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Abstract

Viruses rely on the metabolic network of the host cell to provide energy and macromolecular precursors to fuel viral
replication. Here we used mass spectrometry to examine the impact of two related herpesviruses, human cytomegalovirus
(HCMV) and herpes simplex virus type-1 (HSV-1), on the metabolism of fibroblast and epithelial host cells. Each virus
triggered strong metabolic changes that were conserved across different host cell types. The metabolic effects of the two
viruses were, however, largely distinct. HCMV but not HSV-1 increased glycolytic flux. HCMV profoundly increased TCA
compound levels and flow of two carbon units required for TCA cycle turning and fatty acid synthesis. HSV-1 increased
anapleurotic influx to the TCA cycle through pyruvate carboxylase, feeding pyrimidine biosynthesis. Thus, these two related
herpesviruses drive diverse host cells to execute distinct, virus-specific metabolic programs. Current drugs target nucleotide
metabolism for treatment of both viruses. Although our results confirm that this is a robust target for HSV-1, therapeutic
interventions at other points in metabolism might prove more effective for treatment of HCMV.
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Introduction

Herpesviruses are large, enveloped, double-stranded DNA

viruses, capable of both lytic infection and life-long latency in

mammalian hosts [1]. They are major causes of human disease. A

majority of adults are infected with herpes simplex virus 1 (HSV-1)

and/or human cytomegalovirus (HCMV). An alpha-herpesvirus,

HSV-1 infects a wide range of organisms and cells types, causing

symptoms ranging from cold sores to encephalitis. The prototypical

beta-herpesvirus, HCMV, selectively infects non-transformed hu-

man cells. Although frequently asymptomatic, HCMV causes severe

disease in neonates and immunocompromised adults. All herpesvi-

ruses encode metabolic enzymes in their genomes, primarily ones

involved in nucleotide metabolism. The HSV-1 genome encodes a

viral thymidine kinase, ribonucleotide reductase, dUTPase and

uracil DNA glycosylase, while HCMV encodes a functional form of

uracil DNA glycosylase [2]. Like all viruses, however, they rely

primarily on the metabolic capabilities of their cellular hosts for

replication. Specifically, the host provides the energy, amino acids

and lipids, as well as most nucleotides, required by the virus.

Improved technologies for measuring both enzymes and

metabolites is enabling for the first time in-depth analysis of

virus-host cell metabolic interactions. Liquid chromatography

coupled to mass spectrometry (LC-MS) facilitates direct measure-

ment of a large number of cellular metabolites [3,4]. Combined

with isotope tracers, metabolic flows (fluxes) can also be

determined. These new tools have revealed that, rather than

passively relying on basal host cell metabolic activity, many viruses

actively redirect host cell metabolism [5,6,7]. For example,

hepatitis C virus up-regulates host cell glycolysis and modulates

concentrations of specific lipids [8]. Similarly, hepatitis B virus

replication perturbs cholesterol metabolism by inducing increased

7-dehydrocholesterol levels [9].

Among herpes viruses, the metabolic effects of HCMV have

been the most extensively studied. Infection of a human fibroblast

cell line with HCMV leads to two-fold increases in glycolytic

activity and nucleotide synthesis, as well as yet greater increases in

citric acid cycle flux and lipid biosynthesis [10]. Consistent with

HCMV’s reliance on the metabolic fluxes that it induces,

inhibition of the committed step of fatty acid synthesis and

elongation, acetyl-CoA carboxylase, blocks HCMV replication

[10]. The virus also induces an increased dependence on

glutamine that serves to drive the TCA cycle [10,11]. These

metabolic changes are only partially accounted for by increased

levels of enzyme transcripts, indicating the involvement of multiple

regulatory mechanisms [6].

A limitation of studies of virus-host metabolic interactions to

date is that they have focused on single virus-host cell pairs.

Moreover, they have often employed transformed host cells that

differ markedly from the cells usually infected in vivo. This has

precluded understanding whether the observed metabolic effects

of viruses are relevant in their natural host cells, preserved across

host cell types, and conserved within families of related viruses. To

address these issues, here we compare and contrast the metabolic

effects of HCMV and HSV-1, across both fibroblast and epithelial

host cells. Specifically, we studied the laboratory-adapted AD-169

strain of HCMV, which is restricted to growth in fibroblasts, and

whose metabolic effects have been previously studied [6,10]. In
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addition, we examined the epitheliotropic clinical isolate strain

TB40/E, which grows in many cell types, to study the infection of

epithelial cells [12]. For HSV-1 infections, we chose the highly-

passaged, non-neuroinvasive KOS 1.1 strain and a prototypical

neuroinvasive strain, the F strain [13,14]. Both primary human

foreskin fibroblasts and the MRC5 fibroblast cell line were

analyzed after infection by both viruses. HSV-1 infection was also

studied in the Vero African green monkey renal epithelial cell line

which is traditionally used for its growth. Given HCMV’s

propensity to cause retinitis [15], it was studied in the ARPE-19

retinal pigment epithelial cell line.

Using LC-MS to probe core metabolite concentrations and

fluxes, we find that HCMV and HSV-1 both trigger major

metabolic changes in their cellular hosts, and that these changes

are similar across different host cell types and for different strains

of the same virus. In contrast, the effects of HCMV and HSV-1

diverge markedly. HCMV most greatly impacts pathways

generating substrates for lipid metabolism, whereas HSV-1 most

greatly impacts deoxypyrimidine metabolism.

Results

HCMV and HSV-1 trigger distinct metabolome changes
We examined the metabolic changes triggered by infection of

fibroblast and epithelial host cells with HCMV and HSV-1.

Fibroblasts (HFF and MRC5) were held at confluence for 3–5 days

then serum-starved for 24 hours prior to infection, while epithelial

cells (ARPE19 and Vero) were infected at 80–90% confluence and

maintained in the presence of dialyzed serum at all times. As a

consequence the fibroblast host cells were growth arrested at the

time of infection, while the epithelial cells continued to replicate

after mock inoculation [16]. Consistent with their different growth

states, there were substantial differences in the metabolome of the

host cells prior to infection, with compounds directly involved in

proliferative processes such as carbamoyl-aspartate (pyrimidine

biosynthesis), dTTP (DNA synthesis), and S-methyl-59-thioadeno-

sine (polyamine synthesis) markedly higher in the growing

epithelial cells than the quiescent fibroblasts (Figure S1). Other

compounds, such as those involved in mitochondrial fatty acid

oxidation (carnitine and acetyl-carnitine), were higher in growth

arrested fibroblasts compared to growing epithelial cells.

Infections were performed at a multiplicity of 3 pfu/cell to

ensure near complete exposure of the cell population. Cultures

infected with one of the virus strains, or treated with a virus-free

mock inoculum, were grown in parallel and sampled at regular

time intervals from the beginning of infection until peak virus

yields were achieved. Medium was changed every 24 h to ensure a

consistent nutrient supply to the cells; lack of media changes in

earlier work [6] resulted in some different metabolite patterns from

those observed here. In particular, we find that citrate and malate

levels increase.10-fold during HCMV infection, compared to the

2-fold change seen in previously published work [6]. Maximum

virus output was reached at around 24 h post infection (hpi) in

HSV-1 infected cells, and around 96 hpi HCMV infected cells

(Figure S2).

Over 80 metabolites were identified and detected in all

experiments. Relative concentrations of these species, between

infected and mock-infected cells, are shown in Figure 1 (for blue/

yellow version of the heat map, see Figure S3; for source data, see

Table S1). A third of the compounds were measured by both high

resolution mass spectrometry (orbitrap) and triple quadrupole

mass spectrometry (QQQ). The profile of any single metabolite

detected in multiple LC-MS methods was found to be similar, as

indicated by co-clustering of the associated data in almost all cases

(Figure 1).

Both viruses triggered .4-fold changes in the levels of roughly

half of the metabolites assayed. Among the metabolites changing

markedly, those increasing outnumbered those decreasing roughly

two-to-one. Although the magnitude of the changes in compound

levels depended on the host cell, typically being smaller in the

growing epithelial cells, the majority of the trends were host cell

invariant. This is remarkable given the differing initial growth and

metabolic states of the host cells, and it indicates a robust ability of

the viruses to re-program metabolism.

Extracting major trends from the dataset by singular value

decomposition [17] resulted in two characteristic vectors that

accounted for .10% of the information in the dataset (Figure

S4A). These vectors represent prototypical metabolite response

patterns. The first vector accounts for 16% of the variation in

metabolite levels over the time courses. In this vector, the signal as

a function of time shows a similar trend in each of the time

courses, thus representing a generic metabolite concentration

response to herpesvirus infection (Figure S4B). The smaller signal

in the first and last columns corresponding to the infections of

epithelial cells reflects the smaller fold-changes in metabolite levels

induced by viral infection in the growing epithelial cells compared

to growth arrested fibroblasts. The strongest contributor to the

generic infection response is dTTP, whose upregulation is

consistent with the shared need of both viruses to replicate their

DNA. The second vector, accounting for 12% of the variation in

the dataset, represents a virus-specific response with opposing

patterns for the HCMV and HSV-1 infection time courses (Figure

S4B). Key contributors to this virus-specific response include TCA

cycle intermediates, consistent with their rise during HCMV but

not HSV-1 infection, and the nucleotides dUMP and dTMP,

consistent with their rise during HSV-1 but not HCMV infection.

The third most significant vector, which accounts for 6% of the

information in the dataset, represents a metabolic response

characteristic of Vero cells (Figure S4B). While most of the

changes proved to be host cell-independent, the third vector draws

attention to the impact of different host cell types on the metabolic

effects of viruses. The strongest contributors to this vector are

Author Summary

Enveloped viruses draw on cellular machinery and
materials to generate copies of their genome, structural
proteins, and membrane. These biosynthetic processes use
the host metabolic network to provide energy and small-
molecule precursors. We have investigated how two
important enveloped viruses, human cytomegalovirus
and herpes simplex virus-1, alter host metabolism to
provide materials for viral replication. We show that rather
than passively relying on basal host cell metabolic activity,
both viruses actively redirect host cell metabolism,
implementing divergent metabolic programs that are
robust to host cell type and virus strain. Human
cytomegalovirus enhances lipid biosynthesis, while herpes
simplex-1 gears central carbon metabolism toward the
synthesis of pyrimidine nucleotides. Consistent with these
changes, human cytomegalovirus is more sensitive to
inhibition of fatty acid synthesis and herpes simplex virus-1
to inhibition of central metabolic reactions leading
towards pyrimidine synthesis. As these two closely related
viruses have divergent metabolic strategies, and since the
metabolic perturbations point to potential drug targets, an
important priority is defining the metabolic programs of
other viruses.

Divergent Herpes Virus Metabolic Impact
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citrate/isocitrate and N-carbamoyl-L-aspartate, due to their

depletion in infected Vero cells in contrast to their accumulation

in all other cell types. The remaining characteristic vectors

account for the other 66% of the information. This large amount

of residual information reflects a myriad of metabolite, virus, and

cell-type specific dynamics. For example, proline and glycine-

betaine showed cell type-specific upward or downward trends.

Other metabolites, such as dTTP, showed different dynamic

response patterns across different host cell types.

In all cell types tested, HCMV infection induced phosphoenol-

pyruvate, deoxypyrimidine triphosphates, CDP-choline, and

acetylated amino acids, as well as a striking and coordinated

increase in citrate, malate and other TCA cycle intermediates

(Figure 1). Depleted compounds included glycerophosphoinositol,

taurine, and a number of pentose phosphate pathway metabolites.

On the other hand, HSV-1 triggered increased levels of pentose

phosphate pathway intermediates, as well as glycolytic intermedi-

ates, and deoxypyrimidines (Figure 1). Notably depleted com-

pounds included glycine betaine, taurine, creatine, and NAD+.

The conserved decrease in the osmolyte, taurine, in both HCMV

and HSV-1 likely reflects a host cell response to virus-induced

increases in cell volume [18]. Glycolysis, the citric acid cycle, and

pyrimidine biosynthesis are discussed in greater detail below.

Glycolytic flux during HCMV and HSV-1 infection
Glycolysis and the TCA cycle form the backbone of central

carbon metabolism in mammalian cells. Through these two

pathways glucose is either oxidized to produce energy in the form

of NADH and ATP, or converted to precursors of amino acids,

lipids and nucleotides. The levels of glycolytic intermediates are

altered in a strikingly different manner during HCMV and HSV-1

infections (Figure 2A). The concentrations of metabolites in lower

glycolysis increase during HCMV infection, while levels of upper

glycolytic intermediates drop. Conversely, in response to HSV-1

infection the opposite occurs. While these concentration measure-

ments are informative, it is not possible to deduce whether changes

in influx, efflux or a combination of both are responsible for the

perturbations of the metabolite levels. Neither the turnover rate of

a metabolic intermediate, nor the material flow through a

pathway, can be predicted based on metabolite pool sizes alone.

To understand how material flow, i.e., flux, is altered, further

assays must be employed.

In cultured mammalian cells, the enzyme-catalyzed reactions of

glycolysis convert the bulk of glucose imported from the

extracellular environment to lactate, which gets excreted. Thus,

changes in the rate of material flow through glycolysis can be

approximated by measuring the rate of glucose consumption and

lactate production. We determined the glucose uptake and lactate

excretion rates in infected and mock treated HFFs by directly

measuring the amount of glucose and lactate in the extracellular

medium over time (Figure 2B). HCMV increased the uptake of

glucose (p = 0.02) and the excretion of lactate (p = 0.0006), in

agreement with previously published results on HCMV-infected

fibroblasts [10,19,20] (Figure 2B). On the contrary, in HSV-1

infected cells the glucose uptake (p= 0.21) and lactate excretion

(p = 0.002) rates decreased to a modest extent.

In addition to glucose from the medium, glycolysis can also be

fueled by glucose acquired from the breakdown of stored glycogen.

Moreover, decreased lactate production can reflect increased

glycolytic efflux to the TCA cycle, rather than decreased glycolytic

flux. To confirm our conclusions based on the glucose and lactate

measurements, we also measured the rate of incorporation of

isotope-labeled nutrients into downstream metabolites. Following

a switch to labeled media, metabolite pools become progressively

more labeled, with the unlabeled fraction exhibiting an exponen-

tial-type decay. Flux through a metabolite is the product of the

rate of this decay and the total pool size of the metabolite [21]. To

reliably estimate this decay rate, it is important to obtain samples

at early time points where the fractional labeling is changing

rapidly. Because label from glucose gets incorporated very quickly

into glycolytic intermediates, measurements at later time points are

likely to reflect steady-state labeling fractions, not labeling rates per

se. At steady state, the amount of labeled metabolite reflects the

total metabolite pool size and the fraction of its production from

the labeled substrate, but not the rate of labeling.

To characterize glycolytic flux, we switched HCMV and HSV-1

infected cells, as well as their mock-treated counterparts, to 13C-

labeled glucose containing media, and used LC-MS to monitor the

labeled forms of downstream metabolites over time. HCMV

infection increased the fractional labeling rate of glycolytic

intermediates fructose-1,6-bisphosphate and dihydroxyacetone

phosphate, while HSV-1 decreased it (Figure 2C). The decrease

in the rate of HSV-1 labeling was complemented by a corres-

ponding increase in metabolite concentration. Thus, we can

conclude that HCMV significantly increases flux through

glycolysis and HSV-1 does not.

Interestingly, in HSV-1-infected cells the metabolites upstream

of phosphoenolpyruvate build up, while the ones downstream

drop (Figure 2A). This suggests a bottleneck in glycolytic efflux at

the step catalyzed by pyruvate kinase, the enzyme that converts

phosphoenolpyruvate and ADP to pyruvate and ATP. The

buildup of glycolytic metabolites upstream of pyruvate is

accompanied by increased levels of pentose phosphate pathway

intermediates, thus increasing the availability of ribose-phosphate

for the synthesis of nucleotides. During hepatitis C infection the

levels of most glycolytic enzymes were shown to be elevated, with

the notable exception of pyruvate kinase [8]. Such changes in

enzyme levels may lead to a similar metabolic outcome as

observed in HSV-1 infected cells. However, as the activity of

glycolytic flow is under tight allosteric control [22], direct

metabolic analysis of hepatitis C is warranted to confirm this.

TCA cycle influx during HCMV and HSV-1 infection
The metabolites of the TCA cycle showed a particularly

interesting difference in labeling patterns when HCMV- and

HSV-1-infected fibroblasts were supplied with uniformly labeled
13C- glucose. In the uninfected, growth arrested fibroblasts, citrate

was only minimally labeled over a 2 h time period (Figure 3D, top

Figure 1. Divergent metabolic profiles of HCMV- and HSV-1-infected cells. Metabolite levels during the course of HCMV and HSV-1
infection, normalized by packed cell volume and expressed relative to levels measured in the equivalent mock-treated host cells. Ratios are log
transformed and plotted on a color scale. Rows correspond to metabolites measured either by LC-high resolution MS or LC-triple quadrupole MS/MS
(those measured by triple quadruople are marked ‘‘QQQ’’). Columns correspond to hours post infection for each of the eight infection time courses.
The host cells and virus strains used in each time course are indicated. HCMV (strains TB40/E and AD169) and HSV-1 (strains KOS and F) were used to
infect growing epithelial (ARPE19 and Vero) and growth arrested fibroblasts (HFF and MRC5). During HCMV infection samples were taken at 3, 24, 48,
72, 96 hpi, and also at 120 hpi during the infection of ARPE19 cells with the TB40/E strain. During HSV infection samples were collected at 3, 6, 9, 12,
15, 18, 21, and 24 hpi. Values are averages of duplicate independent biological experiments. To view the same figure in blue-yellow color scale, see
Figure S1.
doi:10.1371/journal.ppat.1002124.g001

Divergent Herpes Virus Metabolic Impact

PLoS Pathogens | www.plospathogens.org 4 July 2011 | Volume 7 | Issue 7 | e1002124



panel). On the other hand, HCMV-infected fibroblasts produced a

significant amount of citrate with two labeled carbon atoms (13C2-

citrate) (Figure 3D, center panel), while their HSV-1-infected

counterparts generated citrate with three labeled carbons (13C3-

citrate) (Figure 3D, bottom panel). These two forms of citrate are

produced by different pathways, which are selectively up-regulated

in a virus-specific manner.

Labeled carbon atoms derived from 13C-glucose can enter the

TCA cycle via two routes (Figure 3A). In one, pyruvate

dehydrogenase and citrate synthase incorporate two carbons from

glucose into citrate via acetyl-CoA (Figure 3B). The labeling

pattern of citrate during HCMV infection indicates increased

influx of glycolytic carbon to the TCA cycle via this route

(Figure 3D). This pathway indicates a catalytic use of the TCA

cycle, with the two-carbon units originating from glycolysis either

oxidized to produce energy by complete turning of the TCA cycle,

or diverted from the mitochondria to the cytosol through the

citrate shuttle, where the acetyl group is freed for fatty acid

synthesis and/or elongation. Global flux analysis on HCMV

infection showed that both of these uses of glycolytic carbon are

up-regulated by HCMV in MRC5 cells [10]. Our results indicate

that HCMV infection of HFFs leads to the same up-regulation.

Carbon from glycolysis can also enter the TCA cycle via

pyruvate carboxylase, which converts pyruvate to oxaloacetate

(Figure 3C). All three labeled carbons in pyruvate are retained in

oxaloacetate, which is converted to 13C3-citrate, malate, or

aspartate. The labeled forms of TCA cycle intermediates observed

in HSV-1-infected cells indicate an up-regulation of carbon influx

via pyruvate carboxylase as reflected by the labeling of citrate

(Figure 3D, right panel) and malate (Figure S5) when cells are

supplied with 13C6-glucose. Furthermore, no citrate is detected

with two or five labeled carbons in these cells. Thus, unlike in

HCMV-infected cells, the use of glucose to drive the citrate shuttle

and ensuing fatty acid synthesis is minimal during HSV-1

infection. The previous metabolic analysis of HCMV infection

led to the recognition of a potential new drug target by showing

that de novo fatty acid biosynthesis is essential for HCMV

replication [10]. Pharmacological inhibitors of enzymes in fatty

Figure 2. Perturbation of glycolysis by HCMV and HSV-1. (A) Plots of individual metabolite abundance during HCMV and HSV-1 infection.
Data are the same as presented in Figure 1. Metabolite concentrations are expressed relative to equivalent mock-treated cells. Rows correspond to
infection time courses of the following virus strains and cell types: (i) TB40-HFF, (ii) AD169-HFF, (iii) AD169-MRC5, (iv) TB40-ARPE19, (v) F-HFF, (vi) KOS-
HFF, (vii) KOS-MRC5, (viii) KOS-Vero. Columns correspond to time points: 3, 24, 48, 72, 96 hpi for HCMV and 3, 6, 9, 12, 15, 18, 21, 24 hpi for HSV-1
(Hexose-P: glucose-6-phosphate and its isomers; FBP: fructose-1,6-bisphosphate; DHAP: dihydroxy acetone-phosphate; PEP: phosphoenolpyruvate).
(B) Measurement of glucose uptake and lactate excretion rates in HCMV-AD169 or HSV-KOS infected, as well as mock-treated, human foreskin
fibroblasts (mean 62 s.e.; n = 3). (C) Buildup of the labeled fraction of the FBP and DHAP pools after switching cells to uniformly 13C-labeled glucose
medium at 12 hpi during HSV-KOS or 48 hpi during HCMV-AD169 infection or equivalent virus-free treatment of HFF cells. Symbols indicate
experimental data points 62 s.e.; n = 2; lines indicate exponential fit.
doi:10.1371/journal.ppat.1002124.g002
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Figure 3. Virus-specific up-regulation of glucose influx to the TCA cycle. The left column of schematic show carbon labeling from glucose to
the TCA cycle via pyruvate carboxylase and pyruvate dehydrogenase. Red dots denote 13C atoms originating from uniformly 13C-labeled glucose. (A)
Labeling patterns when neither pyruvate carboxylase nor pyruvate dehydrogenase are active. (B) Labeling pattern when carbon influx to the TCA
cycle from glucose is via pyruvate dehydrogenase. (C) Labeling pattern when carbon influx to the TCA cycle from glucose happens via pyruvate

Divergent Herpes Virus Metabolic Impact
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acid biosynthesis were shown to inhibit not only HCMV

replication, but also the replication of influenza, an evolutionarily

divergent virus [10]. De novo fatty acid biosynthesis does not appear

to bear the same importance for the replication of HSV-1 as for

HCMV (Figure 3D). This is reflected in the lower sensitivity of

HSV-1 replication to 5-tetradecyloxy-2-furoic acid (TOFA)

(Figure S6) [10], an inhibitor of acetyl-CoA carboxylase, the first

committed enzyme of fatty acid biosynthesis.

Pyrimidine biosynthesis during HSV-1 infection
The reaction catalyzed by pyruvate carboxylase is an anaplero-

tic reaction that serves to replenish the intermediates of the TCA

cycle as they are removed for biosynthetic purposes. However, in

spite of its up-regulation during HSV-1 infection, after an initial

elevation, the levels of TCA cycle intermediates drop (Figure 4).

This indicates that HSV-1 triggers an even greater increase in

TCA cycle efflux. Notably, the concentration of aspartate, which is

produced from oxaloacetate, decreases significantly after infection

with HSV-1. In addition to being used for protein synthesis,

aspartate is a substrate for pyrimidine nucleotide biosynthesis.

Unlike in HCMV infection, in response to HSV-1 infection the

rates of total RNA and total protein syntheses drop [23,24]. At the

same time, viral DNA synthesis increases the demand for

deoxyribonucleotides. The nucleotide precursors essential for

DNA synthesis can be acquired through salvage reactions or de

novo synthesis [25,26]. When replicating in quiescent cells as

opposed to actively dividing ones, viruses face a greater challenge

in acquiring nucleotides for viral DNA replication, because the de

novo nucleotide biosynthesis pathways are less active [27]. HSV-1

encodes a set of enzymes addressing this problem and their impact

is reflected in increased concentrations of the intermediates of the

pyrimidine nucleotide biosynthesis pathway (Figure 5). HCMV

employs an alternative mechanism whereby the host cell is driven

from quiescence to the G1/S boundary of the cell cycle [28],

stimulating host cell nucleotide biosynthesis but preventing host

DNA replication. Interestingly, in HSV-1 infected serum-starved

fibroblasts dTTP levels are not observed to peak and drop after

6 hpi as reported in Vero cells (Figure 1) [26], and BHK cells [29].

In growth arrested fibroblasts the dTTP pool continues to rise

throughout the infection (Figure 5). Such a trend was previously

observed in mutant BHK cells that lack thymidine kinase and

deoxycytidine kinase activities [29]. Confluent, serum-starved

fibroblasts may present a similar cellular environment, with very

low basal activity of DNA-biosynthetic enzymes.

Uracil can occur in DNA as a result of cytosine deamination or

misincorporation of dUTP [30]. The UL50 and UL2 genes of

HSV-1 encode enzymes that address these problems. The viral

dUTPase (UL50) serves to reduce incorporation of uracil into viral

DNA by decreasing dUTP levels and producing dUMP. Uracil-

DNA glycosylase (UL2) participates in base excision repair of the

HSV-1 genome, removing uracil from viral DNA [31,32]. These

two viral enzymes are likely responsible for the increased dUMP

and uracil levels during HSV-1 infection (Figure 5).

While there is no known HSV-1 gene that causes the increased

production of carbamoyl-aspartate, evidence for the regulation of

aspartate transcarbamoylase during adenovirus infections has been

presented in the past [33,34]. Furthermore, carbamoyl-aspartate

levels are observed to rise dramatically in both HCMV and HSV-1

infections (Figure 1) [10]. Carbamoyl-aspartate is produced by the

multifunctional CAD protein, which catalyzes the first three steps of

de novo pyrimidine biosynthesis in mammalian cells. CAD is highly

regulated by growth state-related signaling molecules, such as the

epidermal growth factor [35,36]. Epidermal growth factor receptor

has been shown to play a role in the entry of several different viruses,

and it or related signaling pathways might contribute to virally-

induced increases in carbamoyl-aspartate levels [37,38,39].

To confirm that flux from aspartate to pyrimidine nucleotides is

up-regulated in HSV-1 infection, we analyzed the labeling pattern

of the pathway intermediates after switching cells to medium

containing uniformly labeled 13C-glutamine (Figure 6A). As

glutamine contributes to anapleurosis in both mock and infected

cells, this resulted in labeling of aspartate in both cases, and thus

enabled direct comparison of pyrimidine synthesis between these

two conditions. Significantly faster labeling of the pyrimidine end-

product UTP was observed in infected cells (Figure 6B). As the

concentration of UTP is also elevated in HSV-1 infected cells, flux

from aspartate to nucleotide synthesis is markedly increased.

Taken together, the above observations indicate an upregula-

tion of flux in HSV-1 infected cells from glucose to de novo

pyrimidine nucleotide biosynthesis via the pyruvate carboxylase-

catalyzed anaplerotic and the aspartate transaminase 2 catalyzed

cataplerotic reactions of the TCA cycle (Figure 7A). In agreement

with this, small interfering RNA (siRNA) mediated knockdown of

pyruvate carboxylase and aspartate transaminase 2 inhibit HSV-1

replication, but not HCMV (Figure 7B–D).

Discussion

Viral replication depends on the energy and biosynthetic

precursors supplied by host cell metabolism. Using a mass

spectrometry-based metabolomic approach we demonstrate that

two closely related viruses, HCMV and HSV-1, implement

divergent metabolic programs (Figure 1 and Table S1). These

programs are robust to host cell type and virus strain. While

HCMV enhances glycolytic flux and the delivery of carbon from

glucose to the TCA cycle to fuel fatty acid biosynthesis, HSV-1

gears central carbon metabolism toward the production of

pyrimidine nucleotide components (Figure 8). The focus of

HSV-1, but not HCMV, on nucleotide metabolism is interesting

in light of nucleoside analogues (acyclovir and ganciclovir,

respectively) being more effective treatments for HSV-1 than for

HCMV [40]. Both compounds depend on phosphorylation by

viral kinases for their activation, and the metabolic profile of HSV-

1 infected cells reflects the activity of the virally encoded thymidine

kinase. On the other hand, the only functional HCMV kinase

(UL97) is a protein kinase and has little to no nucleotide kinase

activity [41]. This difference is reflected in the metabolome and in

the lower efficacy of the nucleoside analogues for HCMV. In

contrast, we show that TOFA, an inhibitor of the committed step

of fatty acid synthesis and elongation, preferentially targets

HCMV over HSV-1 (Figure S6).

The viruses also induce robust changes outside of core

metabolism. For example, HCMV, but not HSV-1, induces a

striking increase in acetylated amino acids (Figure 1). After HSV-1

infection, NAD+ levels dropped by a factor of about 10, but little

decline was evident after HCMV infection. We have recently

discovered that this NAD+ depletion is due to elevated poly-ADP-

ribose polymerase activity (L. Vastag, unpublished work). The

activation of poly-ADP-ribose polymerase has also been observed in

carboxylase. (D) Levels of various labeled forms of citrate expressed as percent of the total citrate pool upon switching HCMV-AD169, HSV-KOS or
mock-treated HFF cells to uniformly 13C-labeled glucose medium. HCMV infected cells were switched at 48 hpi, HSV-1-infected cells at 12 hpi. The x-
axis indicates time after switching to labeled medium (mean 61 s.d.; n = 2).
doi:10.1371/journal.ppat.1002124.g003
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HIV-1 and Sindbis Virus infected cells [42,43,44]. Understanding

the significance of such observations requires further study.

Why do these two related viruses induce markedly different

changes in host cell metabolism? Both must synthesize viral proteins

and nucleic acids and both produce enveloped virions. Perhaps the

difference results in part from the markedly different speeds at

which the two viruses progress through their replication cycles.

HSV-1 produced maximal yields in fibroblasts or epithelial cells

within about 24 h, whereas HCMV did not achieve maximal yields

until about 96 hpi (Figure S2). One might speculate, then, that

HSV-1, which accumulates its DNA fairly rapidly, must elevate

nucleotide biosynthesis; in contrast, HCMV, which accumulates its

DNA over a much longer time frame, does not require such a strong

induction (Figure 1). It is more difficult to suggest why HCMV

depends on de novo fatty acid biosynthesis more strongly than HSV-1

(Figure S6). It is conceivable that HCMV induces the production of

new membranes to serve as a source for the virion envelope, while

HSV-1 virions are built from pre-existing membranes. Consistent

with this view, HCMV-infected cells develop a well-defined,

membranous assembly compartment during the late phase of

infection [45,46,47], but no equivalent structure has been described

within HSV-1-infected cells.

The metabolic program induced by herpes viruses could be

implemented in several ways. One potential strategy involves

perturbation of general host biochemical milieu. For example, the

HCMV UL37x1 protein elevates free intracellular calcium levels

[48], which could potentially activate glycolysis through the action

of calcium-sensitive kinases [19]. Alternatively, virus-coded gene

products could modify or interact with pivotal regulators of host

cell metabolism, e.g., the HCMV UL38 protein [49], or with

metabolic enzymes themselves to alter their activity. Yet other

strategies could involve modulation of host cell enzyme concen-

trations through mechanisms involving transcription, translation,

or protein stability. A comprehensive systems level analysis,

incorporating transcriptomic [50,51,52,53], proteomic [8], and

metabolic data should help clarify the relative significance of these

latter mechanisms.

In addition to elucidating the mechanisms underlying host cell

metabolic hijacking, an important priority is defining the

metabolic programs of other viruses. Among herpes viruses, it

will be interesting to see whether most fit either the HSV-1 or

HCMV prototype, or whether alternative programs exist. For

smaller viruses, it will be interesting to see whether their yet more

precious genome space includes instructions for extensive host cell

metabolic reprogramming. Such work holds substantial practical

value, given overarching importance of enzyme inhibitors as

antivirals and the utility of metabolomics for identifying new

antiviral targets.

Figure 4. TCA cycle metabolite levels increase in HCMV and drop in HSV-1 infected cells. Plots of individual metabolite abundance during
(A) HCMV and (B) HSV-1 infection. These data are the same as presented in Figure 1. Metabolite concentrations are expressed relative to equivalent
mock-treated cells. Rows correspond to infection time courses of the following virus strains and cell types: (i) TB40-HFF, (ii) AD169-HFF, (iii) AD169-
MRC5, (iv) TB40-ARPE19, (v) F-HFF, (vi) KOS-HFF, (vii) KOS-MRC5, (viii) KOS-Vero. Columns correspond to time points: 3, 24, 48, 72, 96 hpi for HCMV
and 3, 6, 9, 12, 15, 18, 21, 24 hpi for HSV-1.
doi:10.1371/journal.ppat.1002124.g004

Figure 5. Upregulation of pyrimidine nucleotide biosynthesis during HSV-1 infection. Individual metabolite abundance in HSV-1-infected
and mock-treated quiescent HFFs. To show separately the trend in mock versus infected cells, metabolite concentrations are expressed relative to the
average level measured in mock-infected cells at 3 h post mock treatment (mean 62 s.e.; n = 2).
doi:10.1371/journal.ppat.1002124.g005
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Materials and Methods

Cells and viruses
Primary human foreskin fibroblasts (HFFs) were collected

previously [54] and stored in liquid nitrogen. We used them at

passages 8–13. ARPE19 human retinal pigment epithelial cells,

Vero green monkey kidney epithelial cells and MRC5 human

embryonic lung fibroblasts were purchased from the American

Type Culture Collection. Cells were grown in Dulbecco’s modified

Eagle Medium (DMEM) with 10% fetal bovine serum, 100 mg/

mL penicillin and streptomycin (Invitrogen), and 4.5 g/L glucose.

HSV-1 strain F [55] was kindly provided by B. Roizman

(University of Chicago), the HSV-1 KOS 1.1 strain [56] was a

gift from D. Hargett (Princeton University), and both viruses were

grown in Vero cells [57]. BADwt-GFP is a phenotypically wild-

type HCMV laboratory strain that was generated from a bacterial

artificial chromosome (BAC) clone of strain AD169 [58]

engineered to express green fluorescent protein [59]. TB40/E-

eGFP is a phenotypically wild-type HCMV clinical isolate that was

derived from a bacterial artificial chromosome termed TB40-

BAC4 [60] containing a green fluorescent protein marker gene

under control of the SV40 promoter between US34 and TRS1.

HCMV strains were grown in MRC-5 cells. To prepare virus

stocks for both HSV-1 and HCMV, the media of infected cells was

layered over a sorbitol cushion (20% sorbitol, 50 mM Tris-HCl,

pH 7.2, 1 mM MgCl2) and virus was pelleted by centrifugation

(20,000 rpm, 1 h, 4uC, Beckman SW28 rotor). Virus stocks were

prepared in DMEM with 0.5% bovine serum albumin and

without fetal bovine serum, to avoid serum stimulation of the

growth arrested fibroblasts during inoculation.

For analysis of metabolites, fibroblasts (HFFs or MRC5) were

grown to confluence and maintained in the presence of serum for

5 d. Cells were then washed with serum-free DMEM and

maintained in serum-free DMEM for 24 h before infection or

mock treatment. Epithelial cells (ARPE19 or Vero) were grown to

80–90% confluence in DMEM with 10% dialyzed serum (Gemini

Bio-Products) before infection. At the time of infection cells were

inoculated with virus resuspended in DMEM with or without

serum. Mock treated cells were inoculated with equivalent, virus-

free DMEM. After a 1 h inoculation fresh DMEM was added to

the cells, following two washes with the appropriate medium. For

each time point in every experiment an additional mock treated

and infected plate was processed for packed cell volume

measurement. Approximately 56105 cells were added to packed

cell volume tubes (Techno Plastic Products), which were

centrifuged at 20006g for 5 min before reading [61]. Packed cell

volume measurements were used to normalize the metabolite

levels between samples.

Metabolite extraction
At various times post infection or addition of 13C-labeled

glucose- or glutamine-containing DMEM, the media of infected

Figure 6. Flux to pyrimidine nucleotide synthesis induced by HSV-1 infection. (A) Schematic of carbon labeling from glutamine to UTP
arising during carbon influx from glutamine to the TCA cycle. Red dots denote 13C atoms originating from uniformly 13C-labeled glutamine. (B) Plots
show the levels of the labeled form of the indicated metabolites expressed as percent of the total metabolite pool. The labeling arose upon switching
HSV-KOS infected or mock treated HFF cells to uniformly 13C-labeled glutamine media. HCMV infected cells were switched at 48 hpi, HSV-1-infected
cells at 12 hpi. The x-axis indicates time post media switch (mean 62 s.e.; n = 2).
doi:10.1371/journal.ppat.1002124.g006
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and mock cells was aspirated and 280uC, 80:20 methanol:water

(v/v) was immediately added to quench metabolism. There were

no washing steps prior to metabolism quenching, as such steps risk

metabolic alterations. Metabolites were then extracted as de-

scribed previously [21]. The extract was dried under nitrogen and

metabolites were resuspended in HPLC-grade water and centri-

fuged at 150006g speed for 5 min to remove particulate matter

before analysis. To minimize complications due to excessive

sample concentration and associated ion suppression during LC-

MS analysis, samples were diluted substantially prior to analysis:

metabolites collected from 106 cells (a confluent 60 mm plate of

fibroblasts) were resuspended in 500 mL water.

Figure 7. HSV-1 replication is inhibited by reducing flux from glucose toward pyrimidine nucleotide synthesis. (A) Schematic diagram
of glucose flux to pyrimidine nucleotide biosynthesis. Red lines mark siRNA-targeted reactions catalyzed by pyruvate carboxylase (PC) and aspartate
transaminase 2 (GOT2). (OAA: oxaloacetate, AKG: oxoglutarate, Gln: glutamine). (B) RNA interference knockdown of pyruvate carboxylase (marked by
arrow) in MRC5 cells. Cells were transfected with non-targeting siRNAs (NT) or siRNAs targeting pyruvate carboxylase (PC) and harvested at indicated
time points after transfection. Pyruvate carboxylase levels in the cells were detected by western blot using specific antibodies. Beta-actin was
employed as a loading control. (C) Buildup of 13C3-labeled malate after switching MRC5 cells to uniformly 13C-labeled glucose medium for 2 hours at
10 hpi of HSV-1 (F) infection. The cells have been transfected with a universal non-targeting siRNA (NT) or an siRNA targeting pyruvate carboxylase
(PC) 120 h prior to infection (significance: p = 0.007). Symbols indicate experimental data points 61 s.d.; n = 3; values are given in arbitrary units. (D)
Production of infectious HSV-1 (F) and HCMV (AD169) virions in cells transfected with siRNAs against pyruvate carboxylase (PC), aspartate
transaminase 2 (GOT2), or a universal negative control (NT). The transfection and infection of MRC5 cells were performed as described in Materials
and Methods. Values are expressed relative to non-targeting control (61 s.d.; n = 3). Conditions resulting in significantly altered virus production
(p#0.05) compared to treatment with the universal negative control are marked with a star.
doi:10.1371/journal.ppat.1002124.g007
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Liquid chromatography – mass spectrometry
To quantitatively measure the levels of metabolites in extracts

prepared from infected or mock treated cultured mammalian cells,

two different mass spectrometry methods were employed. Liquid

chromatography-tandem mass spectrometry (LC-MS/MS) in

selective reaction monitoring (SRM) mode was used to assay for

,200 metabolites of confirmed identity from a wide range of

metabolic pathways [62]. A Finnigan TWQ Quantum Ultra mass

spectrometer was used in the positive ionization mode, and a TSQ

Quantum Discovery MAX mass spectrometer in the negative

mode, each equipped with an electrospray ionization source

(Thermo Fisher Scientific). The SRMs were constructed with

parameters acquired through optimizing the collision induced

fragmentation of purified standards of the given metabolites. The

LC method in positive mode employed an aminopropyl column

for separation [62], while in negative mode the metabolite extracts

were passed through a C18 column using tributylamine as an ion

pairing agent to achieve longer retention of polar compounds

[63,64]. In addition, the LC-MS/MS method was complemented

with untargeted analysis using liquid chromatography coupled to a

stand-alone orbitrap mass spectrometer (Thermo Fisher Scientific

Exactive instrument) which performs full scans from 85 to

1000 m/z at 100,000 mass resolution [65]. In this system,

identification of compounds is based on two parameters: the

retention time on the LC column and the compound mass

measured with less than 2 ppm mass accuracy. Peaks were

identified and peak heights exported with the Metabolomic

Analysis and Visualization Engine (MAVEN) [66].

Glucose uptake and lactate excretion
For glucose uptake and lactate excretion measurements, media

samples were collected every 3 h between 45 and 57 hpi for

HCMV, and every 2 h between 6 and 18 hpi for HSV-1. The

concentrations of lactate and glucose were measured using a YSI

7100 Select Biochemistry Analyzer (YSI Incorporated). Uptake and

excretion rates were determined as the rate of concentration change

of these compounds in the media. The values were corrected using

the packed cell volume of the infected and mock cells.

Metabolic flux analysis
For experiments involving monitoring the rate of incorporation

of 13C-labeled nutrient into downstream metabolites, cells were

switched to fresh media 1 h before addition of the labeled nutrient.

This minimized the perturbation to the cells when their medium

was replaced with isotope containing medium. Cells were then

maintained in medium containing the labeled nutrient for different

lengths of time. Metabolites were extracted and various isotopi-

cally labeled forms quantified by mass spectrometry. The values

were corrected for the natural abundance of 13C as described

previously [10]. Labeled DMEM was prepared from glucose and

glutamine-free DMEM with the addition of U-13C-glucose or

U-13C-glutamine (Cambridge Isotope Laboratories). All media

Figure 8. Divergent effects of HCMV and HSV-1 on central carbon metabolism. Schematic summary of major metabolite concentration and
flux changes in response to HCMV (left panel) and HSV-1 (right panel) infection of growth arrested fibroblasts. Arrow colors denote flux changes and
font colors denote metabolite level changes relative to the mock-treated control (red-increased, green-decreased, grey-not detected). (Hexose-P:
glucose-6-phosphate and its isomers, Pentose-P: ribose-phosphate and its isomers, FBP: fructose-1,6-bisphosphate, DHAP: dihydroxy acetone-
phosphate, PEP: phosphoenolpyruvate, Asp: aspartate, Ala: alanine, Gln: glutamine, AKG: oxoglutarate, OAA: oxaloacetate, Ac-CoA: acetyl-
coenzymeA.)
doi:10.1371/journal.ppat.1002124.g008
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were equilibrated to the incubator temperature and gas compo-

sition before use.

siRNA transfection
Double stranded siRNA molecules directed against pyruvate

carboxylase (59-GACUGUACGCGGCCUUCGATT), aspartate

transaminase 2 (59-CUAUUGAGAGCUUCACACATT), and a

Universal Negative Control (SIC001) were purchased from Sigma.

Subconfluent MRC5 cells seeded into 96-well plates were

transfected with 10 pmol of siRNA using Oligofectamine trans-

fection reagent (Invitrogen) according to the manufacturer’s

instructions. For HCMV experiments, the siRNA transfected cells

were incubated for 24 hours and then infected with HCMV strain

BADwt-GFP at a multiplicity of 0.1 pfu/cell. The cells were

further incubated for 96 hours and media containing the infectious

virus were harvested. Since HSV-1 replicates with a faster kinetics

than HCMV, the transfected cells were incubated for 3 days to

allow efficient knockdown of target gene. The cells were then

infected with HSV-1 strain F at a multiplicity of 0.02 pfu/cell and

media were harvested 24 hours after infection. The yield of

HCMV and HSV in the media was determined by infectious focus

assay. Briefly, fresh MRC5 cells were infected with different

dilutions of viruses and fixed 24 hours after HCMV or 4 hours

after HSV-1 infection with methanol at 220uC. Foci were

identified using mouse monoclonal primary antibodies to HCMV

immediate early IE1 protein (1B12) [54] or HSV-1 immediate

early ICP4 protein [67] and a goat anti-mouse Alexa Fluor 488-

conjugated secondary antibody (Invitrogen).

Western blot analysis
MRC5 cells were seeded into 6-well dishes and transfected at

70% confluence as described above. HFF cells were grown to

confluence, serum starved for 24 hours and infected at 3 pfu/cell

with HSV-1 (F strain). At selected times post transfection of

MRC5 cells and infection of HFFs, cells were washed with

phosphate-buffered saline (PBS), harvested and stored at 280uC.

Cells were lysed in RIPA-light buffer (50 mM Tris-HCl, pH 8.0,

1% NP-40, 0.1% SDS, 150 mM NaCl, 0.1% Triton X-100,

5 mM EDTA) with protease inhibitors (Roche Applied Science),

and protein concentrations were determined by Bradford assay.

Proteins were separated by 10% SDS-containing polyacrylamide

gel electrophoresis and transferred to nitrocellulose membranes.

Membranes were probed with a primary rabbit polyclonal

antibody directed against pyruvate carboxylase (NBP1-49536,

Novus) at a dilution of 1:1000 in PBS-T and 1% nonfat milk. After

washing with PBS-T, membranes were probed with goat anti-

rabbit HRP-coupled secondary antibodies diluted 1:5000 in PBS-

T containing 1% milk. Proteins were visualized by chemilumi-

nescence using the ECL detection system (Amersham).

Tests of statistical significance
All p-values were calculated by two-tailed, non-paired T-test.

Accession numbers
Pyruvate carboxylase (PC): P11498, aspartate transaminase 2

(GOT2): P00505, carbamoyl-phosphate synthetase 2, aspartate

transcarbamylase, and dihydroorotase (CAD): P27708, HSV-1

dUTPase (UL50): P10234, HSV-1 uracil-DNA glycosylase (UL2):

P10186, HSV-1 thymidine kinase (UL23): P03176.

Supporting Information

Figure S1 Steady state metabolite levels measured in

MRC5, HFF, ARPE19 and Vero cells. The heatmaps show

levels of metabolites measured in biological replicates for each cell

type (numbered), normalized by packed cell volume and expressed

relative to the average level of the particular metabolite across all

cell types. Ratios are log transformed and plotted on a color scale.

Metabolites in panel (A) are clustered by uncentered Pearson

correlation, and in panel (B) they are presented in the same order

as in Figure 1. HFFs and MRC5s were confluent for 4 d and

serum starved for 24 h prior to analysis. ARPE19 and Vero cells

were 80% confluent and actively replicating in the presence of

dialyzed serum at the time of extraction. Rows correspond to

metabolites measured either by LC-high resolution MS or LC-

triple quadrupole MS/MS (those measured by triple quadruople

are marked ‘‘QQQ’’). Columns correspond to biological repli-

cates.

(TIF)

Figure S2 One-step viral growth curves of HCMV and

HSV-1. Supernatants of cells, which were extracted for

metabolomic analysis, were collected and the titered by TCID50

limiting dilution assay. Virus titers at various hours post infection

are plotted on a log scale (mean 61 s.d.; n = 2).

(TIF)

Figure S3 Divergent metabolic profiles of HCMV and

HSV-1 infected cells. This figure is a replicate of Figure 1 of the

main text, except it is presented using a yellow-blue color scale for

readers with difficulty distinguishing red-green hues.

(TIF)

Figure S4 Singular value decomposition of the metabo-

lome matrix shown in Figure 1. (A) Vectors were ranked

based on the percent of information they accounted for, and the

top 25 vectors were plotted on a color scale. The first three rows

correspond to the vectors plotted in Figure S4B. (B) The three

most significant characteristic vectors. The signal of each

characteristic vector is plotted versus time. The vectors include

entries for each time point during the eight infection time courses.

Time courses are arranged in the same order as in Figure 1. Cell

types, virus strains and increasing hpi are indicated on the figure.

Time points were 3, 24, 48, 72, 96 hpi for HCMV, with also a

120 hpi sample for the infection of ARPE19 cells, and 3, 6, 9, 12,

15, 18, 21 and 24 hpi for HSV-1. The first vector (generic

response to infection) accounts for 16% of the information from

the dataset, while the second (virus specific response) captures

12%. The third vector accounts for 6% of the information in the

matrix, and highlights the differential metabolic response to HSV-

1 in Vero cells (the last segment of the eight).

(TIF)

Figure S5 HSV-1 induced anapleurotic flux into malate.

Levels of various labeled forms of malate expressed as percent of

the total malate pool upon switching HSV-1 KOS-infected or

mock-treated HFF cells to uniformly 13C-labeled glucose medium

at 12 hpi. The x-axis indicates time after switching to labeled

media (mean 61 s.d.; n = 2).

(TIF)

Figure S6 Effect of inhibiting acetyl-CoA carboxylase on

HCMV and HSV-1 replication. (A) Production of infectious

HCMV (AD169) and HSV-1 (KOS) virions in the presence of

carrier (DMSO) or the indicated concentrations of the acetyl-CoA

carboxylase inhibitor TOFA in confluent, serum-starved HFF

cells. Supernatants of cells infected at a multiplicity of infection of

three were collected at 96 hpi from HCMV and 24 hpi from

HSV-1 infected cells, and titered by TCID50 limiting dilution

assay. Virus titers at various hours post infection are plotted on a

log scale (mean 61 s.e.; n (HSV-1) = 4, n (HCMV)= 3). (B) Cell
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viability of HSV-1 infected cells based on trypan blue exclusion at

24 hpi in the presence or absence of TOFA. Trypan blue stain was

added to an aliquot of cells to assess live/dead ratio. For each

condition at least 500 cells were counted.

(TIF)

Table S1 Metabolite levels during the course of HCMV

and HSV-1 infection. Values are normalized by packed cell

volume and expressed relative to levels measured in the equivalent

mock treated host cells. Rows correspond to metabolites measured

either by LC-high resolution MS or LC-triple quadrupole MS/

MS (those measured by triple quadruople are marked ‘‘QQQ’’).

Columns correspond to hours post infection for each of the eight

infection time courses. The host cells and virus strains used in each

time course are indicated. Values are averages of duplicate

independent biological experiments.

(XLS)
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