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27 We study the UV divergences infthe action of the “Wheeler-de Witt patch” in
28 asymptotically AdS spacetimes, which hassbeen conjectured to be dual to the com-
29 putational complexity of the state of the duabfield theory on a spatial slice of the
boundary. We show that includinigya,surface term in the action on the null boundaries
32 which ensures invariance under coordinate transformations has the additional virtue of
33 removing a stronger than expected divergence, making the leading divergence propor-
34 tional to the proper volume of the boundary spatial slice. We compare the divergences
35 in the action to divergencesdn the volume of a maximal spatial slice in the bulk, finding
36 that the qualitative structure is theysame, but subleading divergences have different
relative coefficients in the two cases.
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1 Introduction

In principle, holography provides a well-defined non-perturbative formulation of quan-
tum gravity. But to really use it to address questions about the nature of spacetime,
we need to understand the emergence of the bulk spacetime from the dualbfield theory
description. In [1], Susskind conjectured a new relation between the bulkigeometry and
the complexity of the dual boundary state. The quantum computational complexity is
a measure of the minumum number of elementary gates needed in_asquantum circuit
which constructs a given state starting from a specified simple reférence state (see e.g.
[2]). This proposal was refined in [3] into the conjecture that the computational com-
plexity of the boundary state at a given time (on some spacelike slice-of the boundary)
could be identified with the volume of a maximal volume spacelike slice in the bulk,
ending on the given boundary slice. This will be referred to as the CViconjecture. This
was further developed in [4, 5].

More recently, it was conjectured that the complexity is related instead to the action
of a Wheeler-de Witt patch in the bulk bounded by the given spacelike surface [6, 7].
This is referred to as the CA conjecture. An appropriate prescription for calculating
the action for a region of spacetime bounded by mull surfaces was obtained in [8].
Further related work is [9, 10, 11].

The evidence supporting this conjecture comes so far from the study of black hole
spacetimes. Both the CV and CA conjectures produce results for the complexity that
grow linearly in time, with

de

This is consistent with general expectations,for the behaviour of the complexity for
excited states in the field theory. “Im,these investigations, questions about the UV
structure of the complexity, were avoided; as the contributions from the asymptotic
region of the spacetime cancel out in considering the time derivative.!

However, it is interesting to understand the divergences in the holographic complex-
ity. In both the CV and CA conjectures there will be UV divergences, as the volume
or action of the spacetime r@ion in the bulk is divergent near the boundary. We would
expect that as for the holographic entanglement entropy [12, 13], these divergences are
physical, signalling divergent/contributions to the complexity associated with the UV
degrees of freedom in the field theory. For the entanglement entropy, the leading diver-
gence is propertional to.the area of the entangling surface, and this can be understood
as reflecting entanglement of UV modes across this boundary [14, 15]. While a detailed
understanding,of the divergences of the complexity from the field theory perspective
does not yet exist; we can study the divergences in the holographic calculation, and
see if they havela reasonable form. It is also interesting to compare the divergences
between the CV and CA prescriptions, and see to what extent they compute different
versions of.complexity.

While this paper was in preparation, a preprint appeared studying these divergences
[16].“Thepurpose of the present note is to add a simple observation to that work. There
is a térm identified in [8] which can be added to the action which cancels a coordinate-
dependence in that prescription. If we add this contribution, it cancels the leading

! Another way to cancel UV contributions is to consider the difference between two spacetimes with the
same asymptotic structure, as in [11].
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divergence in the CA prescription, so that the divergence structure of this action i$ the
same as in the CV prescription. The leading divergence in both cases is proportional
to the volume of the boundary time slice. Such a divergence appears reasonable from
a field theory perspective. Considering subleading contributions, we find thatimboth
cases they can be expressed in terms of the geometry of the slice, but thef€V and CA
prescriptions differ.

In section 2, we review the CV and CA conjectures, and their application to the
black hole examples. We discuss the coordinate-dependence of theagction proposed in
[8], and introduce the term cancelling it. In section 3, we consider the UV divergences
in the CV and CA calculations, and show that including this term eancels/the leading
divergence in the CA calculation. We consider subleading contributions and show that
they have similar structures, depending on local geometric invariants of the boundary
geometry, but note that the two prescriptions will differ im,general. We study the
computation on global AdS to illustrate this difference,

Our analysis shows that with an appropriate coordinate-invariant definition of the
action, the divergences in the CA calculation take he form that we would expect for
the complexity in a dual theory. The detailed structure of the divergences in the CV
and CA calculations are different, so they are_presumably not equivalent proposals,
but at our current level of understanding they are qually plausible. As with the
entanglement entropy, the presence of UV divergencesin the bulk calculation reflects
the UV-divergent nature of complexity,in a field theory. One could introduce finite
quantities by renormalizing these divergences; we have not addressed questions about
renormalization prescriptions in our paper. This is potentially an interesting direction
for future work.

2 Review of €V and CA

In the CV conjecture of [1], the omplexity C of the state |¥) of a holographic field
theory on some spatial slice ¥ on the boundary of an asymptotically AdS spacetime
is identified with the yolume Vi ofthe maximal volume codimension one slice B in the
bulk having its boundary/on 3,

o _ V(B
V'™ Gnlags’

(2)

This has a UV divergence proportional to the volume of . If we interpret this as part
of the physicabcomplexity, it could be interpreted as reflecting the operations required
to set up the appropriate short-distance structure of the state |¥) starting from some
reference state.| Qualitatively, this is reasonable; if we imagine modelling the field
theoryyas a lattice, the reference state could be a simple product state on the lattice
sites. A Hadamard state in the field theory will not have such a product structure; the
absence of high energy excitations implies short-range entanglement /correlation in the
state. Setting up this entangled state from the reference product state would require
a number of elementary operations which will grow proportional to the volume of the
field theory.

In [6, 7], an alternative CA conjecture was proposed. This identifies the complexity
of |U) with the action of the “Wheeler-de Witt patch”, the domain of development of



©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - CQG-103487.R1

the slice B considered previously. The proposal is that

Ca="—p (3)

where Syy is the action of the Wheeler-de Witt patch. This proposal has the:advantage
that the formula is more universal, containing no explicit reference to a bulkilength
scale. It also turns out to be easier to calculate, as we don’t have“a maximisation
problem to solve. Finding the Wheeler-de Witt patch for a given'boundary slice is
easier than finding the maximal volume slice.

The Wheeler-de Witt patch has null boundaries, for which the appropriate bound-
ary terms needed for the Einstein-Hilbert action were not yet knowisIn [8], inspired
by the CA conjecture, a prescription for the action of a region of spacetime containing
null boundaries was constructed (see also [17, 18]). The preseription was obtained by
requiring that the variation of the action vanish on-shell when the variation of the
metric vanishes on the boundary of the region. The resulting form for the action is

Sy = /V(R—ZA)\/fng%—Q%:/Ti KdE%—Z%:sign(Si)/Si KdY (4)

) Z sign(N;) / KkdSd\ + 2 Z sign(j;) j{njfds +2 Z sign(m) j{ A, dS.
N; Ni Ji m;

7

In this expression

e T; and S; are respectively timelike and spacelike components of the boundary of
the region V, and K is the trace ofithe extrinsic curvature of the boundary. For
T;, the normal is taken outward=directed from V. For S;, the normal is always
taken future-directedpand sign(S;) = 1(—1) if V lies to the future (past) of S;,
that is if the normal veetor points into (out of) the region of interest.

e N, are null components of the boundary of V, A is a parameter on null generators
of Nj;, increasing to t;Qe future, dS is an area element on the cross-sections of
constant )\, and k*Vo kP = kkf, where k¢ = 0x®/O\ is the tangent to the
generators. sign(Vy) = 1(—1) if N; lies to the future (past) of V.

e j; are junctions between non-null boundary components, where 7 is the logarithm
of the dot-product ofnormals. We do not give the rules in detail as such junctions
do not occur for. Wheeler-de Witt patches; see [8] for full detail.

e m; are junctions where one or both of the boundary components are null. We
have a null' surface with future-directed tangent k“ and either a spacelike surface
with future direeted unit normal n®, a timelike surface with outward directed
unit normal s®, or another null surface with future-directed tangent k%, and

In |k - n|
a= In [k - s| (5)
In|k - &/2|

respectively. sign(m;) = +1 if V lies to the future (past) of the null bound-
ary component and m; is at the past (future) end of the null component, and
sign(m;) = —1 otherwise.

Page 4 of 14
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While this action is diffeomorphism invariant under changes of coordinates in the
bulk and on the timelike and spacelike boundaries, [8] show that it depends on the
choice of coordinate A on the null boundary components. This coordinate dependence
seems a highly undesirable feature. Coordinate independence on the timelike, and
spacelike boundaries was incorporated as an assumption in constructing théform of the
action. This was built in, as it was possible to work with covariant tensors throughout
the calculation. On the null boundaries, such a manifestly coordinate independent
formalism does not seem to exist, but one would still like to require that, the final
expression exhibit coordinate independence as a fundamental feature. Fortunately, [8]
found that the coordinate dependence could be eliminated by adding to the action a
term ~

AS = -2 sign(IV;) / O1n |£O|dSdX; (6)
N; Ni

where © is the expansion of the null generators of N,

_ 10/
_ﬁﬁv (7)

where v is the metric on the cross-sections of ¢onstant A» We will henceforth adopt the
action S = Sy + AS as our definition of thelaction for a region with null boundaries.

There is a further ambiguity noted in [8], which is the freedom to add an arbi-
trary function independent of the bulk metric to a,,,. We see this as a subcase of a
general freedom in the action: the requirement,that the variation of the action vanish
fixes the form of the boundary terms only uip to contributions whose variations vanish
under variations of the metric. Since themmetric variation vanishes on the boundary,
this includes the freedom to add arbitrary functions of the intrinsic geometry of the
boundary.

If we ignored the requirement of coordinate independence, this freedom would in-
clude the freedom to add fterms likey(6), as its variation under metric variations (with
the metric fixed on the boundary) vanishes. Since we want to insist on coordinate
independence, the coéfficient i (6) is fixed, but we still have freedom to add terms
which are scalars on the/nulll boundary, such as [, ~, ©F(7)dSdA, where f(v) is any
scalar functiontefithe cross-séction metric v and curvature invariants built from this
metric such as ifs Ricci scalar. Also we have the freedom to add such scalar terms at
the corners.

3 UV divergences

We now turn to/the consideration of the UV divergences in the action for the Wheeler-
de/Witt patch. The simplest case to consider is AdS;11 in Poincare coordinates,
o P 2 2

ds* = ?(dz — dt* +dz°), (8)
which is dual to the field theory in flat space. We consider a d + 1 dimensional AdS
space, with a d dimensional boundary. If we ask for the complexity of the field theory
on the ¢t = 0 surface, cut off at z = ¢, the Wheeler de Witt patch lies between t = z — ¢
and t = —(z—e¢). Note that although these coordinates do not cover the full spacetime,
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Figure 1: AdS, showing the region covered by Poincare coordinates and the Wheeler-de Witt
patch of the ¢ = 0 surface.

the Wheeler-de Witt patch lies inside the region covered by this coordinate patch, as
shown in figure 1, so we can calculate its action ift these coordinates.

For the CV conjecture, the maximal volume/slice with boundary at £ = 0 is simply
the ¢ = 0 surface in the bulk, whose volume is

* dz 2y,
_ d—1 _pd _ x
V(B)_/dzd 2vVh =1 vx/ A= @ DT 9)
where V. is the IR divergent coordimate volume in the & directions. Thus, the com-
plexity calculated according,to the CV prescription is, up to an overall constant,

Edfl‘/x

e
N (d—1)Gne®1

(10)
This is proportional to the)/olume of the space the field theory lives in, in units of
the cutoff. This hasboth an IR and a UV divergence, which is physically reasonable
if we think of theomplexity/as defined with respect to some product lattice state, as
previously discussed.

Turning to'the,CA eonjecture, consider the Wheeler-de Witt patch of this cutoff
surface.? The action of the Wheeler-de Witt patch with the prescription of [8] is

SW:/ (R—2A)\/—ng—2/ fide)\+2/
W F

kdSdA — 2}4 adsS, (11)
P b

where /" (P) isthe future (past) null boundary of the Wheeler-de Witt patch, and X is
the surfaceat £ = 0, z = €. The light cones of the boundary surface are at t = £(z —¢),
and, R — 2A = —2d/¢?, so the volume integral is

€d+1 Edfl‘/x
Sw=2g [ o[ W= A "

2We could alternatively take the original Wheeler-de Witt patch of the surface at ¢ = 0, z = 0 and cut off
the cornier at z = ¢, producing a small timelike boundary component. This would produce a different set of
coefficients for subleading divergences [16].

Page 6 of 14
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This has a very similar structure to the volume in (9), but this term is negative, o't
is clearly important to include the boundary contributions identified in [8] to obtain'a
sensible result for the complexity.

In calculating (11), it is convenient to adopt an affine parametrizagsion of the null
surfaces, so that the integrals over the future and past boundaries do not econtribute.
Let us take the affine parameters along the null surfaces to be

72 72
A=——onF, A=—onP, (13)
oz Bz
where we introduce the arbitrary constants a, to exhibit explicitly the remaining
coordinate dependence. This gives k = «z2/02(d; + 9s,), k(= BL2J2(8, — 8.). The
boundary corner term is thus
1y

2 In(ape? /£2). (14)

Sp =21

Thus, the action calculated according to (11) is

ety 1

Sw = —5~[~4In(e/0) 2 llad)y —— .

- (15)

This has two undesirable features: it/depends on.the normalization «, [ of the affine
parameters on the two null surfaces, andit. diverges like ¢~(4=2)In¢, which is faster
than the volume of the space the field theoryilives in. These effects drop out if we
consider the time-dependence @stim. (1), but they are both problematic if we want to
consider the action as dual to the actual complexity of the state. The first implies that
the identification will require some choice of normalization for the affine parameters,
which seems strange; these are just coordinates and should have no physical content.
The second implies the complexity would have a stronger than volume divergence,
which seems not so easy to understand in terms of a simple lattice model.

Fortunately, both these.problems are removed once we include the additional con-
tribution (6). The métric on F has /5 = 471 /277! 5o the expansion is

S I VA P (16)

N e zk

so the surface term-is
Spel  —2(d— 1)¢-1v, / 2~2) 1 (o (d — 1)2/0)adA (17)

= 9(d— 1)1y, / ~n(a(d — 1)2/0)dz
Ed_l ‘

= 255V <ln(a(d — 1)e/l) + d;) :

and Sp = 252V, (n(8(d — )e/0) + 71y ). so0

d—1
S:Sw—FAS:SVOZ—i—SE—i—SF—I—SP:4%Vxln(d—1). (18)
€



©CoO~NOUTA,WNPE

AUTHOR SUBMITTED MANUSCRIPT - CQG-103487.R1

The dependence on «, (8 cancels out by construction, as the additional terms were
introduced to eliminate the coordinate dependence in (4). The surprise is that this
also leads to the cancellation of the logarithmic divergence.? This provides.a strong
additional support for the idea that (6) should be included in the caleulation of the
action. The result now has the same structure as that obtained in the CViealculation
(10); since we do not understand the relation between the complexity (@and spacetime
very precisely, the difference in the overall coefficient is not particularly significant.

3.1 Subleading contributions

If we consider asymptotically AdS spacetimes, there will also bé subleading divergences.
It is interesting to consider these contributions and investigate-whether the cancella-
tion of the leading logarithmic divergence in (4) obtained on adding (6) extends to
subleading terms. It is also interesting to compare the structurerof divergences in the
CV and CA calculations.

We consider an asymptotically AdS;.1 solution/of the vaguum Einstein equations.
The metric in the asymptotic region can then bé writtentin the Fefferman-Graham
gauge [19, 20]

0? y
ds* = ?(sz + gt 2)dztdx” ), (19)
where the metric along the boundary/directions has.a power series expansion in z,
(@, 2) = g0 (@) &g lh) (=) + ... (20)

We can give a simple general argument which shows that the cancellation of the
leading logarithmic term extends to all the terms of the form ¢ " loge. Logarithmic
divergences come from thecorner contribution,

Sy, = —2]{ In|k - &/2|\/7d% o, (21)
X

N
and from the additional contribution on the two null surfaces. Considering the future,
Sp = —2 / O1n [(0|\/yd* zd), (22)
Now using the fact that the expansion is © = %8\ﬁ /OA, we can rewrite this as

Sp = —2/8A\Fyln]€@]dd_lxd)\, (23)

anddmntegrate by parts on A. Since X is a past endpoint of the future surface, we obtain

Sp = 274 VA In[ee|d* o + 2 / ﬁ@@@dd—lm, (24)
¥

3For the case d = 1, that is AdSs, the null surfaces are one-dimensional, and there is no expansion, so we
cannot, define a term analogous to (6) to cancel the logarithmic divergence. In this case the CV calculation
is also logarithmically divergent. It would be interesting to understand this better, as this case will emerge
if we ' want to apply these complexity ideas to near-horizon geometries of near-extremal black holes.

Page 8 of 14
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1

2

2 dropping a boundary term at the other boundary of the null surface which is irrelevant

5 to the asymptotic calculation. The second term will only contribute power-law’diver-

6 gences, so the logarithmic divergences will come solely from the integral over.}. Note

7 also that it is this integral over ¥ which cancels the coordinate-dependence in (4); the

8 second term is coordinate-independent.* There is a similar contribution ffom the past

9 surface;

10

11 Sp =2 / I/ In |£0]d4 L zd), (25)

12

13 and the boundary term has the opposite sign because ¥ is a future boundary of the

14 past surface, so

15 ~

16 Sp = 27{ VI [ee]d? 1o — 2/ﬁmdd—1m. (26)

17 - 5)

ig The logarithmic divergences in the full action are then contained in the terms involving

20 integrals on X,

21

22 S = ...+27§(1nwer+1nwepy Lin |k - B2 Adt o (27)
)

gg We know from the previous calculation that the leading ogder logarithmic term cancels.

26 Subleading terms coming from the expansion of/4/y will then also cancel. Subleading

27 terms in the argument of the logarithmwill give power law divergences, once we expand

28 In(e + Be2 +...) = Ine + In(1 + Be+ ) ~ In€e + Be + .... Thus, there are no

29 subleading terms of the form ¢~ " Ine; onge weinclude (6) the divergences are a power

30 series expansion in €.’

31 We will now extend the expliciticalculation of the first subleading corrections to the

gé action in [16] to include the additional, contribution along the null surfaces. We will

34 see explicitly that the logarithmic terms cancel, as predicted by the general argument

35 above. We assume we are insd 3.2 where the term of order z? is determined locally by

g? the boundary metric gﬁ,’), [21, 22]

38 N 2 (0)

39 gl (@) = —ﬁ (R/U/[Q(O)] - 2(3’“/1)1%[9(0)]) : (28)

40

j; where R, and R are the Ricci tensor and Ricci scalar for the boundary metric. It

43 should be straightforwardito extend the analysis to further subleading orders, but we

44 will see interesting differences already at the first subleading order.

45 We comnsider a boundary slice at ¢ = 0, in the cutoff surface at z = ¢, and calculate

46 subleading divergen¢es in the complexity. As in [16], we restrict consideration to cases

j; where the boundary metric is

‘518 gfﬁ) dztdz™u = —dt? + hay(t,0®)dodo”®. (29)

51 This is general enough to include many cases of interest, and considerably simplifies

gg the determination of the Wheeler-de Witt patch.

54 4In fact, ome could take an alternative prescription for resolving the issues in (4) where one just added

55 the firstiterm in (24), rather than the whole expression (6).

56 >This argument is valid for all the terms of the form e " loge for n > 0; once we reach the order in the

57 Fefferman-Graham expansion where we encounter the free data in the asymptotic expansion, there may be

58 ¢ontributions to either CV or CA calculations at order loge.

59

60
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In [16], the subleading contributions to the volume of the maximal volume slice
were determined, finding

_ g1 N d—1 | (d — 2)2
&= DGyt Jatovi [l EECEDIEE <R“ ~3" (i 1>2K2) -
(30)

where h is the determinant of the metric hgp in (29) at t = 0, R% = h%R,;, is the trace
of the projection of the boundary Ricci tensor into the ¢ = 0 surface, and K is the
trace of the extrinsic curvature of the ¢ = 0 surface in the boundary metric (29). Thus,
the first subleading divergence can be expressed in terms of local \geometric features
of the boundary metric. The first subleading contributions to#he action (4) were also
evaluated in [16], obtaining

gd—l

CalSiw) = 4m2G(d — 1)ed-1 /dd_lg\/ﬁ [1 (3

+4(d—26)2(d—3> (4K2 + 4KabKab + (d — 7)R — 2(d — 3)RZ):|
1

rlos () [ el gt A+

We want to consider the effect of adding (6).

A key feature of the calculation in [16] is thatithe assumption that the boundary
metric has the form (29) implies that at first subleading order, the tangents to the null
generators take the form

=

k= — (220, + Kd,), 5 (=220, + K'dy), (32)

62(

~

where k! is determined by requiring these to be null vectors, ktk, = 0, which gives
k' = 22(gy)~ V2. This implies that'the form of the affine parameter in (13) is unchanged
to first subleading order.

Near the boundary, theMnduced metric on the surfaces of constant A in the null

) 4

surfaces is thus v4p = 2 4y, £ G,y T ---- Following [16], we write

\f:fd—lm(mq@ Al e ) (33

keeping the first terms in an expansion for small z and t, where h is the determinant
of hap(0%,t.=0). Along the null surface t = (z — €) + O(z3), so

%' (0) (2) 2 (0) 9
V= Zd_l\/ﬁ(l_‘_ql (Z_E)"‘qO Z2tqy (=€) +...), (34)
. (0) (2) 2
A7 = — ~d h((d—1)+¢q ((d—2)z— (d—1)e) + ¢y (d — 3)z (35)

+43”((d—3)22 = 2(d = 2)ze + (d = 1)e%) + ...,
so the expansion is

0 = 672 (d—1)— qgo)z 2q(()2)z2 — 2q§0)z(z €) + q(o)2 (z—¢€)+... (36)

10
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Performing the integral over z, one finds

gd—l
Sr = 2 /E 4 ovh [1n(a(d—1)e/z)(1+q52>62) (37)
(0)
0 _ @d=1) , G o (2 1o
1—ql%%— —2 ——1].
+(d—1)< Wb (g3 " “u—3° U 33"

Sp will have the same form, but with the sign of q%o) reversed, as the past surface is

t = —(z —€) + O(23). Thus, the correction to the action is

gd— ~
Sp+5p = Ay [ dloVh [ln(\/aﬁ(d — 1)e/0)(1 4¢3 (38)
by
)
1 2)(d—-1) , @B 9 ez 1,
— (1-gP =9 S :
a0 ( W @—3) “umm Thvu—3
Using the geometric expressions from [16],
=K, o = L ket R - e - (re - Lr) o)
1 R ) “ o OO0 S 2(d—-2)" 277

we can see that the logarithmic termwill cancel with the contribution in (31), as
expected, including the subleading correction. The power law terms will combine with
those in (31) to give us a result for the complexity

Ed—l

62
Ca(S) = W /dd_lo\/ﬁ [ln(d 1) <1 — m(}zg _ ;R))
ed K? C KK *d
- Dd-Dd=3) " ([d-2)d-3) " T aa-1)d—2)d-3)

We see that this has a_similar structure to the CV result (30), but with different
coeflicients for the subleading terms.

3.2 Global AdS

A simple examplewhichrillustrates the difference between CV and CA is to consider
pure AdS in'global coordinates,

2
ds® =

—73 (—dt* + df* + sin* 0dQ3_,). (41)

Wereonsidemasslice of the boundary at ¢ = 0, cutoff at 6 = 0.,y = § — €. The maximal

volume slice is again ¢ = 0 in the bulk, and the volume is simply

ecut
V(B) = / dOdWh = 190, / 4 tan®~1 0, (42)
0 cos 0

where Q,_; is the volume of a unit S%1.

11
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~

Figure 2: The Wheeler-de Witt patch in global AdS.

We again calculate the action of the Wheeler-de Wittipatch of the cutoff boundary
at 0 = 0.y, as depicted in figure 2. The future boundary is at<t = 0., — 6, while the
past boundary is at t = @ — .,4. The volume term in (11)s

4d Ocut t
SVOZ = —2/ dt// d@/dﬂ&.lv—g (43)

= —4d0, (0% 1/067” /t/ n’14
- 4= cosdHH

= —4Qu 0 1/ dt' tan® t’.
0

In the first step, we wrote the volume term as twice the integral over the future half of
the Wheeler-de Witt patch.»We choose an affine parameter A, so that the integrals over
the future and past boundariesiin (4) do not contribute. An appropriate parameter
is A\ = —a~Wtanf on F and A =8 Wtanf on P, where we have introduced the
arbitrary parameters «,. 3 purely so that we can see that they will cancel out once we
add the term (6). The future-pointing tangent is then

k= %6082 0(0; — B5) (44)
on F and
F— gco& 0(; + ) (45)

on P, so the boundary corner term is
Sy = =204 107 tan? ! Gy In(aB cos? eur). (46)

Adding the contribution (6), the expansion on F' is

10 1 0
vl e vt il = — % cos?f cotd! 00p(tan?=1 9) = —%(d—l) cot 6,

R R 09 ¢
(47)
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and similarly on P © = 3/¢(d — 1) cot §. Thus the surface term is

Sp = —2Q4 10471 / O1n 0| tan?"! fd\ (48)

Ocut tand=2¢

= 2(d—1)Qg_ 041 / In(a(d — 1) cot 0)de,

0 cos?
1
= QQd,lﬁd_l[tand_l Ocut In(a(d — 1) cot Opye) + d=1) tan®t O cut)
and similarly
~
Sp = 204 047! / ©1n O] tan?~1 odA (49)
1
= Qd,lﬁd’l[‘ceuqd*1 Ocut In(B(d — 1) cot Oy ) + -0 tan?™! Ocut)
So in total
S = Sy+AS=Syu+Se+Sr+Sp (50)
ecut 1
= —4Q, 01 / dt’ tan t' + 404 0% tan® ! Ocut(In(d — 1) + ﬁ)
0 _

We see that while the leading UV divergence is the same as for the volume (42), the
integrals are different, so the functional .dependence on 0., is different for CV and
CA. The two conjectures for the,complexity are inequivalent. However, as noted in
[16] (appendix C), the form of the'subleading contributions in the CA calculation here
depends on how we choose to cut off the Wheeler-de Witt patch, so it is not clear how
much physical meaning it carries.
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