
Divergent lineage of a novel hantavirus in the
banana pipistrelle (Neoromicia nanus) in Côte
d'Ivoire
Sumibcay et al.

Sumibcay et al. Virology Journal 2012, 9:34

http://www.virologyj.com/content/9/1/34 (26 January 2012)



SHORT REPORT Open Access

Divergent lineage of a novel hantavirus
in the banana pipistrelle (Neoromicia nanus)
in Côte d’Ivoire
Laarni Sumibcay1, Blaise Kadjo2, Se Hun Gu3, Hae Ji Kang4, Burton K Lim5, Joseph A Cook6, Jin-Won Song3 and

Richard Yanagihara1,7*

Abstract

Recently identified hantaviruses harbored by shrews and moles (order Soricomorpha) suggest that other mammals

having shared ancestry may serve as reservoirs. To investigate this possibility, archival tissues from 213 insectivorous

bats (order Chiroptera) were analyzed for hantavirus RNA by RT-PCR. Following numerous failed attempts,

hantavirus RNA was detected in ethanol-fixed liver tissue from two banana pipistrelles (Neoromicia nanus), captured

near Mouyassué village in Côte d’Ivoire, West Africa, in June 2011. Phylogenetic analysis of partial L-segment

sequences using maximum-likelihood and Bayesian methods revealed that the newfound hantavirus, designated

Mouyassué virus (MOUV), was highly divergent and basal to all other rodent- and soricomorph-borne hantaviruses,

except for Nova virus in the European common mole (Talpa europaea). Full genome sequencing of MOUV and

further surveys of other bat species for hantaviruses, now underway, will provide critical insights into the evolution

and diversification of hantaviruses.
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Findings
Discovery of phylogenetically divergent hantaviruses in

shrews and moles (order Soricomorpha, family Soricidae

and Talpidae) [1-13] raises the possibility that rodents

(order Rodentia, family Muridae and Cricetidae) may not

be the principal or primordial reservoirs. Moreover, new-

found hantaviruses harbored by soricomorphs of multiple

species, distributed in widely separated geographic regions

across four continents, suggest that their host diversity

may be far more expansive than previously assumed. Spe-

cifically, other mammals having shared ancestry or ecosys-

tems with soricomorphs may serve as reservoirs and may

be important in the evolutionary history and diversifica-

tion of hantaviruses. In particular, bats (order Chiroptera)

may be potential reservoirs by virtue of their rich diversity

and vast geographical range, as well as their demonstrated

ability to host myriad medically important, disease-causing

viruses [14-18]. Surprisingly little attention, however, has

been paid to this possibility.

As in our previous investigations on the spatial and

temporal distribution of hantaviruses in soricomorphs

[2-13], we relied on the availability of archival tissues.

Using the PureLink Micro-to-Midi total RNA purifica-

tion kit (Invitrogen, San Diego, CA), total RNA was

extracted from 168 frozen and 45 ethanol-fixed liver

and other visceral tissues of 213 insectivorous bats

(representing 13 genera), collected during May 1981 to

June 2011 in Asia, Africa and the Americas (Table 1).

cDNA was then prepared with the SuperScript III First-

Strand Synthesis System (Invitrogen) using random hex-

amers, and PCR was performed as described previously,

using an extensive panel of oligonucleotide primers,

designed on conserved genomic sequences of rodent-

and soricomorph-borne hantaviruses [2-13,19,20]. Each

reaction mixture contained 250 μ dNTP, 2 mM MgCl2,

1 U AmpliTaq polymerase (Roche, Basel, Switzerland)

and 0.25 μ oligonucleotide primers. Initial denaturation

at 94°C for 5 min was followed by two cycles each of

denaturation at 94°C for 40 s, two-degree step-down
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annealing from 48°C to 38°C for 40 s, and elongation at

72°C for 1 min or 1 min 20 s, then 32 cycles of dena-

turation at 94°C for 40 s, annealing at 42°C for 40 s, and

elongation at 72°C for 1 min, in a GeneAmp PCR 9700

thermal cycler (Perkin-Elmer, Waltham, MA). Ampli-

cons were purified using the QIAQuick Gel Extraction

Kit (Qiagen, Hilden, Germany), and DNA sequencing

was performed using an ABI Prism 377XL Genetic Ana-

lyzer (Applied Biosystems, Foster City, CA).

After innumerable failed attempts, hantavirus RNA

was detected by RT-PCR in ethanol-fixed liver tissues

from two of 12 banana pipistrelles (Neoromicia nanus

Peters 1852), captured during June 2011 near Mouyas-

sué village (5°22’07"N, 3°05’37"W) in Aboisso District,

130 km from Abidjan, in the extreme southeastern

region of Côte d’Ivoire in West Africa (Figure 1). The

taxonomic identity of the hantavirus-infected vesper

bats was confirmed by phylogenetic analysis of the cyto-

chrome b gene of mtDNA (GenBank JQ287717), ampli-

fied by PCR as previously described [8,9]. Despite

similarly exhaustive efforts, hantavirus RNA was not

detected in any of the other bat species tested (Table 1),

including frozen liver tissue of six tiny pipistrelles (Pipis-

trellus nanulus), collected in Parc National du Mont

Péko, 700 km northwest of Mouyassué, in February

1992, and ethanol-fixed liver tissue of three tiny pipis-

trelles, collected in December 2009 in Azagny, where a

hantavirus was previously found in the West African

pygmy shrew (Crocidura obscurior) [8].

A 423-nucleotide region of the RNA-dependent RNA

polymerase-encoding L segment, amplified using a

hemi-nested primer set (outer: 5’-GAAAGGG-

CATTNMGATGGGCNTCA GG-3’, 5’-AACCADT-

CWGTYCCRTCATC-3’; inner: 5’-GNAAAYTNATGT-

ATGTNAGT GC-3’, 5’-AACCADTCWGTYCCRT-

CATC-3’), was aligned and compared with hantavirus

sequences available in GenBank, using ClustalW

(DNASTAR, Inc., Madison, WI) [21] and transAlign

[22]. The newfound hantavirus, designated Mouyassué

virus (MOUV), exhibited low nucleotide and amino acid

sequence similarity of less than 69% to all representative

soricomorph- and rodent-associated hantaviruses, except

for the 76.3% sequence similarity with Nova virus

(NVAV), previously reported in the European common

mole (Talpa europaea) [12]. Interestingly, MOUV

sequences were identical in the two banana pipistrelles

(KB576 and KB577), a male-female pair captured simul-

taneously and presumed to be a mating couple, suggest-

ing horizontal virus transmission or common-source

infection.

MOUV formed a uniquely divergent lineage, distant

from all other hantaviruses identified to date, except for

NVAV (Figure 2), in phylogenetic trees based on L-seg-

ment sequences, generated by the maximum-likelihood

and Bayesian methods, implemented in PAUP* (Phylo-

genetic Analysis Using Parsimony, 4.0b10) [23], RAxML

Blackbox webserver [24] and MrBayes 3.1 [25], under

the best-fit GTR+I+Γ model of evolution established

Table 1 Detection of hantavirus RNA in tissues of insectivorous bats by RT-PCR

Genus species USA Bolivia Guyana Liberia Côte d’Ivoire Mongolia Malaysia Total

Antrozous pallidus 0/20 0/20

Corynorhinus townsendii 0/19 0/1 0/20

Eptesicus fuscus 0/21 0/21

Eptesicus gobiensis 0/20 0/20

Eptesicus sp. 0/4 0/4

Hipposideros cafer 0/14 0/5 0/19

Hipposideros cervinus 0/11 0/11

Hipposideros cyclops 0/11 0/11

Hipposideros gambianus 0/5 0/5

Lasiurus cinereus 0/20 0/20

Mops condylurus 0/2 0/2

Neoromicia nanus 2/12 2/12

Nycteris arge 0/1 0/1

Nycteris major 0/1 0/1

Nycteris thebaica 0/1 0/1

Pipistrellus nanulus 0/9 0/9

Pteronotus parnellii 0/5 0/5

Rhinolophus trifolatus 0/8 0/8

Scotophilus sp. 0/3 0/3

Tadarida brasiliensis 0/10 0/10 0/20

Total 0/90 0/11 0/5 0/23 2/45 0/20 0/19 2/213
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using jModeltest 0.1.1 [26]. Topologies were well sup-

ported by bootstrap analysis of 100 iterations, and pos-

terior node probabilities based on two runs each of 2

million generations sampled every 100 generations with

burn-in of 25%.

Despite the overall success of our brute-force RT-PCR

approach at identifying previously unrecognized hanta-

viruses in frozen tissues [2,3,5-7,10-13] and tissues pre-

served in RNAlater® RNA Stabilization Reagent [4,8],

designing universal primers for the amplification of sori-

comorph-borne hantaviruses has presented continuing

challenges. Thus, while it is likely that many more han-

taviruses await discovery, overcoming technical barriers

is essential to facilitating their detection. Viewed in this

context, the failure to detect hantavirus RNA in all but

one bat species was not altogether unexpected and may

be attributed simply to suboptimal primer design and

imperfect cycling conditions. Also, low RNA yields and

poor RNA preservation in tissues fixed in ethanol under

field conditions may have thwarted our efforts at obtain-

ing more of the MOUV genome. That said, the success-

ful amplification of hantavirus RNA from ethanol-fixed

tissues is highly instructive and augments the pool of

archival tissues for future exploratory studies of hanta-

viruses in bats, and possibly other insectivorous small

mammals that share ancestral lineages with sorico-

morphs, such as hedgehogs (order Erinaceomorpha,

family Erinaceidae).

Dating to the seminal discovery of Hantaan virus in

lung tissue of the striped field mouse (Apodemus agrar-

ius) [27], lung has been the preferred tissue in studies

aimed at finding new hantaviruses [28-30]. However,

lung is not the only tissue in which hantaviruses can be

detected [27,31]. In our search of genetically distinct

hantaviruses in long-stored archival tissues from shrews

and moles, lung tissue was frequently unavailable.

Instead, liver tissue was more often accessible and

proved to be quite suitable [4,5,12,13]. Similarly, liver

tissues were more often available in the present study.

As in reservoir rodents and soricomorphs, hantavirus

RNA is likely to be present in many tissues of persis-

tently infected bats. Real-time quantitative RT-PCR ana-

lysis of lung, liver and other viscera will clarify the

tissue distribution of MOUV in newly captured banana

pipistrelles from Mouyassué.

Having their fossil origins in the Eocene epoch,

approximately 50 million years before present, bats

occur on every continent except Antarctica and are

among the most speciose orders of mammals, with

more than 1,100 extant species [32]. The banana pipis-

trelle, which is distributed widely in forests and savannas

across sub-Saharan Africa (Figure 1C, inset), is one of

13 species in the genus Neoromicia of the family Ves-

pertilionidae and subfamily Vespertilioninae. Like other

vesper bats, the banana pipistrelle is insectivorous.

Unlike large fruit bats, such as the straw-colored fruit

bat (Eidolon helvum) and hammer-headed bat (Hyp-

signathus monstrosus), which are sold as bush meat, the

banana pipistrelle, weighing approximately 3 g, is not

Figure 1 (A) Banana pipistrelle (Neoromicia nanus) in which

hantavirus RNA was detected. (B) Capture site of banana

pipistrelles near Mouyassué village in Aboisso District. (C) Map of

Côte d’Ivoire, showing Mouyassué, Azagny and Mont Péko, where

insectivorous bats were captured. The geographic range of the

banana pipistrelle extends throughout sub-Saharan Africa (shaded

area in inset).
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Figure 2 Phylogenetic trees were generated by maximum-likelihood and Bayesian methods, under the GTR+I+Γ model of evolution,

based on a 423-nucleotide L-genomic segment of Mouyassué virus (MOUV KB576) (GenBank JQ287716). Since tree topologies were

similar using RAxML, PAUP* and MrBayes, the tree generated by MrBayes was displayed. The numbers at each node are posterior probabilities.

The scale bar indicates nucleotide substitutions per site. The phylogenetic position of MOUV is shown in relation to representative soricomorph-

borne hantaviruses, including Thottapalayam virus (TPMV VRC66412: EU001330) from the Asian house shrew (Suncus murinus), Imjin virus (MJNV

Cl05-11: EF641806) from the Ussuri white-toothed shrew (Crocidura lasiura), Jeju virus (JJUV SH42: HQ663935) from the Asian lesser white-toothed

shrew (Crocidura shantungensis), Tanganya virus (TGNV Tan826: EF050454) from the Therese’s shrew (Crocidura theresae), Azagny virus (AZGV

KBM15: JF276228) from the West African pygmy shrew (Crocidura obscurior), Cao Bang virus (CBNV CBN-3: EF543525) from the Chinese mole

shrew (Anourosorex squamipes), Ash River virus (ARRV MSB73418: EF619961) from the masked shrew (Sorex cinereus), Jemez Springs virus (JMSV

MSB144475: FJ593501) from the dusky shrew (Sorex monticolus), Seewis virus (SWSV mp70: EF636026) from the Eurasian common shrew (Sorex

araneus), Kenkeme virus (KKMV MSB148794: GQ306150) from the flat-skulled shrew (Sorex roboratus), Qiandao Lake virus (QDLV YN05-284:

GU566021) from the stripe-backed shrew (Sorex cylindricauda), Camp Ripley virus (RPLV MSB89863: EF540771) from the northern short-tailed

shrew (Blarina brevicauda), Asama virus (ASAV N10: EU929078) from the Japanese shrew mole (Urotrichus talpoides), Oxbow virus (OXBV Ng1453:

FJ593497) from the American shrew mole (Neurotrichus gibbsii), Rockport virus (RKPV MSB57412: HM015221) from the eastern mole (Scalopus

aquaticus), and Nova virus (NVAV MSB95703: FJ593498) from the European common mole (Talpa europaea). Also shown are rodent-borne

hantaviruses, including Hantaan virus (HTNV 76-118: NC_005222), Soochong virus (SOOV SOO-1: DQ562292), Dobrava virus (DOBV Greece:

NC_005235), Seoul virus (SEOV HR80-39: NC_005238), Tula virus (TULV M5302v: NC_005226), Puumala virus (PUUV Sotkamo: NC_005225), Prospect

Hill virus (PHV PH-1: EF646763), Andes virus (ANDV Chile-9717869: NC_003468), and Sin Nombre virus (SNV NMH10: NC_005217).
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consumed as food. However, because banana pipistrelles

occasionally roost within houses or reside near human

habitation, rare human encounters raise the possibility

of hantavirus exposure.

Previously, serological evidence of hantavirus infection

was reported in the common serotine (Eptesicus seroti-

nus) and greater horseshoe bat (Rhinolophus ferrumequi-

num) captured in Korea [33], but genetic analysis of

hantaviral isolates from these insectivorous bat species

proved to be indistinguishable from prototype Hantaan

virus [34], suggesting laboratory contamination. In the

present study, the strikingly divergent lineage of MOUV

precluded any possibility of contamination and lends

support to our earlier conjecture that the ancient origins

of hantaviruses may have involved insect-borne viruses

[7,10], with subsequent adaptation to and host switching

between early soricomorph and chiropteran ancestral

hosts in the mammalian superorder Laurasiatheria.

However, since the biological and evolutionary implica-

tions of bats as reservoirs of hantaviruses are consider-

able, studies are underway to establish that the banana

pipistrelle is the natural host of MOUV. Moreover,

high-throughput sequencing technology is being applied

to obtain the full genome of MOUV and to ascertain

the geographic range and genetic diversity of hanta-

viruses harbored by bats.
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