shows no
clear spatial pattern. For certain areas, isotope values exhibit low intra-annual variability, such as Inner Mongolia,
Gansu and Qinghai provinces. Sample locations with relatively high intra-annual variability mainly occurred
in coastal regions. Similar to §°H and §'®0, intra-annual variability of deuterium excess exhibits no clear spatial
pattern. Extreme standard deviation value (6.46%o) occurred in Xichang. Moreover, sampling locations with rel-
atively high intra-annual variability centered in western part of the country ranging from 2.5%o to 3.5%o.

Temporal variability of tap water isotopes. Temporal variability of isotopes in individual tap water
sampling locations was evaluated based on monthly dataset. However, due to certain unavoidable factors includ-
ing human factors and express delivery’s delay in sending and receiving sampling bottles, interval of tap sam-
ple acquisition wasn’t exactly 30 days but varied from 20 to 40 days. Sampling data series weren’t sequential at
monthly scale. Therefore, temporal variability was calculated by on-site seasonal comparison: spring (average
of March, April and May in 2015) minus winter (average of December in 2014, January and February in 2015),
summer (average of June, July and August in 2015) minus spring, autumn (average of September, October and
November in 2015) minus summer (see data statistics in Table 3).

Seasonal differences of §°H isotope values spanned 48.51%o (—25.99%o to 22.52%o) with an average of 0.38%o
and a standard deviation of 5.29%o. Seasonal differences of §'%0 isotope value spanned 5.88%o (—2.99%o to
2.89%o), with an average of 0.02%o and a standard deviation of 0.78%o. At national scale, there seems no specific
pattern of seasonal variability. However, detailed interpretations of seasonal patterns can be found at the regional
scale, which is consistent with the findings in precipitation isotope across China by Chen et al.*’ (Fig. 4(a)).
Considering the relationship between &H and 6130, only the §*H plots are shown.

In southeastern regions (Guangxi, Guangdong, Jiangsu, Zhejiang, Shanghai, Fujian, Anhui, Jiangxi, Hunan,
Hubei) with a total number of 27 samples locations, most sample locations experienced isotope values rose from
winter to spring and dropped from spring to autumn. In general, the maximum isotope values of southeastern
region usually occurred in spring and the minimum values occurred in summer or winter.

In northeastern China (Heilongjiang province, Jilin province, Liaoning province and northeast of Inner
Mongolia) with 8 samples locations, isotope values in all samples locations except Dalian and Dandong (see rose
quartz and apple green color site in Fig. 1) reached the lowest point in late spring or early summer (May or June)
and increased to top in late autumn or early winter (November or December) with a spanning range of 6.95%o
in average.
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Figure 3. Mean annual observed 3'30, 3?H and d-excess values in tap water overlaid on a background
generated from Inversed Distance Weighted (IDW) interpolation model in ArcGIS 9.3 (https://www.arcgis.
com/features/index.html).

Different from the first-sight-guess that extreme isotope values should occur in summer or winter with differ-
ence value spanning a large range, for example, stable isotopes in precipitation present regular temporal trends
driven by monsoon?’. Seasonal variability of isotopes in tap water exhibits various pattern with extreme values
occurring in various seasons. The reasons might be: a) tap water has mixing water sources as compared to precip-
itation; and b) there is a lag time between tap water and precipitation. Although only 6 locations on Tibet Plateau
provided tap water samples, seasonal trend of isotopes in 5 locations except Nyingchi (see ginger pink color site in
Fig. 1) exhibited similar pattern with isotope values decreasing from winter to spring and increasing from sum-
mer to autumn. Many factors could contribute to this trend including geographical, climatic, and hydrological
factors. Compared to warm regions, the hydrological factors influencing SITW in Tibet Plateau are more complex
due to its unique and comprehensive processes happening in cold area, e.g., snow and glacier melting®-*!.

These results mean intra-annual variabilities of isotope ratios in tap water are relatively large and the temporal
patterns of different regions divided according to the spatial pattern are significantly different. In other words, the
temporal patterns of isotopic compositions are, to some extent, correlated with spatial pattern.

Seasonal differences of deuterium excess value spanned 15.61%o (—8.12%o to 7.49%o) with an average of
2.44%o and a standard deviation of 2.36%o. Deuterium excess is known as providing information about climate
conditions of water moisture*2. Seasonal variability of d-excess is presented in Fig. 4(b). On national scale, deu-
terium excess values in 76% of the locations increased all the way from winter to summer for about 2.03%o in
average and dropped from summer to autumn for about 1.69%o in average. Special sample locations with different
variation patterns included Heihe in northeast, Korla and Karamay in northwest, 11 locations in north China,
Lhasa and Nyingchi on Tibet Plateau and 9 locations in southwest (see color site in Fig. 1). Tap water grabbed
from winter or autumn exhibited the most extreme negative d-excess values and lay furthest from GMWL, sug-
gesting a strong evaporative isotopic fractionation of the source waters. While tap samples from summer obtain-
ing the highest d-excess values suggested more evaporated moisture has been added to the atmosphere®.

Correlations between isotope values in tap water and environmental variables.  Given that iso-
topes in tap water present various spatial and temporal patterns across China, more detailed work was conducted
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1 Heihe 9 —13.88 —1593 | 058 | —1464 | —103.11 | —119.31 4.93 —~108.68 | 11.90 7.00 1.53 8.48

2 Harbin 13 —~1220 1346 | 043 | —12.72 —88.71 —96.62 2.54 —92.56 11.89 7.75 1.32 9.18

3 Karamay 10 —11.23 —1238 | 033 | —11.63 —75.23 —79.42 1.20 —77.20 19.60 1464 | 1.80 15.85
4 Urumchi 3 —10.66 —-10.86 | 008 | —10.77 —72.33 —73.48 0.48 —72.83 13.70 1291 | 032 13.32
5 Aksu 8 —7.73 —1125 | 117 —9.28 —56.86 —72.46 523 —63.41 17.56 4.94 434 10.80
6 Korla 12 —7.44 1048 | 077 —8.04 —54.63 —70.61 413 —57.31 13.20 4.90 2.11 7.02

7 Kashgar 10 —12.62 —1396 | 045 | —13.17 —88.37 —94.82 2.04 —91.19 18.41 1178 | 242 14.20
8 Jiuquan 6 —~10.53 -1092 | 013 | —10.73 —73.87 —75.12 0.42 —74.53 12.47 1034 | 0.68 11.28
9 Delingha 10 —9.16 —-10.11 | 029 —9.67 —58.89 —64.84 1.84 —61.76 19.11 1409 | 177 15.60
10 Golmud 10 —9.60 —~1056 | 036 | —10.03 —64.78 —67.99 0.91 —66.60 16.96 11.08 | 2.09 13.65
11 Xining 9 —6.75 —8.70 0.55 —~7.99 —44.16 —48.97 1.34 —47.21 20.60 9.87 321 16.74
12 Lanzhou 6 —10.02 —1054 | 016 | —10.22 —69.97 —75.37 1.70 —72.01 11.37 8.80 0.86 9.77

13 Baiyin 12 —6.49 —~1049 | 1.19 —~7.99 —42.03 7322 10.89 —51.13 16.21 5.10 3.07 12.83
14 Baotou 5 —9.12 —9.95 0.34 —9.59 —66.50 —72.78 2.77 —70.12 7.32 5.98 0.49 6.57

15 Hohhot 5 —10.08 —-1093 | 031 | —10.62 —77.41 —80.60 1.20 —78.20 9.60 0.04 351 6.73

16 Linhe 2 —9.87 —1094 | 053 | —10.41 —75.05 —79.33 2.14 —77.19 8.16 3.95 2.10 6.06

17 Yinchuan 5 —11.86 —12.08 0.08 —12.00 —84.27 —85.52 0.46 —85.08 11.11 10.63 0.19 10.89
18 Yulin 6 —7.43 —7.78 0.14 —-7.62 —59.42 —61.44 0.78 —60.57 0.82 —027 | 039 0.41

19 Taiyuan 5 —8.24 —9.20 0.35 —8.57 —62.41 —68.00 2.09 —63.98 561 3.48 0.84 4.57

20 Jinzhong 10 —7.29 —8.87 0.57 —8.28 —56.54 —63.82 236 —60.48 9.75 1.79 2.60 5.74

21 Shijiazhuang 7 —6.42 —7.02 0.20 —6.74 —49.79 —54.11 1.33 —51.90 3.54 0.69 0.90 2.00

22 Anyang 8 —821 —8.47 0.08 —8.40 —53.51 —61.29 2.36 —60.16 12.16 5.78 1.85 7.04

23 Pingliang 10 —9.42 —-1071 | 046 | —10.18 —65.56 —72.53 227 —69.06 16.45 9.06 243 12.36
24 Ulanhot 12 —-10.31 —1128 | 032 | —10.78 —79.50 —84.39 1.06 —81.32 8.78 2.42 2.26 494

25 Xilinhot 5 —10.07 —-1050 | 015 | —10.29 —80.73 —82.83 0.73 —82.10 1.42 —054 | 076 0.24

26 Tongliao 8 —9.87 —10.75 | 027 | —10.18 —77.97 —80.18 0.76 —78.93 6.22 0.85 1.55 2.49

27 Changchun 3 —10.24 —-1055 | 013 | —10.38 —79.90 —80.20 0.12 —80.06 418 1.84 0.96 2.96

28 Chifeng 10 —8.59 —10.06 | 041 —9.70 —70.16 —77.51 1.83 —74.70 571 —145 | 177 2.89

29 Shenyang 13 —8.94 —9.58 0.20 —9.22 —65.82 —69.36 117 —67.33 7.41 5.39 0.65 6.39

30 Chengde 4 —8.23 —8.43 0.08 —8.30 —62.04 —63.17 0.45 —62.40 430 3.65 0.25 3.96

31 Dandong 6 —7.73 —8.89 0.40 —8.53 —53.30 —61.28 2.71 —58.86 10.37 8.45 0.70 9.35

32 Beijing 12 —9.38 —-1037 | 030 —9.81 —62.95 —67.89 1.68 —65.59 15.04 1144 | 0.89 12.87
33 Tianjin 4 —5.76 —7.03 0.50 —6.62 —49.04 —55.25 2.44 —53.15 0.96 —2.94 1.60 —0.19
34 Tangshan 4 —7.69 —-7.95 0.10 —7.83 —57.13 —58.12 0.40 —57.67 5.70 415 0.69 4.96

35 Baoding 7 —8.38 —9.06 0.24 —8.75 —62.37 —65.27 1.06 —63.81 7.23 4.69 091 6.22

36 Cangzhou 13 -9.38 —-10.75 | 033 | —10.40 —75.08 —78.65 0.89 —77.41 7.69 —007 | 1.82 5.81

37 Dalian 10 —6.37 —7.47 0.36 —6.89 —49.28 —54.98 1.96 —52.02 551 1.72 1.07 3.10

38 Hengshui 6 —10.59 —10.99 0.12 —10.84 —79.35 —81.31 0.64 —79.92 7.57 5.39 0.73 6.82

39 Dongying 8 —533 —7.39 0.75 —6.66 —45.28 —56.23 375 —51.95 3.84 —262 | 239 131

40 Yantai 9 —5.50 —6.81 0.38 —6.19 —44.09 —49.00 1.71 —46.69 6.62 —0.12 | 1.83 2.84

41 Weifang 6 —7.49 —8.46 0.34 —8.04 —56.04 —61.37 1.83 —59.10 6.49 3.92 0.98 5.23

42 Lhasa 12 —16.49 —17.74 | 038 | —17.26 | —122.99 | —132.09 2.75 —12947 | 13.01 5.39 1.80 8.58

43 Gannan 10 —9.90 —-10.80 | 028 | —10.20 —66.80 —69.49 0.80 —68.26 17.40 1158 | 1.85 13.31
44 Dingxi 10 —10.04 —1098 | 028 | —10.38 —67.64 —71.77 1.37 —69.97 17.50 1080 | 227 13.04
45 Longnan 7 1022 —-1068 | 014 | —1045 —68.60 —69.99 0.47 —69.23 15.46 13.18 | 0.68 14.41
46 Chengdu 11 —11.95 —13.17 | 033 | —1225 —81.70 —87.21 1.47 —83.83 18.12 1219 | 155 14.15
47 Nyingchi 10 —12.58 —14.38 0.56 —13.80 —87.42 —104.03 5.29 —98.49 13.78 10.87 0.91 11.91
48 Xichang 11 —7.34 —1297 | 179 —8.87 —63.42 —90.67 8.03 —71.77 1312 | —586 | 646 —0.77
49 Panzhihua 5 —~13.49 —1463 | 039 | —1421 —96.87 —108.98 430 —~105.09 | 11.02 7.32 1.34 8.60

50 Baoshan 6 —-9.63 —-1022 | 0.19 —9.81 —68.47 —72.78 1.56 —69.30 9.78 8.57 0.44 9.18

51 Kunming 9 —10.92 —1192 | 030 | —11.23 —81.09 —85.70 1.27 —82.66 10.04 578 1.48 7.16

52 Quijing 3 —9.06 —9.84 0.32 —9.42 —68.62 —73.58 2.03 —71.20 5.13 3.56 0.68 417

53 Simao 10 —7.38 —1020 | 091 —8.62 —55.32 —69.16 5.14 —6229 12.44 3.02 2.90 6.63

54 Wenshan 8 —6.39 —~10.80 | 131 —9.30 —49.35 ~76.26 7.98 —66.50 10.16 1.80 2.56 7.87

55 Tianshui 10 —8.61 —9.64 0.32 —9.08 —58.07 —61.56 1.00 —60.06 15.77 1016 | 1.9 12.54
56 Zhengzhou 7 —7.82 —8.89 0.40 —8.42 —54.73 —64.17 3.99 —59.74 10.48 5.96 1.36 7.60

Continued
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8130 (%o) 8%H (%o) d-excess (%o)
No Sample site count Max Min std Average Max Min std Average Max Min std Average
57 Kaifeng 7 —5.98 —8.32 0.80 —7.61 —36.40 —60.71 8.06 —55.36 11.46 0.95 2.90 5.56
58 Hanzhong 12 —7.48 —9.04 0.41 —8.48 —47.63 —59.40 3.21 —54.99 13.85 11.97 0.59 12.83
59 Xianyang 11 —11.08 —11.80 0.22 —11.47 —81.35 —86.57 1.54 —83.57 9.91 5.80 1.16 8.18
60 Enshi 5 —6.30 —8.28 0.72 —7.62 —34.56 —60.80 8.70 —48.44 15.88 5.48 3.69 12.53
61 Wuhan 9 —7.62 —9.44 0.56 —8.69 —47.68 —65.66 5.41 —58.10 13.30 9.67 1.16 11.38
62 Chongqing 11 —4.34 —9.22 1.48 —6.57 —22.98 —60.67 11.83 —41.47 15.78 7.10 2.32 11.08
63 Yueyang 5 —4.59 —4.70 0.04 —5.25 —26.60 —30.55 1.46 —28.86 10.13 6.37 1.33 8.50
64 Changsha 5 —4.76 —5.52 0.26 —5.21 —25.56 —33.72 2.88 —30.78 14.18 8.98 2.11 10.87
65 Bijie 11 —8.43 -9.72 0.38 —9.16 —55.45 —64.65 3.06 —60.88 15.13 9.87 1.21 12.41
66 Zunyi 1 —6.34 —6.34 0.00 —6.34 —41.09 —41.09 0.00 —41.09 9.59 9.59 0.00 9.59
67 Tongren 10 —6.52 —8.29 0.62 —7.25 —38.10 —49.04 3.37 —43.60 17.55 11.44 2.02 14.41
68 Huaihua 9 —5.81 —7.56 0.57 —6.65 —33.91 —45.41 3.33 —40.74 17.03 3.74 3.67 12.42
69 Hong Kong 10 —4.85 —5.99 0.39 —5.38 —28.10 —33.25 1.38 —-31.71 15.20 8.94 2.28 11.31
70 Guiyang 8 —6.00 —8.50 0.93 —7.42 —41.96 —55.02 4.88 —49.69 14.58 6.04 3.42 9.65
71 Guilin 13 —5.63 =725 0.56 —6.19 —32.39 —42.30 3.40 —36.37 16.88 10.88 1.69 13.18
72 Zaozhuang 13 —4.76 —7.69 0.81 —5.91 —39.45 —51.91 4.03 —45.88 9.64 —1.52 2.65 2.85
73 Xuzhou 12 —10.16 —11.16 0.24 —10.48 —75.35 —77.36 0.54 —76.46 11.88 597 1.51 7.37
74 Suzhou 9 —6.98 —8.37 0.40 —8.05 —54.38 —58.28 1.12 —57.36 8.68 143 2.09 7.07
75 Yancheng 13 —4.05 —6.77 0.70 —5.19 —28.06 —45.65 4.69 —37.20 8.53 1.29 1.88 4.29
76 Nantong 5 —6.52 —8.17 0.77 —7.51 —40.77 —56.79 7.29 —50.29 12.28 8.01 1.45 9.82
77 Hefei 5 —5.13 —5.93 0.36 —5.58 —32.99 —41.08 3.55 —37.67 8.02 5.61 0.99 6.98
78 Maanshan 5 —6.50 —7.92 0.52 —7.37 —42.35 —53.14 4.06 —49.15 10.81 8.36 0.81 9.78
79 Shanghai 10 —3.80 —6.17 0.68 —4.74 —24.10 —37.92 3.97 —30.69 11.47 4.87 2.00 7.19
80 Shaoxing 6 —6.93 —7.98 0.33 —7.49 —42.07 —53.21 391 —48.58 13.37 9.34 151 11.36
81 Hangzhou 2 —6.35 —6.46 0.06 —6.40 —39.75 —40.61 0.43 —40.18 11.05 11.02 0.01 11.04
82 Quzhou 13 —6.28 —7.26 0.26 —6.79 —38.09 —46.50 2.50 —42.46 14.41 10.10 1.45 11.85
83 Lishui 9 —6.67 —8.36 0.51 —7.45 —39.29 —54.74 4.57 —47.29 14.09 9.78 1.26 12.35
84 Fuzhou 11 —5.74 —7.54 0.62 —6.49 —32.00 —48.53 5.48 —40.50 14.33 6.37 2.03 11.40
85 Longyan 7 —6.31 —6.75 0.12 —6.54 —37.16 —40.36 1.05 —38.85 14.30 12.68 0.55 13.49
86 Liuzhou 2 —5.96 —6.32 0.18 —6.14 —33.59 —36.75 1.58 —35.17 14.06 13.79 0.14 13.93
87 Shaoguan 13 —5.39 —7.61 0.69 —6.38 —30.01 —44.33 3.96 —38.23 16.53 9.45 223 12.81
88 Xiamen 10 —5.85 —7.44 0.49 —6.43 —36.71 —46.74 3.60 —40.38 13.62 9.90 1.15 11.06
89 Bose 9 —8.39 —9.86 0.50 —8.92 —57.36 —65.20 2.07 —60.41 14.67 8.22 2.44 10.93
90 Guangzhou 9 —4.86 —6.90 0.60 —6.14 —26.02 —45.69 5.66 —38.86 12.83 9.27 1.14 10.29
91 Nanning 11 —7.44 —8.66 0.36 —8.02 —49.04 —60.50 3.05 —55.35 10.49 7.46 0.85 8.79
92 Shenzhen 9 —4.80 —7.15 0.74 —5.69 —28.86 —43.65 4.48 —35.60 13.52 8.11 1.81 9.92
93 Qinzhou 5 —5.97 —6.93 0.38 —6.40 —36.32 —44.15 2.99 —40.18 11.83 10.22 0.54 10.99
94 Zhanjiang 8 —4.01 —8.08 1.36 —5.68 —26.91 —53.91 9.86 —38.54 10.74 4.60 229 6.87
95 Haikou 7 —6.31 —6.78 0.15 —6.57 —41.84 —45.47 1.32 —44.17 9.46 6.95 0.77 8.38

Table 2. Summary of 3'%0 and §”H values in tap water samples and d-excess = 2H-85'%0.

to analyze environmental factors influencing tap water isotopes. As demonstrated in many previous studies, iso-
topes in precipitation?#*° or river'® are strongly correlated to geographical factors (e.g. longitude, latitude, ele-
vation) and climatic factors (e.g., air temperature, precipitation, relative humidity and air pressure et al.) However,
tap water does not directly get involved in natural water circulation processes like precipitation, surface water or
groundwater. It is a mixture of locally available waters (including rivers, lakes, wells and springs). Therefore, inter-
pretation of tap water isotopes and environmental variables may not be similar to precipitation, which presents
‘temperature effect’ resulting from different processes of isotopic fractionation?.

Figure 5 illustrates correlations between mean annual values of 6'%0 and mean annual values of climatic vari-
ables or geographic parameters. Note that the elevation data used here is taken from station observation provided
by China Meteorological Data System (Table 1). Even though spatial pattern (“continental effect”) of isotopes
can appear in tap water, the coefficient of determination between §'30 and longitude, latitude and elevation were
low (r?=0.15,0.17 and 0.3 for longitude, latitude and elevation, respectively, p < 0.001 for all cases) (Fig. 5(a-c)).
Nonetheless, the slope of regression line that reflects elevation effect is —0.15%0/100 m, which compared well with
results of China precipitation 'O values demonstrated by Liu ef al.>* (—0.13%0/100 m for height).

Correlations between isotopic composition and meteorological factors have been analyzed with 4 extreme
low locations (Lhasa, Nyingchi, Heihe and Harbin mentioned in section 3.1) left out (Fig. 5(d-g)). tap water 630
across China had a relatively strong positive correlation with mean annual precipitation (MAP), mean annual
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Heihe NE —14.73 —14.77 —14.78 —14.40 —109.69 —110.73 —108.27 —106.58 8.18 7.40 9.97 8.65
Harbin NE —12.59 —12.77 —13.29 —12.27 —92.47 —93.10 —95.07 —89.62 8.23 9.05 11.21 8.55
Karamay NwW —11.56 —11.39 —12.01 —11.52 —77.52 —76.17 —78.00 —77.34 14.99 14.95 18.07 14.83
Urumchi Nw —10.77 —72.83 13.32

Aksu NwW —8.20 —8.70 —10.57 —8.21 —58.09 —61.14 —69.12 —58.40 7.52 8.43 15.42 7.31
Korla NwW —8.33 —7.84 —8.07 —-7.71 —59.23 —56.30 —57.01 —55.45 7.44 6.45 7.55 6.25
Kashgar NwW —13.06 —12.72 —13.58 —13.34 —91.75 —89.02 —92.01 —92.36 12.71 12.72 16.61 13.77
Jiuquan NwW —10.63 —-10.77 —10.92 —74.16 —74.93 —74.86 10.89 11.27 12.47

Delingha QP —9.54 —9.84 —-9.90 —9.32 —61.44 —63.94 —61.52 —59.94 14.85 14.76 17.66 14.62
Golmud QP —9.63 —9.80 —10.40 —10.02 —64.78 —66.24 —67.34 —66.82 12.29 12.19 15.88 13.34
Xining QP -7.70 —7.53 —8.44 —8.17 —45.97 —46.33 —48.32 —47.48 15.62 13.90 19.20 17.85
Lanzhou N —10.21 —10.29 —10.13 —72.08 —72.11 —71.82 9.57 10.18 9.26
Baiyin N -9.73 —7.64 —7.50 —6.98 —69.07 —46.55 —44.81 —44.09 8.81 14.58 15.20 12.72
Baotou NwW —9.62 —9.54 —70.28 —69.88 6.68 6.40

Hohhot NwW —10.42 —10.91 —78.52 —77.72 4.82 9.59

Linhe NwW —10.41 —77.19 6.06

Yinchuan NwW —11.95 —12.03 —84.73 —85.32 10.87 10.91

Yulin N —7.61 —7.64 —60.41 —60.73 0.44 0.38

Taiyuan N —8.47 —8.72 —63.17 —65.20 4.59 4.55

Jinzhong N —7.53 —8.68 —8.61 -7.79 —57.77 —62.91 —61.54 —57.89 2.50 6.57 7.33 4.39
Shijiazhuang N —6.80 —6.93 —6.71 —6.42 —52.84 —52.93 —50.62 —50.64 1.57 247 3.07 0.69
Anyang N —8.34 —8.42 —8.45 —8.39 —58.68 —61.05 —60.65 —60.91 8.06 6.35 6.94 6.23
Pingliang N —10.71 —10.01 —10.58 —=9.77 —72.53 —69.63 —69.86 —66.53 13.11 10.42 14.75 11.66
Ulanhot NE —10.55 —10.68 —10.98 —10.92 —81.12 —82.05 —81.41 —80.72 3.27 3.39 6.43 6.66
Xilinhot Nw —10.19 —10.44 —81.91 —82.37 —0.36 1.13

Tongliao NE —9.93 —10.07 —10.47 —9.87 —77.97 —78.59 —79.84 —78.14 1.50 1.96 3.90 0.85
Changchun NE —10.38 —80.06 2.96

Chifeng N —9.45 —9.73 —9.89 —9.80 —74.10 —74.70 —75.09 —75.34 1.46 3.13 4.00 3.10
Shenyang NE —9.30 —9.34 -9.15 —9.04 —67.77 —68.31 —66.51 —66.60 6.63 6.44 6.68 572
Chengde N —8.43 —8.25 —63.17 —62.15 4.30 3.84

Dandong NE —8.81 —8.24 —60.88 —56.84 9.59 9.11

Beijing N —9.61 —-9.92 —-9.97 —9.73 —64.65 —66.44 —66.36 —64.89 12.23 12.90 13.40 12.95
Tianjin N —6.91 —5.76 —54.51 —49.04 0.73 —2.94

Tangshan N —7.69 —7.86 —7.89 —57.13 —58.05 —57.45 4.41 4.86 5.70

Baoding N —8.68 —8.72 —8.90 —63.49 —63.82 —64.27 5.94 5.96 6.90

Cangzhou N —10.43 —10.46 —10.68 —10.04 —77.24 —77.61 —78.30 —76.52 6.18 6.03 7.11 3.78
Dalian NE —6.77 —6.56 —7.31 —6.96 —51.18 —50.30 —53.93 —52.73 2.94 2.15 4.56 291
Hengshui N —10.88 —10.80 —80.24 —79.60 6.81 6.83

Dongying N —7.20 —-7.21 —6.32 —5.47 —55.13 —53.89 —50.08 —46.18 247 3.76 0.44 —2.45
Yantai N —6.05 —6.40 —6.42 —5.60 —45.97 —48.43 —46.84 —44.20 2.45 2.74 4.54 0.63
Weifang N —8.23 —8.34 —7.61 —60.35 —60.20 —56.68 5.50 6.49 4.19
Lhasa QP —17.29 —17.39 —17.29 —17.06 —130.29 —131.19 —128.67 —127.71 8.02 7.92 9.63 8.76
Gannan QP -9.97 —10.14 —10.57 —9.96 —67.54 —68.79 —68.87 —67.36 12.23 12.36 15.66 12.29
Dingxi N —10.06 —10.40 —10.58 —10.26 —69.14 —71.27 —68.59 —70.33 11.38 11.92 16.04 11.72
Longnan N —10.43 —10.68 —10.40 —69.21 —69.99 —68.99 14.24 15.46 14.22
Chengdu N —12.22 —12.00 —12.35 —12.42 —84.80 —82.65 —83.84 —84.33 12.93 13.33 14.93 15.00
Nyingchi QP —13.89 —13.41 —13.91 —14.06 —99.61 —94.76 —99.37 —100.98 11.48 12.49 1191 11.46
Xichang N —8.01 —9.80 —7.42 —9.78 —68.59 —75.40 —63.77 —76.64 —4.51 2.98 —4.42 1.64
Panzhihua SW —14.31 —14.63 —13.49 —106.54 —108.98 —96.87 7.98 8.07 11.02

Baoshan N —-9.93 —9.76 —9.73 —70.64 —68.61 —68.70 8.79 9.45 9.13
Kunming N —11.11 —11.01 —11.23 —11.48 —82.66 —81.94 —81.75 —83.99 6.26 6.17 8.12 7.82
Qujing SW —9.60 —9.06 —72.49 —68.62 4.34 3.83

Simao N —9.02 —7.79 —8.57 —9.35 —64.87 —58.82 —60.04 —67.16 7.28 3.53 8.55 7.61
Wenshan SW —10.69 —9.81 —9.11 —6.39 —75.38 —69.36 —65.30 —58.98 10.16 9.10 7.57 5.20
Tianshui N —8.61 —8.95 —9.27 —9.16 —58.07 —60.51 —60.02 —60.33 10.79 11.12 14.15 12.94
Zhengzhou N —8.09 —8.83 —8.15 —57.43 —63.73 —54.73 7.30 6.94 10.48
Continued
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Kaifeng N —8.15 —8.07 —6.41 —8.11 —60.35 —58.76 —45.10 —60.71 4.85 5.83 6.20 4.16
Hanzhong N —8.91 —8.54 —8.22 —8.24 —58.95 —55.20 —52.84 —52.98 12.30 13.11 12.93 12.96
Xianyang N —11.58 —11.54 —11.55 —11.24 —84.51 —84.49 —83.45 —82.12 8.11 7.87 8.93 7.80
Enshi SE —8.11 —6.90 —54.28 —39.68 10.56 15.48

Wuhan SE —8.77 —8.64 —8.01 —9.27 —59.01 —57.54 —51.04 —64.36 11.19 11.62 13.03 9.77
Chongging SW —545 —7.35 —4.46 —7.45 —40.72 —44.71 —24.39 —50.38 9.79 14.08 11.28 9.24
Yueyang SE —4.62 —4.65 —29.65 —28.08 7.34 9.08

Changsha SE —5.25 —5.14 —32.78 —27.77 9.21 13.36

Bijie SW -9.32 -9.21 —8.72 —-9.72 —63.12 —61.32 —57.43 —62.02 11.43 12.34 12.31 14.13
Zunyi SW —6.34 —41.09 9.59

Tongren SW —7.22 —6.69 —7.77 —7.29 —44.88 —40.07 —45.68 —44.62 12.90 13.48 16.52 13.73
Huaihua SE —6.05 —7.02 —6.87 —38.75 —41.79 —41.69 9.61 14.40 13.24
Hong Kong SE —5.10 —5.06 —5.78 —5.38 —30.95 —30.58 —32.83 —31.96 9.83 9.92 13.38 11.11
Guiyang SW —6.14 —7.34 —8.35 —7.25 —42.53 —51.12 —52.78 —48.06 6.55 7.58 14.02 9.92
Guilin SE —5.82 —5.79 —6.81 —6.48 —34.73 —32.90 —39.10 —39.28 11.83 13.38 15.39 12.56
Zaozhuang N —6.05 —5.36 —6.36 —6.61 —46.19 —41.51 —46.72 —48.98 2.24 1.37 4.13 3.87
Xuzhou N —10.42 —10.36 —10.80 —10.29 —76.73 —76.07 —77.01 —76.03 6.66 6.80 9.41 6.61
Suzhou N —8.12 —8.32 —8.18 —7.47 —57.81 —58.11 —57.51 —55.65 7.13 8.41 7.96 4.11
Yancheng SE —5.15 —4.39 —5.74 —5.48 —37.83 —31.04 —39.92 —39.79 3.38 4.04 598 4.07
Nantong SE —7.61 —7.37 —51.30 —48.78 9.61 10.14

Hefei SE —5.84 —5.41 —40.96 —35.47 5.79 7.78

Maanshan SE —7.69 —6.87 —52.06 —44.77 9.50 10.21

Shanghai SE —4.95 —4.22 —543 —4.48 —32.85 —26.68 —34.01 —30.67 6.78 7.07 9.46 5.18
Shaoxing SE —7.75 —7.23 —52.07 —45.09 9.95 12.78

Hangzhou SE —6.40 —40.18 11.04

Quzhou SE —6.97 —6.59 —6.91 —6.63 —44.79 —40.92 —41.39 —41.99 10.96 11.76 13.92 11.04
Lishui SE —8.24 —7.11 —7.90 —7.24 —54.74 —43.40 —50.32 —46.67 11.21 13.47 12.87 11.28
Fuzhou SE —6.25 —5.96 —6.60 —7.47 —40.60 —34.28 —41.74 —47.84 9.42 13.39 11.04 11.95
Longyan SE —6.39 —6.59 —6.55 —6.75 —37.88 —39.04 —38.89 —40.36 13.25 13.66 13.49 13.62
Liuzhou SE —6.14 —35.17 13.93

Shaoguan SE —6.25 —5.55 —6.66 —7.09 —38.86 —32.53 —39.03 —42.28 11.15 11.88 14.28 14.46
Xiamen SE —6.24 —6.13 —6.64 —6.95 —39.55 —37.22 —41.80 —44.97 10.38 11.85 11.33 10.62
Bose SW —-8.61 —9.12 —9.03 —59.88 —59.76 —61.60 9.03 13.17 10.60
Guangzhou SE —6.16 —5.49 —6.38 —6.53 —39.69 —31.97 —40.62 —42.75 9.58 11.96 10.44 9.51
Nanning SE —7.94 —7.76 —7.95 —8.54 —54.79 —54.35 —53.91 —59.61 8.70 7.69 9.68 8.71
Shenzhen SE —5.55 —5.03 —6.24 —6.03 —35.72 —31.55 —37.80 —38.15 8.64 8.71 12.10 10.09
Qinzhou SE —6.55 —6.16 —41.10 —38.79 11.32 10.49

Zhanjiang SE —6.53 —4.23 —5.12 —7.02 —45.68 —28.68 —30.35 —48.74 6.58 5.16 10.62 7.42
Haikou SE —6.49 —6.64 —6.31 —6.63 —42.49 —44.71 —41.84 —45.14 9.46 8.42 8.60 7.92

Table 3. Summary of 3’80, 3’H and d-excess seasonal values in tap water samples. NE, NW,N,SW,SE,QP
stands for stands for different regions of China namely northeastern, northwestern, northern,
southwestern, southeastern and Qinghai-Tibet Plateau.

temperature (MAT) and mean annual relative humidity (MARH) (r*=0.41, 0.32 and 0.36 for MAP, MAT and
MARH, respectively, p < 0.001 for all cases). The correlation with mean annual air pressure (MAPR) was weaker
(r’=0.25, p< 0.001). The §'®O-temperature gradient was 0.21%o/°C, lower than values of China precipitation
with a range between 0.27%o/°C and 0.58%o/°C>.

Based on these relations, a multiple regression model on national scale can be obtained as

6§80 (%0) = — 6 + 0.026 LON(°) — 0.14 LAT(°) — 0.001 ELE(m) (r* = 0.47, p < 0.01). )
Considering climatic parameters, multiple regression model can be expressed as

§'80(%0) = —20.37 4 0.052 MAT(°C) + 0.00073 MAP(mm) -+ 0.036 MARH (%)
+ 0.084 MAPR (kpa) (r* = 0.45, p < 0.01) 3)

Similarly, multiple regression model for tap water °H is as follows:
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Figure 4. Seasonal differences of 3’H and d-excess values in tap water, expressed in circles with different
sizes and two colors, green represents value decreasing and red represents increasing, circle size represents
the magnitude of seasonal variation. (All of the items were generated with Arcgis 9.3, https://www.arcgis.com/

features/index.html).
§%H (%0) = — 16 + 0.04LON(°)—-1.27LAT(°) — 0.01ELE(m) (r* = 0.46, p < 0.01) (4)
§°H(%0) = —140.93 + 0.44MAT(°C) + 0.0071 MAP (mm)

+ 0.37MARH (%) + 0.46MAPR (kpa) (r* = 0.47, p < 0.01) (5)

Correlations between mean annual d-excess and environmental variables were also analyzed. However, there
are no significant correlations between d-excess and those seven environmental factors with all correlation coef-
ficients lower than 0.1. D-excess in air masses (and hence precipitation) depends on the relative humidity of the
air masses at their oceanic origin, the ocean surface temperature, and kinetic isotope effects during evaporation®’.
Given this, it is expected that correlations between d-excess and other environmental factors are weak. In addi-
tion, “mixing effect’, involving different natural water sources, can also smear the signature leading to such results.

The limitations of this work arise from the data constraints, and the complexity of the natural water cycle and
tap water system. First, tap water isotope data requires improvements in sampling duration and spatial cover-
age to better represent the spatial and temporal pattern across the whole country. This is especially true for the
seasonal variability analysis and multi-year observations are preferable. Therefore, current analyses on temporal
variability at the seasonal scale might need further refinement. Second, because of the difficulty in sampling
concurrent precipitation, surface water, groundwater and examining the complex tap water processing system,
we can hardly trace the initial origin of tap water and thus decouple all the mixing signature based on the current
data. In this regard, correlations with environmental factors may be informative, but not ideal to investigate the
controlling factors of tap water stable isotopic compositions. Further work is needed to better understand the
impact of human activity on drinking water system.

Conclusion

To our best knowledge, this study is the first to report tap water isotopic composition over China, which was
achieved by establishing a nation-wide volunteer network. Result demonstrated that SITW spatial pattern pre-
sents “continental effect” with a decreasing trend in isotopic compositions from coastal regions with low latitude
and elevation to inland regions with high latitude and elevation. SITW seasonal trend indicates clearly regional
patterns but no trends at the national level, which is consistent with spatial pattern. Also, there are positive corre-
lations between mean annual isotope values and meteorological parameters including precipitation, temperature,
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Figure 5. Correlations between mean annual observed §'%0 and (a) longitude (°), (b) latitude (°), (c)
elevation (m), (d) mean annual relative humidity ( MARH, %), (e) mean annual precipitation (MAP, mm),
(f) mean annual temperature (MAT, °C), (g) mean annual air pressure (MAPR, kpa). All isotopes data and
meteorological data are means between December 2014 and December 2015.

relative humidity and air pressure. Correlations between isotope values and geographic factors taken individually
are relatively weak but through multiple regression model, the combined geographic factors explain a large varia-
bility in isotopic compositions. This work presents the first STTW map in China and establishes a benchmark for
further stable isotope research across China.
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