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Abstract.—Bayesian methods for estimating evolutionary divergence times are extended to multigene
data sets, and a technique is described for detecting correlated changes in evolutionary rates among
genes. Simulations are employed to explore the effect of multigene data on divergence time estimation,
and the methodology is illustrated with a previously published data set representing diverse plant
taxa. The fact that evolutionary rates and times are confounded when sequence data are compared
is emphasized and the importance of fossil information for disentangling rates and times is stressed.
[Markov chain Monte Carlo; Metropolis—-Hastings algorithm; molecular clock; phylogeny.]

Because of improved technology, molecu-
lar sequence data are becoming increasingly
easy to collect. As a result, the pattern and
process of evolution are being characterized
in ever finer detail. In the past, it was typi-
cal to infer evolutionary divergence times by
selecting a single gene and then sequencing
that gene in the taxa of interest. In the future,
these single—gene data sets will give way to
multigene data sets. The advantage of multi-
gene over single-gene data sets is clear—
bigger data sets contain more information.

How to properly combine evolutionary in-
formation from multiple genes is less clear.
Because of recombination, the genealogy re-
lating the sequences of one gene can differ
from the genealogies of other genes. Hence,
divergence times can vary among genes.
However, this variation should be negligi-
ble when the number of generations between
speciation events on a tree is large relative to
effective population size.

Even when variation of divergence times
among genes can be safely neglected, the
question of how to properly extractand com-
bine evolutionary information from multiple
genes is not trivial. Evolutionary rates dif-
fer over time and among genes. Although
variation of rates among genes and over
time is problematic for estimating diver-
gence times, understanding this variation is
one of the central goals of evolutionary bi-
ology. Unfortunately, this variation cannot
be directly studied. Comparisons between
DNA or protein sequences yield estimates of
amounts of molecular evolution, but evolu-
tionary rates and times are confounded when
molecular sequences are compared. With-
out information external to the molecular se-

quence data, these rates and times cannot be
separated.

This confounding of rates and times has
hampered the study of evolution. For ex-
ample, effective population size and sub-
stitution rate per generation are two of the
most important quantities in population ge-
netics. Because rates and times are con-
founded when molecular sequence data are
compared, population geneticists generally
resort to estimating the product of effec-
tive population size and substitution rate per
generation (e.g., Watterson, 1975) rather than
the more desirable option of estimating each
of these factors separately.

Similarly, the confounding of rates and
times has affected the study of macroevo-
lution by preventing the estimation of abso-
lute rates of evolution and fostering the less
desirable alternative of estimating the ratio
of evolutionary rates of different genes. For
macroevolutionary studies, it has long been
recognized that fossil data permit some dis-
entangling of times and absolute rates of evo-
lution (Zuckerkandl and Pauling, 1962). Al-
though serially sampled sequence data can
be exploited for quickly evolving organisms
(Leitner and Albert, 1999; Drummond and
Rodrigo, 2000; Korber et al., 2000; Rambaut,
2000), the usual approach to estimating ab-
solute rates of molecular evolution is to as-
sume both that rates are constant over time
and that fossil data allow estimation with-
out error of the time since a common an-
cestral sequence. Both of these assumptions
may be seriously flawed. Fossil data are im-
perfect and have associated uncertainty. A
specific fossil specimen is unlikely to repre-
sent the specific organism that harbored the
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gene corresponding to an internal node on an
evolutionary tree. Likewise, rates of molecu-
lar evolution are certainly not constant over
time. The pertinent question is not whether
rates are constant over time but how much
do rates change over time.

Advances in estimating absolute rates of
evolution are being made. The uncertainty
of fossil and other nonmolecular informa-
tion can be incorporated via constraints on
node times (Sanderson, 1997) or with more
detailed treatments (see Huelsenbeck and
Rannala, 1997; Waddell et al., 1999), and the
assumption of a constant rate of evolution
over time can be relaxed (Sanderson, 1997,
2002; Thorne et al., 1998; Huelsenbeck et al.,
2000; Drummond et al.,2001; Seo et al., 2002).
These recent advances have the potential to
allow patterns of rate evolution to be com-
pared over time and among genes and they
permit improved estimates of divergence
times to be made.

Here, we extend previously proposed
Bayesian techniques for estimating diver-
gence times to the analysis of data sets con-
sisting of multiple gene sequences for each
taxon of interest. The extensions are also
valuable for comparing rates of evolution
among genes and over time. We illustrate our
Bayesian approach with sequence data rep-
resenting four genes from diverse plant taxa
(Nickrentetal.,2000) and introduce a method
for investigating whether evolutionary rates
for two genes change in a correlated fashion.

HIERARCHICAL FRAMEWORK

Our strategy was designed for multigene
data sets where all genes can be safely as-
sumed to share a common set of divergence
times. This strategy is based on an explicit
model for rate evolution that has been de-
scribed previously in the context of single—
gene data sets (Kishino et al., 2001). Its key
property is thatinstead of assuming constant
evolutionary rates, rates at different times
can vary but will be correlated. With the au-
tocorrelation of rates that is built into this
model, homologous genes from closely re-
lated lineages are expected to evolve at sim-
ilar rates, and those from distantly related
lineages are likely to evolve at more different
rates.

Specifically, the average rate on a branch
of a phylogenetic tree is assumed to be the
mean of the rate at the nodes that begin and

end the branch. Given the rate at the begin-
ning of the branch and the time duration of
the branch, the logarithm of the rate at the
end of the branch is modeled with a normal
distribution. The mean of this normal distri-
bution is such that the rate at the end of the
branch (rather than the logarithm of the rate
at the end of the branch) has an expected
value equal to the rate at the beginning of
the branch. The variance of this distribution
is equal to the product of the time duration of
thebranch and a parameter v that determines
the amount of rate autocorrelation over time.
A value of zero for v represents the assump-
tion that rates are constant. As the value of v
rises above zero, the expected difference be-
tween the rates at the beginning and ending
of a branch increases.

In this way, the joint probability density of
the rates at all nodes on the tree is defined
for a given value of the rate at the root node.
Multiple genes can be incorporated into this
framework by having the rate at the root
node for each gene be an independent real-
ization from some prior distribution. Given
the rate of a gene at the root node and a
set of divergence times that is shared by all
genes, each gene is modeled as experienc-
ing its own independent rate trajectory on
therooted phylogenetic tree, i.e., the distribu-
tions of evolutionary rates among genes are
a priori uncorrelated. In our implementation,
rates at the root node for individual genes
are independent realizations from a gamma
distribution.

We have explored two approaches for in-
corporating the autocorrelation parameter.
The more general is to independently assign
each gene its own autocorrelation parameter.
By having autocorrelation parameters vary
among genes, some genes are allowed to be
more “clocklike” than others. We do this by
having the value of the autocorrelation pa-
rameters for different genes be independent
realizations from a gamma distribution. This
gamma distribution can be interpreted as
summarizing the variability of the tendency
for rates to change over time among genes in
the genome.

Aless general approachis to force all genes
to share a common value of the autocorre-
lation parameter. A gamma distribution is
specified to serve as the prior for this value.
Although a limitation of this less general ap-
proach is that it does not build in a ten-
dency for theamount of rate variation to vary
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among genes, the fact that all genes are gov-
erned by the same autocorrelation parameter
value can be an advantage when the selected
prior for the autocorrelation parameter is a
poor summary of the values that are typical
of actual genes. Such a situation is simulated
below.

We incorporate fossil and other informa-
tion external to the molecular datain the form
of constraintson node times. Constraints that
force a node age to exceed a specific value or
that restrict a node age to less than a spe-
cific value are both allowed. Our experience
(Kishino et al., 2001, unpubl. data) indicates
that at least one of each of these kinds of con-
straints should be incorporated into an anal-
ysis to obtain reasonably narrow posterior
distributions for node times. The presence of
at least one of each kind of constraint is ev-
idently important for allowing evolutionary
rates and times to be somewhat decoupled in
the posterior distribution.

As described elsewhere (Kishino et al.,
2001), convergence of the Markov chain
Monte Carlo (MCMC) approach to the pos-
terior distribution is enhanced if one of the
branches on the evolutionary tree is forced
to have the same rate at its beginning and
end rather than having the ending rate be de-
termined by the model of rate evolution de-
scribed above. In our implementation, a par-
ticular branch that emanates from the root
is selected. The same branch is selected for
each gene. Although the rate that is both at
the root node and at the end of this branch
is permitted to vary among genes, the rate of
a gene at the root node and the rate of the
same gene at the end of the selected branch
are forced to be identical. Except for this se-
lected branch, the rates at the beginning and
ends of branches are governed by our model
of rate evolution.

Our prior distribution for divergence times
hastwocomponents (see Kishino etal., 2001).
A gamma distribution describes the time du-
ration separating the ingroup root and the
tips. Conditional upon this time duration, the
prior density for other internal node times
depends on the proportion that is obtained
by dividing the time separating these nodes
and the tips by the time separating the root
and the tips. We refer to these proportions
as relative node times. Our implementation
employs a generalization of the Dirichlet dis-
tribution to rooted tree structures to serve as
the prior for these relative node times.

In the absence of fossil constraints or seri-
ally sampled data, the prior distribution for
divergence times can then be expressed in
terms of the gamma distribution for the in-
group root time and the generalized Dirichlet
distribution for relative node times. This
prior distribution is altered by conditioning
upon node time constraints. Although con-
ditioning upon node time constraints makes
the analytical expression of the resulting di-
vergence time prior much more complicated,
this more complicated prior can be approx-
imated via MCMC analysis (Kishino et al.,
2001). Because serially sampled data result
in internal node times being constrained, the
prior conditional upon sequence sampling
times can also be approximated via MCMC
analysis. With serially sampled data, we de-
termine a relative node time by calculating
the time separating the most recently iso-
lated tip and the node of interest divided by
the time separating the mostrecently isolated
tip and the root.

The  Metropolis—Hastings  algorithm
(Metropolis et al., 1953; Hastings, 1970) that
we have employed for single gene analysis
(Kishino et al., 2001) can be extended in a
straightforward fashion to multigene data.
To assess convergence of the Markov chain,
our main strategy is to perform multiple
MCMC runs from different initial states
on the same data. We can then determine
whether different runs yield similar ap-
proximations of the posterior distribution.
Because long MCMC runs appear necessary
toachieve convergence, computational tract-
ability is attained by approximating the prob-
ability density of the sequence data given the
branch lengths with a multivariate normal
distribution (Thorne et al., 1998).

SIMULATIONS

Via simulation, we have explored the effect
on divergence time estimates of the number
of genes in the data set. Simulations based on
two tree topologies are described here. Both
topologies relate 16 ingroup and 1 outgroup
taxa. Both have a true ingroup root time of
0.5 time units. Also, the total time repre-
sented on the path from the ingroup root
back to the common ancestor of all 17 se-
quences and then forward to the outgroup
taxon is 0.625 time units for both trees. With
our MCMC implementation, the outgroup
only serves to root the ingroup and only the



692

SYSTEMATIC BIOLOGY

VvOL.51

0.0

0.5 (b)

FIGURE 1. Ingroup topologies used in the simula-
tions. (a) Contemporaneously isolated taxa. Constraints
are depicted with horizontal lines above and below the
node that they constrain. (b) Noncontemporaneously
isolated taxa.

times of the ingroup nodes are estimated by
our software. The true ingroup node times
for the two trees are depicted in Figure 1.
For each gene that is simulated, the rate
at the ingroup root node is sampled from a
gamma distribution with a mean of 1.0 and
an SD of 0.5. The evolutionary rate units are
changes per sequence position per time unit.
In the analyses, the prior distribution for the
rate at the ingroup root node of a gene is in
all cases also a gamma distribution with a
mean of 1.0 and an SD of 0.5. We matched
the gamma distributions of the simulations
and analyses because more realistic situa-
tions where the true values of parameters are
notalways characteristic of the priors are un-
likely to yield satisfactory results if satisfac-

tory results cannot be obtained even for this
ideal case.

With a similar rationale, all genes were
evolved according to the Jukes—Cantor
model (Jukes and Cantor, 1969),and all genes
were analyzed with this nucleotide substi-
tution model. All genes consisted of ex-
actly 1,000 sequence positions. To generate
branch lengths for simulating according to
the Jukes—Cantor model, the rate at the in-
group root was used to determine the rate
at other nodes throughout the tree. For the
tree depicted in Figure 1a, two cases were
explored. One case was a constant rate of
evolution over time, and the other allowed
evolutionary rates to change over time. To
permit rate change, each gene was assigned
its own value of the autocorrelation param-
eter v by sampling from a gamma distri-
bution with a mean of 1.0 and an SD of
0.5. The model of rate evolution employed
to generate data was that implemented in
our MCMC approach except that no branch
emanating from the ingroup root node was
forced to have identical rates at its beginning
and ending nodes. The rate of the tip cor-
responding to the outgroup taxon was also
randomly evolved by treating the path from
the ingroup root to the outgroup taxon to be
a single branch of length 0.625 time units.
For all simulations with the tree depicted in
Figure 1b, only a constant rate of evolution
was simulated.

Three varieties of MCMC analysis were
performed. The first assumed that rates were
constant throughout evolution. For the other
two, unless otherwise noted, the prior for v
was a gamma distribution with a mean of 1.0
and an SD of 0.5. One of these two varieties
assumed all genes shared a common value of
v, and the other assumed that each gene had
a separate value of v. We emphasize that the
gamma prior with a mean of 1.0 and an SD
of 0.5 was selected to assess the statistical
behavior of our method. This gamma distri-
bution has little mass near zero. Because the
constant rate hypothesis of v = 0 is of gen-
eral biological interest, a prior distribution
for v with more probability mass near zero
may often be more worthwhile for analyses
of actual data.

All posterior distributions were approxi-
mated with the MCMC approach by burning
in the Markov chain for 100,000 proposal cy-
cles, where each cycle consisted of a variety
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of proposal steps (see Thorne et al., 1998;
Kishino et al., 2001). Thereafter, the Markov
chain was sampled after every 100 cycles un-
til 10,000 total samples had been stored. Be-
cause prior distributions tend to be more dif-
fuse than posterior distributions, the MCMC
analyses employed more proposal cycles
to approximate the prior distributions. The
burn-in period for prior distribution approx-
imations was 1,000,000 proposal cycles, and
the Markov chain was then sampled every
1,000 cycles until 10,000 samples had been
obtained.

The tree shown in Figure la is one of
the best possible cases for our divergence
time prior because the timeintervalsbetween
nodes on the tree are evenly spaced. The tree
shown in Figure 1b has time intervals be-
tween nodes that are not as evenly spaced.
Also, one of the 16 ingroup taxa shown in
Figure 1b is sampled at an earlier time than
are the other 15 ingroup taxa. This lack of
contemporaneous sampling produces evolu-
tionary rate information even in the absence
of fossil data. Analyses of data generated
according to the tree depicted in Figure 1b
were not provided with any external infor-
mation except the relative times at which the
16 ingroup taxa were sampled. In contrast,
all analyses of data generated on the tree de-
picted in Figure 1a rely on the information
that one particular node time is constrained
to be in the interval from 0.2 to 0.3 time units.
The true time of this constrained node is
0.25 time units, and the two constraints
placed upon this node time are depicted in
Figure 1a.

Parameter Identifiability for Serial and
Contemporaneous Sampling

The widths of confidence intervals are gen-
erally expected to be halved if the amount
of data is quadrupled. This relationship does
not apply to credibility intervals generated
by Bayesian analyses because these intervals
are influenced both by the data and by the
prior distribution. However, when the infor-
mation in the data greatly exceeds the prior
information, then the width of a credibility
interval might typically be expected to be
about halved when the amount of data is
quadrupled because the prior typically has
little influence when data are abundant. This
pattern relating the width of the credibility

TABLE 1. Widths of 95% credibility intervals for the
ingroup root time from data sets with different numbers
of genes. Entries in the columns for 1, 2, 4,8, 16, 32, and
64 genes are respectively the medians of 8, 8, 8, 8, 4, 2,
and 1 different set of simulated data. For each row, the
prior distribution for v is the distribution from which the
true value of v for each simulated gene is sampled. Row
A represents the tree shown in Figure 1a and a constant
rate of evolution. Row B also represents the tree shown
in Figure 1a, but here the value of v for each gene is
sampled from a gamma distribution with a mean of 1.0
and an SD of 0.5. Row C represents the tree depicted in
Figure 1b and a constant rate of evolution.

No. genes

Prior 1 2 4 8 16 32 64

A 1.66 0.221 0.197 0.188 0.177 0.165 0.138 0.114
B 1.71 0.326 0.237 0.216 0.179 0.157 0.137 0.103
C 4.20 0.133 0.114 0.072 0.054 0.033 0.024 0.017

interval and the amount of data is not ob-
served in row A and row B of Table 1.

The unusual behavior in Table 1 can be un-
derstood by remembering the fundamental
confounding of rates and times that arises
when sequences are compared. The only in-
formation that the MCMC analysis is pro-
vided to separate rates and times stems from
the prior distribution on rates and times. Es-
pecially important for separating rates and
times in these analyses is the fact that a node
with true time 0.25 is constrained to have
a time that is between 0.2 and 0.3 (Fig. 1a).
When a constantrate of evolutionis both true
and assumed, the ratio of the time from the
tips to the constrained node relative to the
time from the tips to the ingroup root (i.e.,
therelative time of the constrained node) will
be increasingly well estimated as the number
of genes employed to estimate this ratio in-
creases. The true value of the relative time
of the constrained node is 0.5, but even a
perfectly estimated relative time for the con-
strained node does not lead to exact estima-
tion of the root time. Knowledge that the
relative time of the constrained node is ex-
actly 0.5 allows the interval from 0.2 to 0.3
for the actual time of the constrained node
to be converted to an interval from 0.4 to 0.6
for the time of the ingroup root, but more
accurate estimation of the ingroup root time
could only occur through other information
in the prior. Without the prior, no amount
of sequence data will allow perfect separa-
tion of rates and times here. In other words,
even an entire genome (or an infinite num-
ber of genes) could not overcome the fossil
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uncertainty and lead to exact estimation of
divergence times here.

This example illustrates the crucial nature
of fossil information for estimating diver-
gence times with molecular sequence data.
Sequence data cannot surmount uncertainty
stemming from the inability of the fossil
record to perfectly date an internal node. Too
often when dating divergence times, the im-
portance of collecting large molecular data
sets is heavily stressed and the collection
and summary of fossil information is an af-
terthought. Channeling extra effort into fos-
silinformation may frequently be much more
worthwhile for estimating divergence times
than is acquiring more sequence data.

A notable exception to the rule that molec-
ular data cannot eliminate divergence time
uncertainty without fossil information is the
case of serially sampled data. With seri-
ally sampled data, the isolation dates of se-
quences provide the means for calibration of
the rate of evolution. Row C of Table 1 en-
ables a contrast between the results for the
contemporaneously isolated taxa of the tree
shown in Figure la and the results for se-
rially sampled taxa of the tree shown in Fig-
ure 1b. The width of the 95% credibility inter-
val for the ingroup root time for row C does
seem to be roughly halving as the amount
of data quadruples. With an infinite num-
ber of genes, the width of the credibility in-
terval corresponding to row C should ap-
proach zero. Noncontemporaneous sample
information is akin to a fossil that could per-
fectly date one internal node on a tree. For
this reason, the asymptotic behavior of di-
vergence time estimation from serially sam-
pled data should be superior to that from

contemporaneous taxon sampling with un-
certain fossil evidence.

This superiority of serially sampled data
over uncertain fossil evidence is predicated
on having exact isolation dates for serially
sampled data. For viral data, these isolation
dates are typically known. In other situa-
tions, DNA may be isolated from biologi-
cal material with an unknown date of origin.
In these situations, the uncertainty regarding
the date of origin of the material will make
the asymptotic behavior of divergence time
estimation from serially sampled data quali-
tatively similar to estimation from contem-
poraneous sampling with uncertain fossil
evidence.

Effects of Prior Specification on Divergence
Time Estimates

Table 2 illustrates that performance of the
multigene divergence time estimation proce-
dures is relatively good when the analysis as-
sumptions match the process that generated
the data. When rates are constant and when
constancy is assumed, the posterior means
of the divergence time estimates for the in-
group root are close to their true value of 0.5
(see row A and row C, Table 2). Although the
true value is outside the 95% credibility for
the constant rate analysis of row C, the true
and estimated values are still very close for
this case.

Row B of Table 2 shows that the constant
rate assumption produced a good estimate
of the true ingroup root time when rates ac-
tually did change over time. Our previous
study of divergence time estimates based on
single genes revealed that the constant rate

TABLE 2. Posterior means (95% credibility intervals) for ingroup root times with data sets of 64 genes. The true
ingroup root time is 0.5. Columns correspond to different analysis assumptions. Rows A and B had true times
shown in the tree of Figure 1a. Row A data were simulated with constant rates of evolution, whereas row B data
were simulated by independently sampling a value of v for each gene from the gamma distribution with mean =
1.0 and SD = 0.5. Row C had true times shown in the tree of Figure 1b and data simulated with a constant rate of

evolution.

Individual v®

Constant rate? SD=0.5

SD=1.0 Shared v¢

A 0.527(0.467,0.581)
B 0.485(0.472,0.510)
C 0.487(0.479,0.496)

0.388 (0.378,0.399)
0.500 (0.451, 0.554)
0.478 (0.468, 0.489)

0.431(0.394,0.479)
0.491 (0.437,0.550)
0.492 (0.483,0.502)

0.520(0.463,0.578)
0.466 (0.414,0.529)
0.487(0.479,0.496)

2The prior distribution did not allow rates to change over time.

PEach of the 64 genes have a separate value of v. Entries in the SD = 1.0 column correspond to gamma prior distributions for v

withmean = 1.0 and SD = 1.0.

€All 64 genes share a common value of v. Entries in this column and the SD = 0.5 column correspond to gamma prior distributions

for v withmean = 1.0 and SD = 0.5.
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assumption often produced poor estimates
of divergence times (Kishino etal.,2001). The
constantrate estimate was good here for mul-
tilocus data possibly because rate variation
was not simulated so as to occur in a corre-
lated fashion among genes. Lineage effects
that cause all rates to tend to increase or to
decrease on certain branches of the tree may
prove more problematic for the constant rate
assumption with multigene data. The 95%
credibility interval for the ingroup root time
when rates actually varied over time (i.e.,
row B) is more narrow when rates are forced
to be constant than when rate variation as-
sumptions match the truth. This coincides
with expectations that the constant rate anal-
yses resultin divergence time uncertainty be-
ing underestimated when rates actually do
vary. When rate variation over time is more
extreme, the assumption of a constant rate of
evolution does not yield good estimates of
divergence times even when multiple genes
are employed to estimate divergence times
(Fig. 2).

Beyond the fact that rates of evolution do
change, there is little knowledge of the na-

FIGURE 2. Divergence time estimates when rates
vary over time but constant rates are assumed. A total of
64 data sets were simulated according to the tree of Fig-
ure la. Each of the 64 genes had a separate value of v that
was sampled from a gamma distribution with mean =2
and SD = 2. The MCMC analysis was done with a prior
forcing v = 0 for all genes. Thin lines show the true tree
topology and node times. Constraints are depicted with
heavy horizontal lines above and below the node that
they constrain. Posterior mean estimates of node times
are indicated with shaded horizontal lines that are cen-
tered above or below the relevant nodes. Shaded verti-
cal lines represent the 95% credibility intervals for node
times.

ture of this rate variation. Consequently, an
unrealistic prior distribution for the auto-
correlation parameter is a serious possibil-
ity. Because posterior distributions are com-
promises between prior distributions and
data, the more general approach of having
a separate prior distribution for the auto-
correlation parameter of each gene is liable
to lead to posterior distributions that are
heavily weighted toward the possibly un-
realistic prior distributions. In contrast, the
posterior distribution for an autocorrelation
parameter that is shared among the genes
is expected to be more heavily weighted to-
ward the data than toward an unrealistic
prior.

We believe this effect explains the entry
seen in row A of Table 2, where the truth was
a constant rate but the assumption was that
each of the 64 genes possessed its own value
of v and where the prior for v had a mean of
1.0 and an SD of 0.5. This scenario yielded
a narrow 95% credibility interval for the in-
group root time that was centered far from
the true value of 0.5. The problem seems to
be that each gene had a value of v with a
prior that was mainly concentrated around
large amounts of expected change. Because
node times are shared by all 64 genes and be-
cause less rate variation is expected during
short periods of evolution than during long
periods of evolution, branch length estimates
that do not deviate much (or at all) from a
molecular clock can be explained either with
a high rate of evolution at the rootnode and a
short time duration of evolution or with the
unlikely event (according to the prior) that
all 64 genes happened to have values of v
that were close to zero and therefore far from
their prior. The posterior mean of the ingroup
root time and the narrow credibility inter-
val for this scenario are close to 0.4 because
an internal node was constrained to have
a time exceeding 0.2, and this constrained
node happens to represent half the time from
the tips to the root. Without this constraint,
the posterior mean for the ingroup root time
is likely to have been even smaller. Having
a prior for v with a large standard deviation
produced a better but still overly low esti-
mate for the ingroup root time for the case of
row A in Table 2. In actual data analyses, lit-
tle prior information regarding rate change
for a gene may exist, and therefore a large
standard deviation in the prior for v may be
advisable.
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In frequentist statistics, trade-offs between
the number of parameters in a model and
fit to the data are necessary to avoid over-
parameterization. The Bayesian framework
is not immune to this sort of trade-off.
The Bayesian compromise is between the fit
of the model and how highly dimensional
and diffuse is the prior. For each of the mid-
dle two columns in Row A of Table 2, exam-
ination reveals that the 64 posterior means
for v were all much less than the prior means
(data not shown). The unrealistic nature of
the prior distributions for v could have been
detected via their posteriors, and this detec-
tion would have pointed to potential prob-
lems in divergence time estimates.

Although the absolute times for these en-
tries in row A of Table 2 were poorly esti-
mated, the ratio of the time from a tip to the
node of interest and the time from the tip to
the ingroup root can also be considered. We
refer to such ratiosas relative times. In our ex-
perience, an unrealistic prior distribution for
v is likely to yield poor posterior estimates
of absolute times, but estimates of relative
times are more robust (e.g., see Fig. 3). Rel-
ative rates can be well estimated even when
absolute rates are poorly estimated because
of unrealistic prior distributions.

FIGURE 3. Estimated relative times when the truth
is a constant rate of evolution but genes have separate
v values with a gamma prior that has mean = 1.0 and
SD = 0.5. Relative times for the relevant entry of row A
in Table 2 are depicted. Thin lines show the true tree
topology and node times. Posterior mean estimates of
relative times are indicated with shaded horizontallines.
Shaded vertical lines show the estimated 95% credibility
intervals for relative node times.

Detecting Correlated Changes in Evolutionary
Rates Among Genes

Estimation of divergence times is not the
only application of our model of rate evolu-
tion to multigene data sets. Because posterior
distributions for evolutionary rates among
genes and over time can be approximated,
our approach and future modifications can
be employed in comparative genomic stud-
ies. One important question is how much
rate variation can be attributed to locus ef-
fects, lineage effects, and locus by lineage
interactions (see Muse and Gaut, 1997). The
posterior distribution of rates over time and
among genes provides a basis for address-
ing this question. To date, we have mainly
concentrated on investigating whether evo-
lutionary rate changes of two genes are
positively correlated over time. A positive
correlation implies that the portions of an
evolutionary tree on which one gene is
slowly evolving tend to be the portions on
which the other gene is slowly evolving. A
reasonable and robust summary statistic for
measuring this correlation could be calcu-
lated by ranking the posterior means of node
rates from low to high for one gene and then
determining the correlation between these
ranks and the corresponding ranks for the
other gene. When calculating this rank cor-
relation statistic, we do not include the in-
group root node because our implementa-
tion forces it to have the same rate as one of
the nodes that it is connected to by a branch.
To evaluate the null hypothesis of uncorre-
lated rate changes over time among the two
genes, the distribution of this rank correla-
tionstatisticunder this null hypothesis needs
tobe determined. Because of the autocorrela-
tion of rates in our model, the rate for a gene
at one node will be dependent on the rate for
the gene at other nodes on the tree. For this
reason, conventional tests of association that
employ the rank correlation coefficient must
be avoided here.

To approximate the distribution of the rank
correlation coefficient under the null hypoth-
esis, we exploit the symmetry inherent in
our model of rate evolution. Specifically, the
model assumes that given the rate at the be-
ginning of a branch, the logarithm of the rate
at the end of the branch will have a normal
distribution. Because normal distributions
are symmetric about their mean, a value ex-
ceeding the mean by a certain amounthas the
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same probability density as a value below the
mean by the same amount. Therefore, the dif-
ference between the logarithm of the rate at
the end of the branch and its expected value
has the same probability density as it would
if it had the same magnitude but opposite
sign. We refer to this difference as the devia-
tion for a branch. We estimate the deviations
for branches from the posterior means of
the node rates and times. For node i, R; is the
estimated posterior mean rate and T; is the
estimated posterior mean time. The parental
node of node i is p;. The deviation for the
branch that ends at node i is then equal to
log(R;) — E[log(R;) | log(Ry,), T;, Ty, ]. For sim-
plicity, other parameters thatare conditioned
upon in the above expectation are omitted.

Our approach relies on the fact that the
estimated deviation for a branch and a de-
viation of the same magnitude but oppo-
site sign are equally likely a priori. We use
this fact to generate random assignments of
rates to nodes. These random assignments
are made in such a way as to be independent
among genes but to preserve the autocorre-
lation of rates at different nodes for the same
gene. After eachrandomassignmentis made,
the rank correlation statistic is calculated.
By making random assignments of rates to
nodes many times, the distribution of our
test statistic under the null hypothesis canbe
approximated.

The rate assigned by our randomization
procedure to node i for a gene of interest is
denoted R;. The root node is referred to as
node 0, and its rate is Ry. The process for de-
termining the R values begins at the ingroup
root node by setting R} = Ry and proceeds
toward the tip nodes.

As mentioned earlier, our implementation
analyzes data by constraining one branch
that emanates from the ingroup root to have
the same rate at its beginning and ending
nodes. Likewise, our randomization proce-
dure assigns the same rate to the begin-
ning and ending nodes of this branch. For
other nodes, the assigned rate of a node de-
pends on the rate assigned to its parental
node and on the deviations estimated from
the posterior means of the node rates and
times. With probability 0.5,anodeis assigned
E [log(Rf‘)llog(R;; ), Ti, Tp,] plus the estimated
deviation for the branch separating the node
and its parental node. Otherwise, the node
is assigned E[log(R})|log(R},), Ti, Tp,] minus

the estimated deviation for the branch. This
means that Node i (i # 0) has a rate assigned
by

log(RY)
= E[log(R)Ilog(R},), Ti, Ty, 1+ Hi(log(R:)
— E[log(Ri)|log(Rp,), Ti, Ty, ),

where H; is a random variable that takes the
value 1 with probability 0.5 and the value —1
with probability 0.5.

LAND PLANT DATA

The multigene analysis methodology is il-
lustrated with a data set of land plant se-
quences that was collected and studied by
Nickrent et al. (2000). Four genes were in-
cluded in this data set: 1,351 aligned posi-
tions from the rbcL locus encoded by the
chloroplast, 1,480 alignment positions of 165
ribosomal DNA (rDNA) from the chloro-
plast genome, 1,720 aligned positions from
the 18S rDNA of the nuclear genome, and
1,544 aligned positions from the 19S rDNA
of the mitochondrial genome. Thirty taxa, 2
outgroup green algal species and 28 ingroup
land plant taxa, were represented in these
data. All taxa were present for all genes, with
the exception that the Selaginella sequence
was absent from the 19S rDNA data.

We adopted the tree topology that was re-
constructed by Nickrent et al. (2000) by com-
bining the data from the four genes and then
applying parsimony. This topology was in-
ferred by ignoring transitions at the third-
codon position of the rbcL locus. To estimate
branch lengths of each gene, a discretized
gamma distribution for rate heterogeneity
of sites (Yang, 1994) was used in conjunc-
tion with the Felsenstein 1984 model of nu-
cleotide substitution (see Felsenstein, 1989).
The parameter that determines the amount
of rate heterogeneity among sites was sep-
arately estimated with the PAML software
(Yang, 1997) for each gene.

The prior distribution of divergence times
along with the constraints on node times are
depicted in Figure 4a. These constraints and
times were based on those employed in pre-
vious work (Sanderson, 1997). After inspect-
ing the branch length estimates from the four
gene data sets, the evolutionary rate at the
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root node was given a gamma prior distri-
bution with mean and standard deviation

bothequa

1t0 0.02 substitutions at theaverage

site per 100 million years. The motivation for
choosing this prior was to obtain a distribu-

tion for th
reasonabl

erootrate that was simultaneously
e and relatively diffuse. For those

analyses where the rate of evolution was al-

lowed to change over time, the autocorre-
lation parameter was given a gamma prior
distribution with a mean of 0.5 and an SD
of 0.5. Here, the units of v represent the accu-
mulated variance per 100 million years in the
logarithm of the rate of evolution per 100 mil-
lion years. This prior for v was selected rather
arbitrarily to be diffuse and to allow for the
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FIGURE 4. Divergence time estimates based on the land plant data. Time units are hundreds of millions of years.
Constraints are heavy horizontal lines centered above or below the node that they constrain. Shaded vertical lines
passing through a node represent 95% credibility intervals for the node. Posterior mean estimates are indicated
with shaded horizontal lines. (a) Prior distribution. (b) 16S rDNA analysis. (c) 185 rDNA analysis. (d) 19S rDNA
analysis. (e) rbcL analysis. (f) Multigene analysis with constant rate assumption. (g) Multigene analysis with each
gene having its own value of v.
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FIGURE 4.

possibility that a gene may have a high prob-
ability of experiencing a very large amount
of rate variation over time.

Divergence times were estimated sepa-
rately for each of the four single gene data
sets and by combining the four genes. Com-
bined analyses were performed with each
gene having a separate v value, with all genes
sharing a common value of v, and withv =0
for all genes. The cases where v was not
forced to be zero indicate that these four
genes seem to be experiencing alargeamount

(Continued).

of rate variation over time (Table 3), but there
does not seem to be enough information in
the data to obtain an accurate estimate of v.
Overall, the divergence time estimates
from single gene analyses when rates were
allowed to vary (Figs. 4b—e) were similar for
most nodes, but there are some notable ex-
ceptions. The same pattern emerges when
the divergence time estimates from the multi-
gene analyses are compared for the scenarios
with a constant rate (Fig. 4f) and with differ-
ent v values for different genes (Fig. 4g). The
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TABLE 3. Posterior means and 95% credibility inter-
vals of v. In each analysis, the prior for v was a gamma
distribution with mean 0.5 and standard deviation 0.5.

Combined gene Single gene

Prior 0.48(0.01,1.76)
168 1.06 (0.54,1.80) 0.84 (0.45,1.41)
185 0.78 (0.40, 1.35) 0.80 (0.36, 1.53)
198 1.67 (0.96,2.65) 0.96 (0.46,1.73)
rbcL 0.82(0.42,1.46) 0.86 (0.40, 1.59)
Shared v 1.23(0.86,1.69)

TABLE4. Rank correlation coefficients between evo-
lutionary rates of plant genes. Results are from the multi-
gene analysis where each gene has a separate value of
v. The numbers in parentheses are the proportion of
times that the observed rank correlation coefficient was
equaled or exceeded when the distribution of the cor-
relation statistic was approximated under the null hy-
pothesis of independent rate changes among the two
genes. The null distribution of this statistic was approx-
imated by independently sampling 1,000 values with the
method described in the text.

The “Combined Gene” column represents the case where all
4 genes are analyzed together but individual genes are each
given their own autocorrelation parameter. The “Single Gene”
column represents the case where the genes are analyzed indi-
vidually. The row labeled “Prior” shows the prior distribution
for v as estimated by MCMC analysis. The final row shows the
situation where all 4 genes are analyzed together but are forced
to share the same value of v.

estimated time since the common ancestor of
the liverworts Marchantia and Calypogeia and
the estimated time since the common ances-
tor of the gymnosperms Ephedra and Gnetum
were especially variable among analyses. As
expected, the credibility intervals are more
narrow for the multigene analyses than for
the single—gene analyses. Divergence times
for the case where all genes share the same
autocorrelation parameter v are not depicted
here because they are very similar to those in
Figure 4g.

Recently, a multigene approach assuming
constant rates of evolution has been applied
to estimating divergence times for fungi,
plants, and animals (Heckman et al., 2001).
This analysis yielded divergence time esti-
mates for several nodes that are substan-
tially earlier than previously believed; it pro-
duced an estimate of about 700 million years
for the time since divergence of vascular
plants and mosses. Because our analyses con-
strained the ingroup root to be no more than
475 million years old, our Bayesian approach
could not possibly have estimated an age of
700 million years. As we have stressed, the
constraints placed on node times play a cen-
tral role in what divergence time estimates
result. It would be interesting and probably
computationally tractable to analyze the data
of Heckman et al. with an approach such as
ours that does notassume rate constancy and
that does not treat fossil information as sim-
ply providing calibration points.

Table 4 shows that correlations of rate
change are positive for all pairwise compar-
isons involving the four genes. An attractive
future topic would be to investigate whether

185 19S rbcL
16S 0.211 (0.790) 0.487 (0.441) 0.625(0.074)
18S 0.506 (0.246) 0.372(0.504)
1958 0.530(0.335)

positive correlations between these genes are
mainly due to certain gene regions or are
distributed throughout the genes. However,
no statistically significant correlations of rate
change are detected between pairwise com-
parisons of the four genes. A substantial
amount of rate variation over time was in-
ferred for each of the four genes in this analy-
sis. A consequence of these large amounts of
rate variation is that our test statistic tends
to be positive even when the null hypothesis
of independent rate evolution among genes
is true. Because we expect that lineage ef-
fects are ubiquitous in molecular evolution,
we are predisposed to believe that the lack
of significant correlations is attributable to a
lack of power of our method to detect these
correlations.

D1sCcusSION AND FUTURE DIRECTIONS

The method introduced here is designed
for multilocus data where all genes share a
common set of divergence times. Because dif-
ferences of divergence times among genes
may be substantial for many data sets, alter-
native methods would be of great interest.
For data sets with small numbers of closely
related taxa, methods that explicitly incor-
porate population genetic theory would be
promising. For other data sets, statistical ap-
proaches that allow divergence times to vary
among genes but still have some correlation
structure among genes could be explored.

Future implementations of divergence
time estimation procedures could explicitly
allow for a priori dependence of evolution-
ary rates among genes. This sort of depen-
dence structure could capture the possibility
thatdifferent genes might share a tendency to
change rates in the same direction on certain
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branches because of factors common to all
genes (e.g., a change in generation time on
these branches). It may also be desirable to
have the prior distribution reflect the possi-
bility that certain factors affecting evolution-
ary rates may be specific only to those genes
that are encoded by the same genome (e.g.,
nucleus, mitochondria, or chloroplast), those
genes with products that physically interact,
those genes in the same metabolic pathway,
or those genes that have similar expression
patterns. Although these potential factors re-
sponsible for correlated rates can be studied
via the posterior distribution even if the prior
does not incorporate dependencies, more bi-
ologically reasonable priors will undoubt-
edly lead to more informative analyses.
Systematists may be faced with choos-
ing whether to do a multigene analysis by
having a constant rate, by having a single
shared value of v for all genes, or by having
individual v values for each gene. We do not
recommend constant rate analyses because
they are unable to appropriately represent
uncertainty in divergence time estimation.
The question of when divergence time esti-
mates obtained through constant rate anal-
yses are biased remains unanswered. Both
options for incorporating rate variation war-
rant exploration, and careful comparison be-
tween the prior and posterior distributions
can shed light on potential problems in the
analysis. It may also be helpful to add an-
other level to our hierarchical model for v.
In addition to the value of v for each gene
and the prior for these v values, this extra
level would be a hyperprior. The hyperprior
would reflect uncertainty regarding the ap-
propriate prior distribution for v values.
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