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ABSTRACT 
This paper discusses a new roughness penalty for use in 
estimation problems including image estimation prob- 
lems. It is one of a new class of penalty functions for use 
in estimation and image regularization that has recently 
been proposed. These functions penalize the discrepancy 
between an image and a shifted version of itself; here the 
discrepancy measure is the I-divergence. This penalty is 
closely related to a penalty used for density estimation 
that was introduced by Good and Gaskins. Roughness 
penalty methods form an attractive alternative to Markov 
random field priors, achieving many of the same proper- 
ties including the introduction of neighborhood struc- 
tures. An example of the use of this new penalty for 
radar imaging using real radar data has been examined. 

1. INTRODUCTION 
Markov random field models are commonly used in 
image estimation and regularization [ 1,2,8]. However, 
there does not appear to be a standard or natural model 
for nonnegative-valued images in the same sense that 
Gauss-Markov random fields are natural for real-valued 
images. The penalty proposed here, based on the I- 
divergence between an image and a shifted version of 
itself, is an attractive alternative. While penalties may be 
considered to be equivalent to priors, their use may be 
better motivated by taking the viewpoint proposed here. 

Penalty methods may be classified into two cate- 
gories: those penalizing the discrepancy with a prior 
guess and those penalizing the roughness of the estimate. 
Our approach is the latter, and is developed in detail in 
[ 131. The former are discussed in recent papers by Byrne 
[3,4], they motivate Csiszar's results [5] and Jones' 
results [10,11], and they include maximum entropy 
penalties. Lange [ 121 (see also references in [ 121) uses 
penalties that are special cases of those derived in [13]. 
In [13], the I-divergence penalty is shown to be a dis- 
cretization of an information theoretic penalty due to 
Good and Gaskins [7], giving further evidence of its 
importance in estimation problems. 

2. ROUGHNESS PENALTIES 
Let R be the real line, R+= { x  E R : x > 01. Let 
V E {R, R+). Let xi be a permutation on n letters. A 
shijii Si : V" + V" (generated by the permutation xi)  is 
defined by [13] 

[si(x)lk = xzj(k) - (1) 

These shifts are circular in that no entries are shifted off 
the lattice. Examples include left and right shifts for 
sequences, and vertical and horizontal shifts for images. 
A function d : V " x V "  +R+u{OJ is called a discrep- 
ancy measure if d ( x ,  4) = 0 if and only if x = 4. The 
types of discrepancy measures studied are motivated by 
the work of Csiszar [5] and Jones [lo]. These include 
squared error and divergence. Let V = R+. The I- 
divergence is defined by 

J (2) 
xk c)  = 5 [xk log - xk + {k 

k=l 

Definition. A roughness penalty with respect to the 
shifts S = isl, S2, . . . , SI] is a mapping 
0 : V" + R+u{OJ defined by 

I 

i=l 
(3) @(x) = wid(x, Six) , 

where wi > 0 is the ith weight. As a direct consequence 
of the properties of the discrepancy measure q x )  2 0 
and @(x)=O if and only if S i x = x ,  for all 
i = l , 2  ,...) I .  

Let L = g. The divergence penalty with respect 
to left and right shifts is 

0,(x) = I ( x ,  S,X) + I (x ,  S,x) (4) 
n 

X m  X m  = (x, log - - x, + x,1 + x,  log - - x,  + x*+1) , 
ml Xm-1 Xm+1 

This penalty has the nice feature that it is defined only for 
x E R: and it arises naturally in terms of shifts and the T- 
divergence. Since the shifts are circular, it may be 
rewritten in several ways including 

n 

-1 
01 (XI = - C xm [OW xm+1- log xm) 
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- (log xm - log xw1)I * (5 )  

In this form, it is a weighted second difference of the log- 

Suppose that y E V M  is measured. Given x, the proba- 
bility density function for y is f(y1x). Assume that for 

arithms. This may also be view& as a &-retiation of 
the penalty due to Good and Gaskins [7] (see [13] for 

all y there ' an ' ' '" such that f(ylx) ' o. Then the 
penalized E likelihood problem is to find the 
V" that maximizes details). 

The divergence penalty may be extended to images 
by defining vertical and horizontal shifts. Let x E kM. 
Define the vertical shift Sv and horizontal shift SH in the 
obvious (circular) ways. Then the divergence penalty 
with respect to shifts S = {Sv, S i ' ,  S H ,  S i ]  is 

@,(XI = I(x, Sv(x)) + I(x, sG'(x)) 

+ m, SH(X)) + m ,  S;:(x)) . 

I(x) = log f(ylx) - a@(x) . (7) 

In this problem, a is the weight given to the penalty and 
it controls the amount of smoothing. Larger values of a 
give higher weight to the penalty and induce more 
smoothing in the estimate. 

The connection to prior probabilities is clear from 
(7). If fAx) is a prior probability density function on x, 
then the loglikelihood function for estimating x is (6) 

An important property of penalties when used in 
estimation problems is convexity. A sufficient condition 
for @ to be convex is that the Hessian of a, 
Ho = V&CD(x), is nonnegative definite; in turn, this Hes- 
sian is nonnegative definite if the matrix of second partial 
derivatives of d is nonnegative definite. Throughout 
most of this paper, a special form for d is assumed. A 
discrepancy measure d is generated by the scalar dis- 
crepancy measure h if 

n 

d(x, 5 )  = E h ( x m ,  5,) 
-1 

Each of the discrepancy measures discussed in this paper 
is generated by a scalar discrepancy measure. The sec- 
ond derivatives of h then determine whether CD is convex. 
Lemma 1 [13]. Let V = R+ and let d be generated by h. 
If h(x, 5 )  = xf(x/{) for some function f that is twice dif- 
ferentiable, then @ is convex if 2f(x) + xf(x) 2 0. 

An example of this lemma is given by the I- 
divergence. There, f ( ~ )  = log x + l/x - 1, and 
2f + xf = l/x > 0. Discrepancy functions of the form 
given in the lemma play an important role in information 
theory (see [5,6]). The Itakuro-Saito distance is not in 
this form and is not recommended [13]. 

These penalties induce neighborhood structures in 
the same way as Markov random field priors if d is gen- 
erated by h. Following Besag [ 1,2], the neighborhood of 
site k is the set N ( k )  = {#(k), . . . , zIf'(k)]. The neigh- 
bors of xk are the entries in the set {x, : 1 E N ( k ) ] .  A 
coding set C is a set of sites such that no two sites in the 
set are neighbors. If a family of coding sets 
{C,, C,,. . . , C J ]  forms a partition of {1, 2,. .. , n], the 
labeling of sites by the integers {1, 2, . . . , J ]  according 
to their coding sets is called a coloring. 

3. PENALIZED ESTIMATION 

1' (XI = log f Wx) + 1% f x ( x ) .  Clearly, if 
f,(x) = Z-' exp[-a@(x)], where Z = exp[-aO(x)]dx, 
then the penalty is equivalent to the prior. For least 
squares discrepancy measures, the prior is Gaussian. For 
other discrepancy measures such as the I-divergence, the 
equivalent prior may not take on a common form. For 
this reason, it may be easier to justify the use of (7) from 
the penalty view than from the prior probability view. 

The neighborhood structure may be used to derive 
an expectation-maximization (EM) algorithm based on 
coding sets [13]. Assume there exists z E V" such that 
(i) given z the enuies of y are independent of x and (ii) 
the conditional density function of the kth enuy of z, zk, 
given x depends only on xk. The set of values of z are 
called the complete data space, the set of values of y the 
incomplete data space. We may write 

I 

where 
n 

-1 
fi(zk) = n f1m(ztnlxm) - (9) 

Let a coloring be based on the coding sets 
C = {Cl, C2, -, C J ] .  The EM algorithm from [13] 
based on the coding sets C has the following steps: 
1. Obtain an initial estimate xo for x; let p = 0. 
2. @-step) Let j = p + 1modJ; for each k E C j ,  com- 
PUk 

Q't(xklxP) = E[logfiAzklxc)ly. xP1 . (10) 
3. (M-step) For each k E Cj maximize Q'k(XkIXP) over 
Xk to get x r ' ;  for I 
4. If converged, stop, else p = p + 1 go to step 2. 

At each iteration, this algorithm updates only that 
part of the vector x corresponding to one coding set. The 
coding sets are updated cyclically. The M-step is 

cj, xi'+' = xp. 
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straightforward and parallelizable due to the decoupling 
that results from this choice of complete data space. The 
computation of the E-step may be the hard part. For 
many problems, however, the decoupling above is natu- 
ral and the E-step may be no more complicated than a 
conventional EM algorithm. 

In [13], this algorithm is shown to converge under 
certain conditions. Essentially, the conditions are that a 
conventional EM algorithm would converge plus a con- 
dition that guarantees that the cyclic updating converges 
to the same point. The condition depends on viewing the 
update from step p U) step p + J as one step, then show- 
ing that this algorithm converges. The proof is based in 
part on recent work by Hero and Fessler [9]. 

4. APPLICATION TO RADAR IMAGING 
As described in [14,15], diffuse radar targets are com- 
monly modeled as having a reflectivity density that is an 
uncorrelated complex Gaussian random process whose 
intensity is called the scattering function. Experimental 
data have been collected from a rough rotating sphere 
placed on a pedestal in a compact radar range [141. 
Under the assumptions in [14]. after preprocessing the 
data are zY, an image of independent, exponentially dis- 
tributed random variables with means xu + No, where x i  
is the discrete approximation to the scattering function 
and No is the receiver noise intensity (measured as 
0.0023, see [14]). Since the data are independent, there 
is no need to use an iterative algorithm and the loglikeli- 
hood minus the penalty ('7) is minimized for various val- 
ues of a to attempt to measure the amount of smoothing 
introduced by the penalty. Shown in Figures 1 4  are four 
images for a data set with total signal energy to total 
noise energy ratio 0 dB. Figure 1 shows the image for a 
very small weight on the penalty, and the remaining fig- 
ures show logarithmically increasing values of the 
weights. Note that in Figure 4 the image is blurred sig- 
nificantly due to the large weight, but the image is 
smooth and the background noise is reduced. In Figure 
3, the seemingly increased noise level is due solely to the 
displays being self-normalized. In [13], a performance 
curve that quantifies the tradeoff between roughness and 
likelihood parameterized by a is introduced and studied. 

5. CONCLUSIONS 
A new penalty for image regularization based on the I- 
divergence is introduced. This penalty is a special case 
of a class of penalties introduced in [13]. When used in 
estimation problems, these penalties trade off smoothness 
for likelihood. The penalties are useful in other cases as 
well, including deblurring. 
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