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bstract

This study reports the results of a systematic numerical investigation, using the upper-convected Maxwell (UCM) model, of viscoelastic flow
hrough ‘smooth’ planar contractions of various contraction ratios with particular emphasis placed on the ‘divergent flow’ regime. It is shown
hat both inertia and/or shear-thinning are not required for divergent flow to be predicted in contrast to the existing results in the literature where
nertia has always been present when the phenomenon has been observed. Guided by the numerical results a simple explanation is presented for
he occurrence of divergent flow and the conditions under which it arises. In addition, above a critical Deborah number, the flow becomes unsteady

nd we use an analysis based on the scaling laws of McKinley et al. [G.H. McKinley, P. Pakdel, A. Oztekin, Rheological and geometric scaling
f purely elastic flow instabilities, J. Non-Newtonian Fluid Mech. 67 (1996) 19–47] for purely elastic instabilities to show that the square of this
ritical Deborah number varies linearly with contraction ratio in excellent agreement with the numerical results obtained in this study.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Of the many thought-provoking and striking phenomena that
re observed when a viscoelastic liquid flows through a contrac-
ion geometry, perhaps the least studied is that of the “divergent
ow” regime. This regime, first shown in the papers of Cable
nd Boger [2–4], is characterised by a strong curvature of the
treamlines away from the centreline towards the duct walls
ome distance upstream of the contraction: almost as if some
invisible obstacle” has been placed in the liquid’s path. As a
onsequence, the divergent flow regime results in an undershoot
f the centreline velocity and is usually associated with off-
entre velocity maxima. The effect is nicely illustrated in the
ow visualisation book of Boger and Walters ([5] c.f. page 51),
sing a picture taken from the thesis of Cable [6] of flow in a
:1 axisymmetric contraction, where the following explanation
s given:
“The conflict between inertia which tends to decrease the size
of the vortex and elasticity which encourages vortex growth
results in a symmetrical divergence of the streamlines”.
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The experiments reported in Cable and Boger were con-
ucted before the work reported in Boger’s seminal paper [7]
here he first described the constant-viscosity elastic liquid
hich now bears his name and can be obtained by adding small

mounts of high molecular weight polymer to a solvent with
igh viscosity. As a consequence of the difficulties in interpret-
ng the results of Cable and Boger unambiguously, which are
or shear-thinning solutions, Boger and Binnington [8] revisited
he 4:1 axisymmetric contraction using the ‘M1’ Boger fluid.
ere again divergent flow was observed at high flowrates show-

ng that shear thinning is not necessary for the phenomenon
o be observed. In the divergent flow regime the importance
f inertia, although not negligible, was much less than in the
arlier shear-thinning results of Cable and Boger (Re = 0.89 com-
ared to order 100 in the earlier work). Despite this reduction in
mportance, Boger and Binnington [8] still attributed the appear-
nce of divergent flow to inertia “winning” the interplay with
lasticity.

Evans and Walters [9,10] performed a rather extensive set of
isualisations for both Boger fluids and shear-thinning polyacry-
amide solutions in planar contraction flows. They investigated

he effect of both contraction ratio and rounding of the re-entrant
orner and observed divergent flow behaviour only for relatively
ow concentrations of polyacrylamide where both shear-thinning
nd inertia played a significant role (c.f. Fig. 6 in [9]).

mailto:mmalves@fe.up.pt
mailto:robpoole@liv.ac.uk
dx.doi.org/10.1016/j.jnnfm.2007.04.003
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More recently Rodd et al. [11] investigated the flow of dilute
queous polyethylene oxide (PEO) solutions through microfab-
icated planar (3D) abrupt contraction/expansions. Although the
olutions used in the experiments were dilute, with relaxation
imes of the order of milliseconds, the small length scales and
he high strain rates in the entrance region lead to significant
xtensional effects and at high Deborah numbers strongly diver-
ent flow was observed. Again inertia was not negligible, and
he authors stated that diverging flow is a hallmark of fluid elas-
icity, and that inertia and deformation rate-dependent material
unctions tend to enhance its intensity.

On the numerical side, Hulsen [12] used the shear-thinning
han–Thien–Tanner (PTT) model [13] to investigate diver-
ent flow in an abrupt axisymmetric contraction (i.e. identical
o the geometry of [4] and [8]). In this case divergent flow
as observed only when both inertial and elastic stresses
ere present (i.e. in general agreement with the experimen-

al findings above). Hulsen also found that the occurrence, or
therwise, of divergent flow was sensitive to the extensional
roperties of the PTT model parameters and that, in particu-
ar, vortex enhancement had to be present for the effect to be
een.

Purnode and Crochet [14] used the FENE-P model [15] to
imulate the flow through planar contractions, using the visu-
lisations of Evans and Walters as a basis for comparison.
he simulations were able to qualitatively capture most of the
xperimentally observed features including the divergent flow
f a comparable concentration of PAA compared to Evans
nd Walters (0.25% c.f. 0.2%). Once again inertia was neces-
ary for the divergent flow regime to be seen: when Purnode
nd Crochet kept the Weissenberg number fixed and neglected
nertia (i.e. set Re = 0) a salient corner vortex enhancement

echanism was observed and the divergent region apparently
isappeared.

In this study we investigate the divergent flow regime in
etail and report the results of a systematic numerical inves-
igation, using the upper-convected Maxwell (UCM) model,
f viscoelastic flow through ‘smooth’ planar contractions of
arious contraction ratios. We show that both inertia and/or
hear-thinning are not required for divergent flow to be observed.
uided by our numerical results we derive a simple explanation

or the occurrence of inertialess divergent flow and the condi-
ions under which it arises. In addition, above a critical Deborah
umber, the flow becomes unsteady and we use the scaling laws
f McKinley et al. [1] for purely elastic instabilities to show that
he square of this critical Deborah number (i.e. De2

crit) varies
inearly with contraction ratio in agreement with our numerical
esults.

. Governing equations and numerical method

In this work we are concerned with the creeping (i.e. Re → 0),
sothermal flow of an incompressible viscoelastic fluid through

smooth two-dimensional contraction. The equations to solve

re those of conservation of mass

· u = 0 (1)

n
f
k
b
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nd of momentum

∇p + ∇ · τ = 0 (2)

nd a suitable choice for the viscoelastic stress tensor τ. For
easons of rheological simplicity the well known UCM model
16] is chosen:

+ λ

[
∂τ

∂t
+ ∇ · uτ

]
=λ(τ · ∇u + ∇uT · τ) + η(∇u + ∇uT).

(3)

This viscoelastic model exhibits both a constant shear vis-
osity η and first normal-stress coefficient (and hence relaxation
ime) allowing us to probe the effects of elasticity without the
omplications of shear thinning of either the shear viscosity or
elaxation time.

A fully implicit finite-volume numerical method is used to
olve Eqs. (1)–(3). The original numerical method, and sub-
equent developments, has been described in great detail in
liveira et al. [17], Oliveira [18] and Alves et al. [19] and

o is not unnecessarily repeated here. In the current study we
ssentially use the same methodology described in [19] except
hat here we use the QUICK scheme of Leonard [20] in pref-
rence to the CUBISTA scheme of Alves et al. [21] for the
iscretization of the convective terms in Eq. (3). The main dis-
dvantage of the QUICK scheme, in comparison to its bounded
ersions (e.g. CUBISTA or SMART [22]) is its unbounded
ehaviour in highly convective flows, which can lead to strong
scillations and convergence problems when stepwise profiles
re advected. Nevertheless, as a consequence of the smooth
eometry used in this work, which contains no geometric sin-
ularities, the QUICK scheme is well behaved and can be
sed without convergence problems, thus avoiding the unnec-
ssary numerical complications of the use of high-resolution
chemes.

. Geometry and computational meshes

Motivated by a desire to reach high Deborah numbers, and
aking inspiration from a three-dimensional geometry used
n the recent experimental study of Poole et al. [23] where
arge off-centre maxima were observed, we chose to use a
smooth’ contraction in preference to the abrupt geometries usu-
lly employed in contraction flow studies. A schematic of the
eometry is shown in Fig. 1. Basically we have two planar chan-
els, the larger (inlet) one having a half-height H1 and the other
entrant) channel H2 connected by two arcs (one convex, the
ther concave) of constant radius of curvature, R = H1 − H2.
efining the contraction ratio as CR (=H1/H2) we can also

xpress this radius of curvature as R = (CR − 1)H2. The coordi-
ate system is set around the symmetry plane at the “entrance”
o the smaller channel. Although non-standard such geometries
ave many advantages over abrupt contractions especially for

umerical studies such as this. The geometry is smooth and
ree of geometrical singularities and sharp corners where it is
nown that, even for a Newtonian fluid, the stresses and pressure
ecome unbounded [24–26]. A constant wall radius of curvature
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Streamline patterns for the 16:1, 4:1 and 2:1 contractions are
shown in Fig. 2 for both the Newtonian case and a “high” Deb-
orah number. As inspection of Fig. 2(a) readily shows, for the
Fig. 1. Schematic of smooth contraction geometry.

s prescribed which, as we shall show, is extremely useful for
redicting the onset of purely-elastic instabilities. In addition the
eometry encourages the flow to remain attached to the walls and
nhibits flow separation. Although the strain rate in such geome-
ries is not constant, the absence of any recirculation makes an
pproximate estimation of the strain rate along the centreline
ossible.

As we are interested here in truly creeping flow (i.e. Re = 0) of
UCM fluid, the only non-dimensional parameters of relevance
re those of the Deborah number which here we define based on
ownstream quantities, De = λU2/H2, and the contraction ratio
R = H1/H2. We note that in a real flow although the Reynolds
umber may be small, it will never be zero, as we assume in the
resent simulations in order to demonstrate that inertia is not
ecessary to induce divergent flow in contractions.

To study the effect of contraction ratio we investigated eight
ifferent geometries of varying contraction ratio (CR = 1.01, 1.1,
.5, 2, 4, 8, 12 and 16). The meshes used are structured and non-
rthogonal, and were created in such a way that the cells are
pproximately aligned with the streamlines in the Newtonian
ase. Although under steady conditions we expect the flow to
emain symmetric about the centreline (i.e. y = 0), we decided to
odel the full domain in order to be able to capture any possible

symmetries that may develop due to the onset of a purely elastic
nstability.

For each contraction ratio a set of two different meshes
as generated, which we denote by mesh M1-CR and M2-CR,
here CR represents the contraction ratio under considera-

ion. With mesh refinement (i.e. M1 to M2) the number of
ells in each direction is doubled and the expansion/contraction
actors are square-rooted in order to consistently halve the
ize of the cells in each direction. All the calculations pre-
ented here were carried out in the most refined meshes (i.e.

2-CR). The number of cells and the minimum cell sizes
f the meshes varied depending on the contraction ratio. For
eshes M2-CR the total number of cells varied from 40,352

CR = 4) up to 63,360 (CR = 1.01). The streamwise minimum

ell sizes varied from �xmin/H2 = 0.00020 (CR = 1.01) up to
xmin/H2 = 0.028 (CR = 8) while the minimum cell size in the

ransverse direction ranged from �ymin/H2 = 0.0003 (CR = 1.01)
p to �ymin/H2 = 0.01 (CR ≥ 1.5). The differences observed in

F
s
C

n Fluid Mech. 144 (2007) 140–148

he results between meshes M1-CR and M2-CR are practically
egligible: differences in the centreline velocities were below
% for CR = 16 and CR = 2, for example.

. Results and discussion

Firstly we focus our attention on the appearance or otherwise
f the divergent regime, before in Section 4.2 discussing the
echanism for the occurrence of a purely elastic instability at

igh Deborah numbers.

.1. Divergent flow regime
ig. 2. Streamline patterns for (a) CR = 16: Newtonian (- - -) and De = 25 (—)
uperimposed; (b) CR = 4: Newtonian (- - -) and De = 12 (—) superimposed; (c)
R = 2: Newtonian (- - -) and De = 6 (—) superimposed.
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ig. 3. Variation of streamwise velocity along centreline for (a) CR = 16 and
b) CR = 2. The vertical dashed lines indicate the beginning and the end of the
ontraction.

igher contraction ratio, the effect of elasticity on the flow field
s small and divergent flow is not observed. To highlight the
mall changes brought about by elasticity we show the Newto-
ian and De = 25 streamlines superimposed: the streamlines in
he viscoelastic case are closer to the wall than the Newtonian
ut even this effect is small. Profiles of the streamwise velocity
long the centreline, shown in Fig. 3(a), confirm that the veloc-
ty does not exhibit an undershoot characteristic of divergent
ow. A small velocity overshoot, close to the inlet of the smaller
hannel, is in evidence in agreement with viscoelastic flows in
brupt contractions [27]. The variation of the first normal-stress
ifference (i.e. N1 = τxx − τyy) along the centreline is shown in
ig. 4(a) and exhibits an increase with increasing De.

If we now turn our attention to a smaller contraction ratio (e.g.
R = 4) we observe divergent flow behaviour in the streamlines

hown in Fig. 2(b) for the viscoelastic case. Reducing the con-
raction ratio still further, e.g. to CR = 2, makes the effect even

ore pronounced as shown in Fig. 2(c). For both contraction
atios the effect is again most readily observed by superposition
f the corresponding Newtonian streamlines with the (approxi-
ately) highest Deborah number that steady solutions could be

btained in each geometry (De = 12 and 6, respectively). These
esults demonstrate that inertia is not a necessary condition for

ivergent flow to occur and, if one wishes to enhance such
ehaviour, it is preferable to investigate small contraction ratios.
he corresponding variation of the centreline velocity for CR = 2

s shown in Fig. 3(b) and the characteristic velocity undershoot

b
H
c
t

ig. 4. Variation of first normal-stress difference along centreline for (a) CR = 16
nd (b) CR = 2. The vertical dashed lines indicate the beginning and the end of
he contraction.

pstream of the contraction is now clearly visible. The variation
f dimensionless first normal-stress difference along the cen-
reline, plotted in Fig. 4(b), exhibits a decrease with increasing
e, in marked contrast with the results presented in Fig. 4(a) for
R = 16.

To quantify the intensity of diverging flow, and to provide an
ndication as to the onset De, we find it useful to define an under-
hoot parameter, κ. This parameter represents the difference
etween the upstream fully-developed and the minimum cen-
reline velocities, suitably non-dimensionalised by the minimum
f either the difference between the fully-developed centreline
elocities in the downstream (U2,c) and upstream (U1,c) channels
r simply U1,c:

= U1,c − Umin

min[U1,c; U2,c − U1,c]
=U1,c − Umin

U1,c

1

min[1; (CR − 1)]
.

(4)

ur rationale for this normalization (i.e. the denominator of
q. (4)) was to highlight the degree of velocity undershoot in
eometries of significantly different contraction ratio. The obvi-
us velocity scale would be U1,c, which limits the κ parameter

etween 0 (no undershoot) and 1 (zero velocity at centreline).
owever, for small contraction ratios this normalization would

onstrain the κ parameter to small values. A better alterna-
ive, for small CR, is to normalize the velocity undershoot with
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ig. 5. Normalized velocity undershoot along centreline vs. Deborah number.

2,c − U1,c since in this manner the κ parameter better reflects
he intensity of diverging flow as compared with the curvature of
he smooth contraction. Therefore, normalizing by the minimum
f either of these two quantities is a reasonable compromise.
ig. 5 shows the variation of this undershoot parameter for the
omplete range of CRs. This quantitative measure of diverging
ow is in general agreement with the more subjective visual

ndication of such behaviour seen in the streamline plots of
ig. 2.

In a flow of mixed shear and extensional nature, such as that
onsidered here, it is likely that the onset of divergent flow may
e a consequence of a change in the balance of the stresses
ithin the flow from a flow that is shear dominated to one
hich is extensionally dominated. To attempt to quantify such
transition it is possible (c.f. [28] for example) to compare the
ormal stresses generated by the shear flow at the walls to the
urely extensional normal stresses along the centreline through
dimensionless normal-stress ratio:

= N1/ηγ̇

(τxx − τyy)/ηε̇
. (5)

For the UCM model in the shear-flow near the wall we can
imply state that N1 = 2ληγ̇2. We can also estimate the max-
mum shear rate at the wall as being γ̇ ≈ 3U2/H2. Along the
entreline of the planar contraction, because the flow is purely
xtensional in nature it is possible to derive analytical expres-
ions for the two non-zero normal stresses directly from the
CM constitutive equation (i.e. Eq. (3)). In such a flow Eq. (3)

educes to

u
∂τxx

∂x
+ τxx = 2ηε̇ + 2λτxxε̇ (6a)

u
∂τyy

∂x
+ τyy = −2ηε̇ − 2λτyyε̇ (6b)

here ε̇ = ∂u/∂x is the local strain rate. Assuming that the strain

ate within the contraction is approximately constant (allowing
s to express the velocity u at any location within the contrac-
ion as u = U1 + ε̇(x + L), where L is the length over which
he velocity increases linearly) and integrating we obtain (for

I
v
t

ig. 6. Variation of Trouton ratio along the centreline within contraction with
educed strain rate for various contraction ratios.

L ≤ x ≤ 0)

xx = 2η
ε̇

1 − 2λε̇

[
1 −

(
1 + ε̇(x + L)

U1

)−(1−2λε̇)/λε̇
]

(7a)

yy = −2η
ε̇

1 + 2λε̇

[
1 −

(
1 + ε̇(x + L)

U1

)−(1+2λε̇)/λε̇
]

. (7b)

At x = 0 (i.e. at the end of the contraction) the stresses attain
heir maximum (absolute) value and we can thus express the

aximum Trouton ratio along the centreline as:

r ≡ ηE

η
= τxx − τyy

ηε̇

= 4

(1 − 2λε̇)(1 + 2λε̇)
− 2

1 − 2λε̇
CR−(1−2λε̇)/λε̇

− 2

1 + 2λε̇
CR−(1+2λε̇)/λε̇. (8)

ubstitution of Eq. (8), together with our estimates for N1 and the
hear rate at the wall, into Eq. (5) gives the following relationship
or the normal-stress ratio:

= 6De

Tr
(9)

here Tr is calculated from Eq. (8) and is illustrated in Fig. 6 as
function of λε̇ and CR.

Finally to relate such behaviour to the ‘divergent flow’ phe-
omena we need to define a characteristic reduced strain rate
since Tr depends on CR and λε̇):

ε̇ ≈ λ
U2,c − U1,c

H1
= 3λ

2

U2 − U1

H1
= 3

2

U2λ

H2

(
CR − 1

CR2

)

= 3 De(CR − 1)
. (10)
2 CR

n this expression we are assuming that the approximate linear
elocity profiles occur over a length L = H1. In fact the con-
raction extends over a total length of

√
3(H1 − H2) (see Fig. 1)
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Fig. 5). We hypothesize that it is the occurrence of such max-
ima in the Trouton ratio that leads to the onset of divergent flow
(since α becomes higher than 1). If the fluid wishes to minimise
the energy losses as it flows through the contraction then, when
ig. 7. Comparison of estimated strain rate (Eq. (10)) against centerline velocity
rofiles for various contraction ratios.

ut, as can be observed in Fig. 7, especially for lower contraction
atios, the estimate ε̇ ≈ (U2,c − U1,c)/H1 is indeed very good.
or higher CR geometries this estimation deteriorates somewhat
ut is still, at worst, within about a factor of two of the exact
alue.

In Fig. 8(a) we plot the variation of the normal-stress ratio
ith De for each of the contraction ratios for which we have
ata together with an indication of the (approximate) De corre-
ponding to the onset of divergent flow for each contraction ratio
estimated from Fig. 5 and assuming arbitrarily that the onset of
iverging flow occurs when κ ≥ 10−3). It is clear that divergent
ow does not occur at the same value of ℵ for each contraction
atio. However, if we now plot the gradient of the normal-
tress ratio, α ≡ d[log(ℵ)]/d[log(De)], against De (Fig. 8(b))
e can conclude that the onset of diverging flow occurs for

ach contraction ratio when α is approximately constant and
lightly higher than one, indicating that diverging streamlines
ppear when the normal-stress ratio increases more rapidly than
e.
The choice of κ = 10−3 to quantify the onset of divergent flow

s somewhat arbitrary, but using other κ values would lead to a
imilar conclusion. To demonstrate this, in Fig. 9 we illustrate
he strong correlation between α and κ, showing unequivocally
hat the diverging flow intensity is directly related with the rate
f increase of ℵ with De (i.e. with α). For the UCM model
he increase of α is due to a decrease of Tr with an increase
n λε̇ (or De, c.f. Eq. (9)). Thus, if instead of investigating
he normal-stress ratio we simply turn our attention to the first
ormal-stress differences along the centreline (or to the Trouton
atio derived in Eq. (8)), the arguments given above become a lit-
le clearer. In Fig. 6 the maximum Trouton ratio is plotted against
general reduced strain rate and in Fig. 10 against the Debo-

ah number based on our characteristic reduced strain rate (i.e.
e = 2CR2λε̇/[3(CR − 1)]). One of the well known “failures”

f the UCM model is that the steady-state extensional viscosity
ecomes unbounded when λε̇ → 1/2 [27]. However, in a con-

raction flow this limiting behaviour would only be observed if
he contraction ratio was infinite. As can be seen in Figs. 6 and 10,
or all finite contraction ratios, the Trouton ratio goes through
ig. 8. (a) Normal-stress ratio vs. De for various contraction ratios. (b) Variation
f gradient of normal-stress ratio vs. De for various contraction ratios. The
ymbols indicate the onset of divergent flow (κ = 10−3).

maximum and then decreases. Also included in Fig. 10 are
ymbols highlighting the Deborah numbers corresponding to
he approximate onset of diverging flow behaviour (i.e. from
Fig. 9. Correlation between α and κ for various contraction ratios.
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ig. 10. Variation of Trouton ratio along the centreline within contraction with
e for various contraction ratios. The symbols indicate the onset of divergent
ow (κ = 10−3).

t is in a regime close to the maxima value of Tr, it is actually
eneficial for the strain rate along the centreline to increase as
his will result in a decrease in Tr.

As a consequence of utilising a ‘smooth’ geometry to investi-
ate the phenomena of diverging flow, an obvious question that
rises about our results are their universality and, in particular,
heir relation to flow in abrupt contractions. As our explana-
ion for the phenomena is essentially based on the maximum
routon ratio (i.e. Eq. (8)) which, in fact, makes no assump-

ion about the ‘shape’ of the contraction (just that the strain rate
ithin the contraction is approximately constant) the conclu-

ions drawn above are equally as valid for viscoelastic flow in
brupt (or sudden) contractions. To illustrate this statement we
ave performed additional simulations for inertialess flow of a
CM fluid in a 2:1 abrupt planar contraction. Again, divergent
ow was observed for the higher Deborah values (for example,
t De = 2 the normalized velocity undershoot in the centreline
as κ = 0.035).

.2. Onset and scaling of a purely elastic instability

As we have already briefly discussed, above a critical Deb-
rah number steady numerical solutions could no longer be
btained and it was found that the flow became time-dependent.
his critical Deborah number, Decrit, was observed to be strongly
ependent on the value of the contraction ratio. Such purely
lastic instabilities (i.e. in which inertia plays no role) have
een observed experimentally in various different geometries:
aylor–Couette flow [29], contraction flow [30], lid-driven cav-

ty flows [31] amongst many others. It is now well accepted that
he destabilizing mechanism which leads to such instabilities is
combination of large normal stresses (which lead to tension
long the fluid streamlines) and streamline curvature. McKinley
t al. [1] proposed that the curvature of the flow and the tensile
tress along the streamlines could be combined to form a dimen-
ionless criterion that must be exceeded for the onset of purely
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lastic instabilities. They expressed this criterion for the onset
f elastic instability in the general form:

λU

�
τ11

ηγ̇

]1/2

≥ Mcrit (11)

here λ is the relaxation time of the fluid, U the local streamwise
uid velocity, � the local radius of curvature of the streamline,
11 the local tensile stress in the flow direction, η the shear
iscosity of the fluid and γ̇ is the local shear rate. Far from the
entreline the flow is shear dominated, thus it is legitimate to set

11 = 2ληγ̇2 (12)

nd substitution of this relationship into Eq. (11) gives

λU

� λγ̇

]1/2

≥ Mcrit√
2

. (13)

he first term on the left hand side of Eq. (13) can be thought of
s a local Deborah number based on the streamline curvature (i.e.
U/�) and the right hand term on the left hand side as a local
eissenberg number (i.e. λγ̇). To estimate these local values
e need first to consider where the ‘critical regions’ in the flow
ill occur (i.e. where the instability will initiate). Guided by our
umerical results and by a simple scaling argument (i.e. where
he flow will have locally higher values of

√
DeWe) we propose

hat this critical region is near to the smaller channel inlet (i.e.
≈ 0). In this critical region we estimate that the characteristic

adius of curvature of the streamlines is approximately

(y) ≈ R

y/H2
= (CR − 1)H2

y/H2
. (14)

his expression correctly predicts the radius of curvature at
he wall (i.e. y = H2; � = (CR − 1)H2) and along the cen-
reline where the curvature of the streamline must be zero
ue to symmetry (y = 0; � → ∞). Comparison of this sim-
le form of the characteristic radius with streamlines actually
redicted from our numerical results close to the critical De,
ot shown here for conciseness, shows excellent agreement
n the ‘critical’ region close to the inlet of the smaller chan-
el. If we also make the (approximate) assumption that the
elocity profile near x = 0 is parabolic (i.e. corresponds to instan-
aneously fully-developed channel flow), then at the critical axial
osition (x = 0)

(y) ≈ 3

2
U2

[
1 −

(
y

H2

)2
]

. (15)

The local deformation rate in this critical region is

˙ (y) ≈ 3
U2

H2

y

H2
(16)

nd substitution of Eqs. (14)–(16) into the stability criterion (i.e.
q. (13)) leads to:
1

CR − 1

(
λU2

H2

)2
[

1 −
(

y

H2

)2
] (

y

H2

)2
]1/2

≥ Mcrit

3
.

(17)
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ig. 11. Variation of critical De for onset of elastic instability vs. contraction
atio.

We can now easily estimate that the transverse location where
he instability sets in is y/H2 = 1/

√
2 by simply finding the y

osition where the left hand side of Eq. (17) is a maximum.
hus, at the critical location (x = 0; y = H2/

√
2) we arrive at

he following equation for the onset of purely elastic instabilities
n our geometry:

1

CR − 1

(
λU2

H2

)2

crit

]
≥ 2

3
Mcrit. (18)

Realising that we have defined our (global) Deborah number
s De = λU2/H2 and rearranging we arrive finally at

e2
crit = 4

9M2
crit(CR − 1). (19)

The values of De2
crit determined numerically are plotted

ogether with a linear fit versus CR − 1 in Fig. 11 showing excel-
ent agreement with this linear scaling. Although such a linear
caling with contraction ratio may, at first, seem surprising as
t implies that as the contraction ratio tends to one (i.e. to a
lanar channel) the critical Deborah number tends to zero, it
s purely a consequence of our geometry where, as the con-
raction ratio decreases, the local curvature of the streamlines
ecomes increasingly sharp. In addition it is perhaps unlikely
hat our definition of the characteristic radius of curvature for the
treamlines will remain applicable close to the limit of CR → 1.
evertheless, our numerical results shown in Fig. 11 are in gen-

ral agreement with the linear scaling even at low contraction
atios where the critical De is seen to be less than 1 for a con-
raction ratio of 1.01 (i.e. only a 1% perturbation from a planar
hannel).

. Conclusions

This work reports the results of a systematic numerical

nvestigation, using the UCM model, of creeping flow through
smooth” planar contractions. It was shown that strongly diver-
ent flow can occur in such cases in contrast to the existing results
n the literature where the phenomena is usually attributed to

[
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he interplay between inertial and elastic stresses. It was demon-
trated that such behaviour is more likely to be observed in small
ontraction ratios and using a straightforward theoretical analy-
is we have shown that it can be approximately predicted from
he material functions of the fluid.

Above a critical Deborah number, which was found to vary
ith contraction ratio, a purely elastic instability sets in, and the
ow becomes time-dependent. Using a simple analysis, based
n the scaling arguments of McKinley et al. [1], it was shown
hat De2

crit varies linearly with contraction ratio in excellent
greement with the numerical results.

The use of “smooth” contraction geometries, although non-
tandard, proved to offer many advantages over the typical
brupt contractions and, aside from the absence of vortex
nhancement, seems to offer an excellent complimentary geom-
try in which to study viscoelastic effects in contraction flows.
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