
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2017 

Divergent modulation of nociception by glutamatergic and Divergent modulation of nociception by glutamatergic and 

GABAergic neuronal subpopulations in the periaqueductal gray GABAergic neuronal subpopulations in the periaqueductal gray 

Vijay K. Samineni 
Washington University School of Medicine in St. Louis 

Jose G. Grajales-Reyes 
Washington University School of Medicine in St. Louis 

Bryan A. Copits 
Washington University School of Medicine in St. Louis 

Daniel E. O'Brien 
Washington University School of Medicine in St. Louis 

Sarah L. Trigg 
Washington University School of Medicine in St. Louis 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

Recommended Citation Recommended Citation 

Samineni, Vijay K.; Grajales-Reyes, Jose G.; Copits, Bryan A.; O'Brien, Daniel E.; Trigg, Sarah L.; Gomez, 

Adrian M.; Bruchas, Michael R.; and Gereau, Robert W. IV, ,"Divergent modulation of nociception by 

glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray." eNeuro. 4,2. 

ENEURO.0129-16.2017. (2017). 

https://digitalcommons.wustl.edu/open_access_pubs/5734 

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been 
accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. 
For more information, please contact vanam@wustl.edu. 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5734&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:vanam@wustl.edu


Authors Authors 
Vijay K. Samineni, Jose G. Grajales-Reyes, Bryan A. Copits, Daniel E. O'Brien, Sarah L. Trigg, Adrian M. 
Gomez, Michael R. Bruchas, and Robert W. Gereau IV 

This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/
open_access_pubs/5734 

https://digitalcommons.wustl.edu/open_access_pubs/5734
https://digitalcommons.wustl.edu/open_access_pubs/5734


Sensory and Motor Systems
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Abstract

The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial

site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play

critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotrans-

mission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain

transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the

PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically

defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific

chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG

neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysio-

logical studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse

regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic

neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic

neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental

support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.

Key words: chemogenetics; Descending modulation; DREADDs; PAG; pain; RVM

Introduction
The periaqueductal gray (PAG), an evolutionarily con-

served neurosubstrate in the midbrain, regulates a wide of

complex behaviors, including pain (Basbaum and Fields,

1978; Graeff et al., 1993; Behbehani, 1995; Bandler and

Keay, 1996; Holstege, 2014; Tovote et al., 2016;
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Significance Statement

The periaqueductal gray (PAG) is a midbrain region critical for the modulation of pain. However, the roles played by

the distinct cell types within the PAG in nociceptive processing are poorly understood. This work addresses the

divergent roles of glutamatergic and GABAergic PAG neuronal subpopulations in nociceptive processing. We

demonstrate that activation of glutamatergic neurons or inhibition of GABAergic neurons suppresses nociception.

However, inhibition of glutamatergic neuronal activity or activation of GABAergic neuronal activity potentiates

nociception. This report identifies distinct roles for these neuronal populations in modulating nociceptive processing.
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Watson et al., 2016). The ventrolateral PAG (vlPAG) is a

major site of endogenous opioid-induced pain suppres-

sion, and electrical stimulation of the vlPAG produces

profound analgesia (Reynolds, 1969; Liebeskind et al.,

1973; Mayer and Liebeskind, 1974; Hosobuchi et al.,

1977; Baskin et al., 1986; Fields, 2004). The robust mod-

ulatory role of the vlPAG on spinal nociceptive processing

is mediated by descending projections from the vlPAG via

the rostral ventromedial medulla (RVM; Liebeskind et al.,

1973; Basbaum and Fields, 1979; Bennett and Mayer,

1979; Hayes et al., 1979; Beitz et al., 1983; Duggan and

Morton, 1983; Watkins et al., 1983; Morton et al., 1984;

Moreau and Fields, 1986; Morgan et al., 1989; Urban and

Smith, 1994; Pertovaara et al., 1996; Waters and Lumb,

1997; Antal and Odeh, 1998; Budai and Fields, 1998;

Odeh and Antal, 2001; Maione et al., 2006; Waters and

Lumb, 2008).

Previous studies have suggested that the vlPAG has a
bidirectional role in the modulation of nociception. Non-
specific activation of vlPAG neurons produces analgesia,
whereas inhibition of vlPAG produces hyperalgesia to
noxious stimulation (Reynolds, 1969; Liebeskind et al.,
1973; Moreau and Fields, 1986; Depaulis et al., 1987;
Siegfried and de Souza, 1989). It is tempting to speculate
that output from the vlPAG has a purely analgesic action.
However, the vlPAG comprises diverse subpopulations of
neurons with distinct neurochemical properties that reg-
ulate excitatory and inhibitory neurotransmission (Behbe-
hani and Fields, 1979; Moss and Basbaum, 1983; Moss
et al., 1983; Moreau and Fields, 1986; Behbehani et al.,
1990; Behbehani, 1995; Vaughan et al., 1997; Hahm et al.,
2011; Ho et al., 2013). Microinjection of glutamate recep-
tor agonists or GABA antagonists into the vlPAG leads to
global activation of neurons and produces antinociceptive
effects to noxious stimuli (Moreau and Fields, 1986; Ness
and Gebhart, 1987; Carstens et al., 1988; Jacquet, 1988;
Jones and Gebhart, 1988; Jensen and Yaksh, 1989;
Sandkühler et al., 1989; Carstens et al., 1990; Budai and
Fields, 1998; Morgan et al., 2003). In contrast, microin-
jecting glutamatergic antagonists or GABA agonists, pre-
sumably leading to global suppression of neural activity in
the vlPAG, produces hyperalgesia (Moreau and Fields,
1986; Depaulis et al., 1987; Siegfried and de Souza, 1989;
Behbehani et al., 1990). These studies suggest that in the
context of a noxious stimulus, GABAergic neurotransmis-

sion in the vlPAG is pronociceptive, although the source
of the GABAergic inputs to the vlPAG cannot be deter-
mined (Reichling and Basbaum, 1990a, 1990b). Collec-
tively, a large number of prior studies suggest that
glutamatergic and GABAergic neurons within the vlPAG
play critical and complex roles in processing nociception
(Behbehani and Fields, 1979; Moreau and Fields, 1986;
Millan et al., 1987; Sandkühler et al., 1989; Siegfried and
de Souza, 1989; Vaughan et al., 1997). Based on these
studies, the vlPAG GABA disinhibition hypothesis has
been proposed (Basbaum and Fields, 1978; Fields, 2004;
Lau and Vaughan, 2014). In this hypothesis, GABAergic
interneurons exert tonic inhibition over vlPAG glutamater-
gic neurons, which are thought to be output neurons that
project to the RVM to facilitate the descending inhibition
of nociception (Vaughan et al., 1997; Budai and Fields,
1998; Wang and Wessendorf, 2002; Maione et al., 2006;
Starowicz et al., 2007; Heinricher et al., 2009; Park et al.,
2010; Tovote et al., 2016). Despite the wealth of evidence
supporting this model, the distinct roles of GABAergic and
glutamatergic neuronal populations in descending vlPAG
pain modulation have not been directly investigated. In
this study, we use cell type-specific chemogenetic ma-
nipulations of neuronal activity in the vlPAG to test the
hypothesis that GABAergic neurons are pronociceptive
and glutamatergic neurons are antinociceptive.

Materials and Methods

Animals
All experiments were conducted in accordance with the

National Institutes of Health guidelines and with approval
from the Animal Care and Use Committee of Washington
University School of Medicine. Male, 8- to 12-week-old,
heterozygous Slc32a1tm2L°wl (Vgat-ires-Cre, selectively targets
Vgat� GABAergic inhibitory neurons), Slc17a6tm2L°wl (Vglut2-
ires-Cre, selectively targets Vglut2� glutamatergic excitatory
neurons, and C57BL\6J mice were used (Vong et al.,
2011). Mice were purchased from Jackson Laboratories
(C57BL\6J, Vgat Cre, stock number 016962 and Vglut2
Cre stock number 016963) and colonies were established
in our facilities. Experimenters were blind to treatment and
genotype.

Viral constructs and surgery
Adeno-associated viruses (AAV8) were used to achieve Cre-

independent chemogenetic vector expression: hM3Dq-
mCherry (rAAV8/hSyn-hM3Dq-mCherry; 3.2 � 1012

particles/ml), hM4Di-mCherry (rAAV8/hSyn-hM4Di-
mCherry; 2 � 1012 particles/ml), and control eGFP
(rAAV8/hSyn-eGFP; 8 � 1012 particles/ml). Adeno-
associated viruses (AAV5) were used to achieve Cre-
dependent vector expression: hM3Dq-mCherry (rAAV5/
hSyn-DIO-hm3Dq-mCherry; 6 � 1012 particles/ml),
hM4Di-mCherry (rAAV5/hSyn-DIO-hm4Di-mCherry; 6 �

1012 particles/ml), and control eGFP (rAAV5/hSyn-DIO-
eGFP; 3.4 � 1012 particles/ml). All viral vectors were
acquired from the University of North Carolina Vector
Core Facility. Before surgery, mice were anesthetized with
isoflurane and secured in a stereotactic frame (David Kopf
Instruments). A small midline dorsal incision was per-
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formed to expose the skull and bilateral viral injections
were performed using the following coordinates: vlPAG,
�4.8–4.9 mm from bregma, �0.3–0.4 mm lateral from
midline, and 2.7–2.9 mm ventral to skull. Injections of 150
nL of the desired viral vectors into the vlPAG were per-
formed at a rate of 100 nl per 60 s.

Chemogenetic manipulation
Three weeks after viral injections, mice were injected

intraperitoneally with clozapine N-oxide (CNO, BML-NS105
from Enzo life sciences) 60 min before beginning behav-
ioral assessment, and data were collected between the
second and third hour after injection. All baselines for
thermal and mechanical sensitivity were recorded two
weeks after the viral injections and one week before the
CNO administration. The doses of CNO were chosen
based on preliminary pilot experiments designed to de-
termine the minimal dose needed to activate designer
receptor exclusively activated by designer drugs (DREADD)
receptors in the vlPAG of C57BL\6J mice, Vgat-ires-Cre
and Vglut2-ires-Cre mice. We assessed the response of
these different mouse lines to various doses of CNO to
identify the minimal doses required to activate DREADDs
(data not shown). In non-Cre-dependent studies, we ad-
ministered 1 mg/kg CNO for both hM3Dq activation and
hM4Di inhibition. In Vgat Cre mice, we administered 3
mg/kg CNO for both hM3Dq activation and hM4Di inhibi-
tion. In Vglut2 Cre mice, we administered 2 mg/kg CNO
for both hM3Dq activation and hM4Di inhibition.

Pain behavior assessment
To evaluate nociception, mechanical withdrawal thresh-

olds and thermal withdrawal latencies were assayed. Mice
were tested for baseline responses to mechanical and
thermal stimuli, as previously described (O’Brien et al.,
2013). For the assessment of mechanical withdrawal
threshold, von Frey filaments (North Coast Medical) were
applied bilaterally to the hind paws of the mice using the
up-down method. Two to three trials were performed on
each hind paw for each mouse. The average 50% with-
drawal threshold was calculated for each paw individually
and then averaged to obtain a threshold value for each
mouse. The Hargreaves test was performed to evaluate
heat sensitivity thresholds, measuring latency of with-
drawal to a radiant heat source (IITC Life Science, Model
390). We applied the radiant heat source bilaterally to the
hind paw and measured the latency to evoke a with-
drawal. Three to five replicates were acquired per hind
paw per mouse, and values for both paws were averaged.

Electrophysiology
To determine the functional effects of chemogenetic

manipulations in vlPAG neurons, we performed targeted
whole-cell patch-clamp recordings in acute coronal slices
from both Vgat- and Vglut2-Cre mice expressing either
hM3Dq or hM4Di receptors. Mice used for electrophysi-
ology and behavioral studies were between 8 and 12
weeks of age. Three weeks after viral infection of vlPAG
neurons, coronal slices containing the vlPAG were pre-
pared as previously described (Siuda et al., 2015).
GABAergic and glutamatergic neurons in the vlPAG were

visualized through a 40� objective using IR-differential
interference contrast (DIC) microscopy on an Olympus
BX51 microscope, and mCherry� cells were identified
using epifluorescent illumination with a green LED (530
nm; Thorlabs), coupled to the back fluorescent port of the
microscope. Whole-cell recordings of vlPAG GABAergic
and glutamatergic neurons expressing hM3Dq-mCherry
and hM4Di-mCherry were performed using a Heka EPC
10 amplifier (Heka) with Patchmaster software (Heka).
Following stable 5-min whole-cell recordings (baseline),
the direct effects of either hM3Dq or hM4Di receptor
expression on cellular excitability was isolated by block-
ing AMPA/KARs (10 �M NBQX, Abcam), NMDARs (50 �M
D-APV, Abcam), GABAARs (100 �M picrotoxin, Abcam),
and GABABRs (50 �M baclofen, Abcam). aCSF solution
containing 10 �M CNO added to the antagonist cocktail
above was bath applied to the brain slice.

Immunohistochemistry
To perform histologic confirmation of virus expression

and injection sites, C57, Vgat Cre, and Vglut2 Cre mice
expressing hM3Dq-mCherry, hM4Di-mCherry, and EGFP
virus were deeply anesthetized with ketamine/xylazine
cocktail at the end of every experiment and then perfused
with 20 ml of PBS and 20 ml of a 4% paraformaldehyde
PBS solution (PFA). Brains were removed, postfixed in
4% PFA overnight at 4°, and then immersed in 30%
sucrose for cryoprotection. Using a cryostat, 30-�m tis-
sue sections were collected and stored in PBS, containing
0.4% sodium azide, at 4°. After washing the sections in
PBS 1�, we incubated the tissues in blocking solution
containing 5% normal goat serum and 0.2% Triton X-100
PBS solution for 1 h at room temperature. Primary anti-
bodies against mCherry (Mouse, Clontech 632392; 1:500)
and GFP (rabbit polyclonal, Life Technologies A11122,
1:500) were diluted in blocking solution and incubated
overnight at 4°C. After three 10-min washes, tissues were
incubated for 1 h at room temperature with secondary
antibodies [Life Technologies: Alexa Fluor 488 donkey
anti rabbit IgG (1:300); Alexa Fluor 488 goat anti rabbit
(1:300); Alexa Fluor 555 goat anti mouse (1:300); and
Neurotrace (435/455nm, 1:500)]. Sections were mounted
with Vectashield (H-1400) hard mounting media and im-
aged on a Nikon Eclipse 80i epifluorescence microscope.

Fluorescence in situ hybridization (FISH)
Following rapid decapitation of mice, brains were flash

frozen in �50°C 2-methylbutane and stored at �80°C for
further processing. Coronal sections containing the PAG,
corresponding to the injection coordinates used in the
behavioral experiments, were cut at 20 �m at �20°C and
thaw-mounted onto Super Frost Plus slides (Fisher).
Slides were stored at -80°C until further processing. FISH
was performed according to the RNAScope 2.0 Fluores-
cent Multiple Kit User Manual for Fresh Frozen Tissue
(Advanced Cell Diagnostics) as described previously
(Wang et al., 2012). Slides containing PAG coronal brain
sections were fixed in 4% PFA, dehydrated, and pre-
treated with protease IV solution for 30 min. Sections
were then incubated with target probes for mouse Vglut2
(slc17a6, accession number NM_080853.3, probe region
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1986-2998), Vgat (slc32a1, accession number NM_009508.2,
probe region 894-2037), and Cre (accession number
KC845567.1, probe region 1058-2032). All target probes
consisted of 20 double Z oligonucleotides and were ob-
tained from Advanced Cell Diagnostics. Following probe
hybridization, sections underwent a series of probe signal
amplification steps (AMP1-4) followed by incubation of
fluorescent probes (Alexa Fluor 488, Atto 550, Atto 647),
designed to target the specified channel associated with
the probes. Slides were counterstained with 4’,6-
diamidino-2-phenylindole (DAPI; RNAScope), and cover-
slips were mounted with Vectashield Hard Set mounting
medium (Vector Laboratories). Images were obtained on a
Leica TCS SPE confocal microscope (Leica), and Appli-
cation Suite Advanced Fluorescence (LAS AF) software
was used for analyses.

Statistics
Throughout the study, researchers were blinded to all

experimental conditions. At least two to three replicate
measurements were performed and averaged in all be-
havioral assays. The studies were designed to compare
behavioral readouts following CNO to baseline values
before CNO administration. This was done using paired t
tests to account for interindividual variability among mice
across different cohorts. The control eGFP group was
included throughout our study to determine whether CNO
administration or DREADD expression had off-target ef-
fects in the behaviors that we tested. All datasets were
evaluated for normality using the D’Agostino and Pearson
omnibus normality test. A parametric test was used only
when normality was confirmed. If normality could not be
confirmed, the nonparametric Wilcoxon matched pairs
test was used.

Results

Global chemogenetic manipulation of vlPAG activity
suggests bidirectional modulation of nociceptive
behaviors

We used a chemogenetic approach to investigate
whether selectively manipulating activity of resident neu-
rons in the vlPAG can modulate different nociceptive
modalities. DREADDs exploit selective expression of
mutated muscarinic receptors that are responsive to an
exogenously administered, normally inert ligand, CNO
(Rogan and Roth, 2011). Adeno-associated virus type 8
(AAV8), carrying neuron-specific stimulatory (hM3Dq) or
inhibitory (hM4Di) DREADD fused with mCherry, was mi-
croinjected bilaterally into the vlPAG (Fig. 1A). Robust
expression of DREADDs, restricted to the vlPAG, was
observed three weeks after AAV8/hSyn-hM3Dq-mCherry
(Fig. 1B) or AAV8/hSyn-hM4Di-mCherry injection (Fig.
1C). In mice expressing the stimulatory DREADD (hM3Dq)
in vlPAG neurons, CNO (1 mg/kg, i.p.) injection resulted in
a significant increase in paw withdrawal latencies (PWLs)
to thermal stimulation compared with baseline PWLs be-
fore CNO administration but did not alter paw withdrawal
thresholds (PWTs) to mechanical stimuli compared with
baseline PWTs before CNO administration (Fig. 1E; t(10) �

3.674, ��p � 0.0043, n � 11; Fig. 1H; t(10) � 0.3489, p �

0.73, n � 11). On the other hand, in mice expressing the
inhibitory DREADD (hM4Di) in vlPAG neurons, CNO (1
mg/kg, i.p.) injection resulted in a significant decrease in
PWLs and PWTs compared with baseline (Fig. 1F; t(11) �

6.693, ���p � 0.0001, n � 12; Fig. 1I; �p � 0.05, n � 11),
indicating development of thermal and mechanical hyper-
sensitivity. To confirm that CNO administration did not
have any off-target effects on PWLs and PWTs, control
mice expressing eGFP were administered CNO (1 mg/kg),
which had no effect on PWLs or PWTs when compared
with baseline (Fig. 1D; t(11) � 0.2572, p � 0.80, n � 12;
Fig. 1G, t(8) � 0.2945, p � 0.77, n � 9). Taken together,
these findings demonstrate that globally activating vlPAG
neurons attenuates nociception, while inhibiting them po-
tentiates nociception, consistent with prior studies using
pharmacologic activation or inhibition of the vlPAG neurons
(Moreau and Fields, 1986; Carstens et al., 1988; Jones and
Gebhart, 1988; Jensen and Yaksh, 1989; Siegfried and de
Souza, 1989; Behbehani et al., 1990; Carstens et al., 1990;
Vaughan et al., 1997; Budai and Fields, 1998; Morgan et al.,
2003).

The role of vlPAG GABAergic and glutamatergic

neuronal populations in nociceptive processing

The vlPAG is comprised of both inhibitory GABAergic
and excitatory glutamatergic neurons, and we hypothe-
sized that these neuronal populations differentially regu-
late nociceptive processing. Double-label RNA-FISH in
the vlPAG of c57-mice revealed that GABAergic neurons
(Vgat transcripts) and glutamatergic neurons (Vglut2 tran-
scripts) show no overlap in expression in the PAG and,
thus, are distinct populations (Fig. 2A,B). To selectively
test the functional contributions of vlPAG GABAergic and
glutamatergic neurons in modulating nociceptive behav-
iors, we used Vgat-ires-Cre and Vglut2-IRES-Cre mice to
target and manipulate the activity of GABAergic and glu-
tamatergic neurons, respectively. To determine the spec-
ificity of Cre in targeting Vgat� neurons in Vgat-IRES-Cre
mice or in targeting Vglut2� neurons in the Vglut2-IRES-
Cre mice, we performed RNA-FISH using probes for Vgat,
Vglut, and Cre in vlPAG slices obtained from Vgat Cre and
Vglut2 Cre mice. We observed 79 � 4.1% of Vglut2�

transcripts in the vlPAG colabel with Vglut2 Cre-expressing
neurons, and 97.5 � 2.5% Vglut2 Cre-expressing neurons in
the vlPAG colabel with Vglut2� transcripts (Fig. 2C,E–J).
We also observed 92 � 4.5% of Vgat� transcripts in the
vlPAG colabel with Vgat Cre-expressing neurons, and
95.5 � 4.2% Vgat Cre-expressing neurons in the vlPAG
colabel with Vgat� transcripts (Fig. 2D,K–P). Our double-
label RNA-FISH studies revealed that Vgat and Vglut2 Cre
mice faithfully label vlPAG GABAergic and Vglut2� gluta-
matergic neuronal populations, as described previously
for other brain regions (Vong et al., 2011).

To selectively test the functional contributions of vlPAG
GABAergic and glutamatergic neurons in modulating no-
ciceptive behaviors, we used Cre-dependent DREADD
expression in Vgat-ires-Cre and Vglut2-ires-Cre mice to
target GABAergic and glutamatergic neurons, respec-
tively. Virus carrying Cre-dependent stimulatory (hM3Dq)
or inhibitory (hM4Di) DREADDs fused with mCherry were
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injected into the vlPAG of Vgat-Cre mice or Vglut2-Cre mice.

Three weeks after DREADD injection, we prepared acute

coronal slices of the vlPAG from Vgat-Cre and Vglut2-Cre

mice and targeted mCherry� neurons in vlPAG for whole-

cell recordings (Fig. 3A). hM3Dq-expressing vlPAG neurons

were held at hyperpolarized membrane potentials, and a

brief bath application of 10 �M CNO caused a transient

depolarization and robust action potential firing in both Vgat
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Figure 1. Global chemogenetic manipulation of vlPAG activity suggests parallel bidirectional modulation of nociceptive behaviors.

A, Constructs used in viral targeting of AAV8 hM3Dq–mCherry, AAV8 hM4Di–mCherry and AAV8–EGFP via bilateral injections into the

vlPAG. B, C, Representative images of coronal sections containing vlPAG demonstrating restricted viral expression following

microinjection of the AAV8 hM3Dq (B) and hM4Di (C) into the vlPAG. D, G, Relative to pretreatment baseline values, CNO (1 mg/kg,

i.p.) did not have any significant effects on PWLs in mice expressing the control EGFP construct. E, H, CNO (1 mg/kg, i.p.)

administration in hM3Dq-injected mice resulted in a significant increase in PWLs but not in PWTs. F, I, CNO (1 mg/kg, i.p.)

administration in hM4Di-injected mice resulted in a significant decrease in PWLs and PWTs. �p � 0.05, ��p � 0.005, ���p � 0.0001.

Scale bars, 300 and 35 �m, 4� and 10�, respectively.
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Figure 2. RNA-FISH demonstrates segregation of vlPAG GABAergic and glutamatergic neurons and specificity of Cre in targeting

Vgat� neurons in the Vgat-IRES-Cre mice or Vglut2� neurons in the Vglut2-IRES-Cre mice. A, Double RNA-FISH for Vgat (green) and

Vglut2 (red) shows that GABAergic and glutamatergic neurons in the PAG are nonoverlapping populations. Scale bar, 200 �m.

Counterstaining (blue) is DAPI. B, High-magnification image showing no colocalization of GABAergic and glutamatergic neurons in the

PAG. Scale bar, 60 �m. C, 79 � 4.1% of cells positive for Vglut2 transcripts in the vlPAG colabel with Vglut2 Cre-expressing neurons,

and 97.5 � 2.5% of Vglut2 Cre-expressing neurons in the vlPAG colabel with Vglut2� transcripts (N � 2 mice). D, 92 � 4.5% of cells

positive for Vgat transcripts in the vlPAG colabel with Vgat Cre-expressing neurons, and 95.5 � 4.2% of Vgat Cre-expressing neurons

in the vlPAG colabel with Vgat� transcripts (N � 2 mice). E–G, Double RNA-FISH for Vglut2 (red) and Cre (green) shows extensive

colocalization of Vglut2� transcripts with Cre-expressing neurons in the vlPAG obtained from Vglut2 Cre mice. Scale bar, 60 �m. H–J,

High-magnification image shows extensive colocalization of Vglut2� transcripts with Cre-expressing neurons in the vlPAG. Scale bar,

15 �m. K, M, Double RNA-FISH for Vgat (red) and Cre (green) shows extensive colocalization of Vgat� transcripts with Cre-expressing

neurons in the vlPAG obtained from Vgat Cre mice. Scale bar, 60 �m. N–P, High-magnification image shows extensive colocalization

of Vgat� transcripts with Cre-expressing neurons in the vlPAG. Scale bar, 15 �m.
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and Vglut2 neurons (Fig. 3B). To test the effects of Gi-

coupled inhibition with hM4Di, we monitored neuronal ac-

tivity while holding cells with a depolarizing current injection,

which elicited persistent action potential firing in both Vgat

and Vglut2 neurons. Bath perfusion with 10 �M CNO re-

sulted in prolonged membrane hyperpolarization and de-

creased firing of both cell types (Fig. 3C). Quantification of

hM3Dq-expressing neurons showed that CNO depolarized

neurons by an average of 3.6 mV and caused a small

decrease in the input resistance (Fig. 3D,G). In contrast,

activation of hM4Di hyperpolarized neurons by an average

of 5.6 mV, and substantially reduced input resistance, con-

sistent with CNO-induced Gi-coupling to inwardly rectifying

K� channels (Sternson and Roth, 2014; Urban and Roth,

2015; Fig. 3D,G).

We also investigated how CNO modulates membrane

excitability in response to depolarizing step current injec-

tions. In hM3Dq-expressing neurons, we observed a large

increase in the number of action potentials elicited during

a 1� rheobase current following CNO stimulation in slices

from both Vgat- and Vglut2-Cre mice (Fig. 3E,H). Suprath-

reshold current injections of 2� rheobase elicited sus-

tained high-frequency action potential firing in both

neuronal subtypes (Fig. 3F,I, blue traces), and CNO ap-

plication dramatically reduced membrane excitability to

an identical suprathreshold stimulus in mice injected with

Figure 3. Functional characterization of Gq- and Gi-DREADDs in vlPAG neurons of Vgat-Cre and Vglut2-Cre mice. A, Infrared DIC

image of vlPAG Vgat� neuron expressing hM4Di-mCherry. Images were acquired following CNO stimulation. B, Whole-cell

current-clamp recording from an hM3Dq-expressing PAG neuron. Brief bath application of 10 �M CNO caused a transient

depolarization and robust action potential firing in Vgat� and Vglut� neurons. C, Voltage trace showing that bath perfusion with 10

�M CNO caused prolonged membrane hyperpolarization and silencing of both Vgat� and Vglut� vlPAG neurons. Dashed lines in B

and C represent the membrane potential of the cells before application of CNO. D, G, Quantification of the CNO effects on membrane

potential and input resistance in grouped Vgat� and Vglut2� neurons (N � 8 for Vgat� and Vglut2� neurons). E–I, Voltage traces

showing responses to a hyperpolarizing current of -20 pA and a depolarizing current injection of either 1� rheobase (purple traces)

or 2� rheobase (blue traces) in both Vgat� (E, H) and Vglut2� (F, I) neurons. In hM3Dq-expressing neurons, bath application of CNO

elicited increased action potential firing in response to the same stimulus (E, H, green traces). In hM4Di� neurons, CNO perfusion

decreased neuronal excitability to supratheshold stimuli. B, C, Scale bars, 20 mv and 10 s; E–I, Scale bars, 10 mv and 100 ms. All

values are mean � SEM.
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hM4Di constructs (Fig. 3F,I, green traces). This confirmed

that we are able to bi-directionally modulate GABAergic

and glutamatergic neuron excitability in the vlPAG using

hM3Dq and hM4Di DREADDs, and led us to explore the

contributions of these neuronal populations in nociceptive

processing.

To assess how vlPAG GABAergic neurons contribute to

nociceptive processing, we introduced Cre-dependent vi-

ral constructs containing either hM3Dq or hM4Di fused to

mCherry or control virus lacking the DREADDs (hSyn-

DIO-eGFP) into the vlPAG of Vgat-IRES-Cre mice (Fig.

4A). Three weeks after viral infection of vlPAG neurons,

restricted expression of the DREADD vectors was ob-

served in neurons within the vlPAG (Fig. 4B,C). CNO-

dependent (3 mg/kg, i.p.) activation of vlPAG GABAergic

neurons via hM3Dq resulted in a significant decrease in

PWLs to a noxious thermal stimulus (Fig. 4E; t(8) � 4.403,

p � 0.0023, n � 9) and PWTs to a mechanical stimulus

(Fig. 4H; p � 0.0469, n � 7) compared with baseline. In

contrast, CNO-induced (3 mg/kg, i.p.) inhibition of vlPAG

GABAergic neurons expressing hM4Di resulted in a sig-

nificant increase in PWLs to noxious thermal stimulation

compared with baseline (Fig. 4F, t(13) �2.459, p � 0.0287,

n � 14) but did not have a significant effect on PWTs to

mechanical stimuli compared with baseline (Fig. 4I; t(11) �

0.5885, p � 0.5681, n � 12). CNO (3 mg/kg, i.p.) admin-
istration did not affect PWLs or PWTs in control mice
expressing DIO-EGFP when compared with baseline (Fig.
4D; t(9) � 0.1837, p � 0.8584, n � 10) and (Fig. 4G; t(8) �

0.2055, p � 0.8423, n � 9). Taken together, these results
demonstrate that activation of GABAergic vlPAG neurons
results in hypersensitivity to mechanical and noxious ther-
mal stimuli, while inhibiting the activity of GABAergic vl-
PAG neurons decreases sensitivity to noxious heat only.

To directly examine the role of vlPAG glutamatergic
neurons in nociceptive processing, Cre-dependent viral
constructs carrying hM3Dq-mCherry, hM4Di-mCherry, or
a control virus (hSyn-DIO-eGFP) were injected bilaterally
into the vlPAG of Vglut2-ires-Cre mice (Fig. 5A). Three
weeks after injection, we observed robust DREADD ex-
pression restricted to the vlPAG (Fig. 5B,C). Chemoge-
netic activation of vlPAG Vglut2 neurons expressing
hM3Dq with CNO (2 mg/kg, i.p.) significantly increased
PWLs to thermal stimuli compared with baselines before
CNO administration (Fig. 5E; t(11) �2.375, p � 0.0368, n �

12) but did not significantly alter PWTs to mechanical
stimuli compared with baseline (Fig. 5H; t(8) � 0.8779, p �

0.405, n � 9). To further examine the functional role of
intrinsic activity of vlPAG Vglut2 neurons, we adminis-
tered CNO (2 mg/kg, i.p.) to inhibit vlPAG Vglut2 neurons
expressing hM4Di. This resulted in a significant decrease

Figure 4. Chemogenetic manipulation of vlPAG GABAergic neurons bidirectionally modulates nociceptive behaviors. A, Illustration

showing viral targeting strategy of AAV5-hSyn-DIO-hM3Dq–mCherry, AAV5-hSyn-DIO-hM4Di–mCherry, and AAV5-hSyn-DIO-EGFP

bilaterally injected into the vlPAG of Vgat Cre mice. B, C, Representative images of coronal sections containing vlPAG showing

restricted viral expression following microinjection of AAV5-hSyn-DIO-hM3Dq (B) or AAV5-hSyn-DIO-hM4Di (C) into the vlPAG of Vgat

Cre mice. E, H, CNO (3 mg/kg, i.p.) administration resulted in a significant decrease in PWLs and PWTs in Vgat::hM3Dq mice. F, I,

CNO administration resulted in a significant increase in PWLs but not in PWTs in Vgat::hM4Di mice. D, G, CNO had no significant

effect on PWLs or PWTs in Vgat Cre mice expressing the control EGFP construct compared with baseline PWLs and PWTs before

CNO administration. All values are mean � SEM. Student’s t test; �p � 0.05, ��p � 0.005. Scale bars, 25 �m.
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in PWLs to a noxious heat stimulus compared with base-
line (Fig. 5F; n � 6, paired t test, p � 0.0313) and a
decrease in PWTs to a mechanical stimulus compared
with baseline (Fig. 5I; n � 6, paired t test, p � 0.0211).
Control virus-injected mice showed no alterations in
PWTs or PWLs on CNO (2 mg/kg, i.p.) administration
compared with baseline (Fig. 5D; t(9) � 0.2897 p � 0.7786,
n � 10; Fig. 5G, p � 1, n � 6). These results demonstrate
that vlPAG Vglut2 neurons exert tonic control over thermal
and mechanical nociceptive processing.

Discussion
Here, we report that global chemogenetic activation of

vlPAG neurons attenuates thermal nociception while in-
hibiting vlPAG neurons cause thermal and mechanical
hypersensitivity. Using cell type-specific chemogenetic ma-
nipulations, we found that activating GABAergic, or inhibiting
glutamatergic, neurons in vlPAG, causes thermal and me-
chanical hypersensitivity. In contrast, inhibiting GABAergic
or activating glutamatergic neurons attenuates thermal
sensitivity but has no effect on mechanical sensitivity. The
differential effects on thermal and mechanical sensitivity
suggest that distinct circuit elements within the vlPAG
regulate these two sensory modalities. These results pro-
vide new insights into the functional role of GABAergic
and glutamatergic neurons in the vlPAG in the modulation
of nociception.

The vlPAG is known to be an essential component of

neural pathways that mediate stimulation and stress-

induced analgesia (Reynolds, 1969; Yeung et al., 1977;

Jones and Gebhart, 1988; Morgan et al., 1989; Hohmann

et al., 2005; Samineni et al., 2011). Consistent with these

previous studies, we found that global chemogenetic ac-

tivation of vlPAG neurons produced antinociceptive ef-

fects. We also show that chemogenetic inhibition of

vlPAG neurons leads to nociceptive hypersensitivity, con-

sistent with a bidirectional role of the vlPAG in the mod-

ulation of nociception (Moreau and Fields, 1986; Depaulis

et al., 1987; Heinricher et al., 1987; Ness and Gebhart,

1987; Carstens et al., 1988; Jacquet, 1988; Jones and

Gebhart, 1988; Jensen and Yaksh, 1989; Siegfried and de

Souza, 1989; Behbehani et al., 1990; Carstens et al.,

1990). The magnitude of antinociceptive effects observed

after global chemogenetic activation of vlPAG neurons is

modest relative to the robust effects produced by electrical

stimulation of the PAG or by microinjection of morphine,

GABAA receptor antagonists, or glutamate agonists into

the vlPAG (Reynolds, 1969; Liebeskind et al., 1973;

Moreau and Fields, 1986; Depaulis et al., 1987; Ness and

Gebhart, 1987; Carstens et al., 1988; Sandkühler et al.,

1989; Siegfried and de Souza, 1989; Carstens et al.,

1990). Such a difference could be expected if the number

of neurons that are transduced with stimulatory DREADDs

Figure 5. Chemogenetic modulation of vlPAG glutamatergic neurons bidirectionally modulates nociceptive behaviors. A, Illustration

showing the strategy for viral targeting of AAV5-hSyn-DIO-hM3Dq–mCherry, AAV5-hSyn-DIO-hM4Di–mCherry, and AAV5-hSyn-DIO-

EGFP bilaterally injected into the vlPAG of Vglut2 Cre mice. B, C, Representative images of a coronal sections containing vlPAG showing

restricted viral expression following microinjection of the AAV5-hSyn-DIO-hM3Dq–mCherry and AAV5-hSyn-DIO-hM4Di–mCherry into the

vlPAG of Vglut2 Cre mice. E, H, CNO (2 mg/kg, i.p.) administration resulted in a significant increase in PWLs but not on PWTs in

Vglut2::hM3Dq mice. F, I, CNO (2 mg/kg, i.p.) administration resulted in a significant decrease in PWLs and PWTs in Vglut2::hM4Di mice.

D, G, CNO had no significant effect on PWLs or PWTs in Vglut2 Cre mice expressing the control EGFP construct compared with baseline

PWLs and PWTs before CNO administration. All values are mean � SEM, Student’s t test; �p � 0.05. Scale bars, 25 �m.
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is small relative to the large number of neurons impacted

by electrical or pharmacologic approaches.

Although the vlPAG has been extensively studied for its
role in endogenous descending pain modulation (Reyn-
olds, 1969; Liebeskind et al., 1973; Basbaum and Fields,
1978; Sandkühler et al., 1989; Behbehani et al., 1990;
Vaughan et al., 1997; McGaraughty et al., 2003; Starowicz
et al., 2007; Morgan et al., 2008; Waters and Lumb, 2008;
Heinricher et al., 2009; Samineni et al., 2011; Wang et al.,
2012; Ho et al., 2013; Lau and Vaughan, 2014; Tovote
et al., 2016), previous studies have not yet determined
how distinct subpopulations of vlPAG neurons modulate
pain transmission. Inhibitory neurotransmission in the vl-
PAG is known to modulate nocifensive behaviors, since
microinjecting a GABA agonist produces pronociceptive
effects, while decreasing inhibitory neurotransmission by
microinjection of GABA antagonists into the vlPAG pro-
duces antinociceptive effects to noxious stimuli (Moreau
and Fields, 1986; Depaulis et al., 1987; Sandkühler et al.,
1989; Budai and Fields, 1998; Morgan et al., 2003). Such
studies led some to propose the vlPAG GABA disinhibi-
tion analgesia hypothesis (Basbaum and Fields, 1978;
Fields, 2004). Corroborating this hypothesis, many stud-
ies have shown that mu opioid receptor agonists have
direct inhibitory effects on GABAergic neurons of vlPAG.
This causes analgesia when directly administered into the
vlPAG, suggesting that inhibition of GABAergic vlPAG
neuronal activity may be a major mechanism for opioid-
induced analgesia (Chieng and Christie, 1996; Vaughan
et al., 1997). The cellular mechanisms underlying the an-
algesic and hyperalgesic effects of manipulating inhibitory
and excitatory neurotransmission in the vlPAG have not
been directly evaluated (Moreau and Fields, 1986; Carstens
et al., 1988; Jacquet, 1988; Sandkühler et al., 1989;
Vaughan et al., 1997; Budai and Fields, 1998; Fields,
2004; Maione et al., 2006; Starowicz et al., 2007). It is not
known how distinct neuron subpopulations in the vlPAG
engage complex downstream circuits of the descending
pain modulation pathway. For the first time, we show that
chemogenetic activation of vlPAG GABAergic neurons
causes hypersensitivity to nociceptive stimuli while their
inhibition causes antinociception, consistent with the pro-
posed role of GABAergic vlPAG neurons in pain modula-
tion.

It has been hypothesized that GABAergic interneurons
exert tonic inhibition of vlPAG glutamatergic neurons,
which are thought to be output neurons that project to the
RVM (Jacquet, 1988; Roychowdhury and Fields, 1996;
Vaughan et al., 1997; Wang and Wessendorf, 2002; Mor-
gan et al., 2008; Park et al., 2010; Hahm et al., 2011; Ho
et al., 2013). These glutamatergic neurons have been
hypothesized to play a role in an analgesic modulatory
pathway (McGaraughty et al., 2003; Maione et al., 2006;
Starowicz et al., 2007), but this has not been selectively
demonstrated. In agreement with the GABA disinhibition
hypothesis, our RNA-FISH studies show that GABAergic
and glutamatergic neurons in the PAG are distinct popu-
lations. We also found that chemogenetic activation of
vlPAG glutamatergic neurons is antinociceptive, whereas
chemogenetic inhibition of these neurons is pronocicep-

tive. Conversely, chemogenetic activation of GABAergic
neurons in the vlPAG produces hypersensitivity while in-
hibition of these neurons produces analgesia.

Surprisingly, we find that activation of vlPAG glutama-
tergic neurons or inhibition of GABAergic neurons atten-
uated thermal but not mechanical sensitivity. While there
are several possible explanations for this finding, we pro-
pose the hypothesis that distinct populations of inhibitory
neurons regulate mechanical and thermal nociceptive
modulatory pathways emanating from the vlPAG. Here,
we posit the presence of tonically active GABAergic neurons
regulating descending pathways for thermal nociception,
while the population regulating mechanical nociceptive
modulation might by quiescent. This would explain the
difference in effects of activating GABAergic neurons or
inhibiting glutamatergic neurons on mechanical nocicep-
tion. It is possible that the differences in the effects of
DREADD-dependent regulation are simply due to the
basal state of the neurons in question. That is, if the
neurons are quiescent at baseline, then activation of a
Gi-coupled DREADD might not affect descending modu-
lation. Similarly, a neuron that is firing at a relatively high
frequency at baseline might not be further stimulated by a
Gq-coupled DREADD. Future studies are necessary to
determine the differences in neuronal populations and
circuits that code for mechanical versus thermal sensitiv-
ity. It is also possible that these results are simply due to
a ceiling effect in our von Frey measurements. That is, that
von Frey testing is not able to detect analgesic effects at
baseline. We do not favor this hypothesis, as treatment
with analgesic drugs can indeed increase PWTs in mice
(Anseloni and Gold, 2008).

We believe that our results should not be interpreted as
absolute, and we recognize that the behavioral changes
that we report should not be attributed to the entirety of
either the Vgat or Vglut2 vlPAG neuronal populations. The
PAG is comprised of molecularly diverse neuronal sub-
populations that express fast neurotransmitters and/or
neuropeptides (Mantyh, 1982; Moss and Basbaum, 1983;
Moss et al., 1983; Smith et al., 1994). In the hypothala-
mus, recent genetic analysis of anatomically defined neu-
rons has identified subpopulations that coexpress a
variety of neuroactive substances that were previously
thought to be exclusive to certain clusters (Romanov
et al., 2017). Therefore, it is likely that vlPAG GABAergic
and glutamatergic neurons can be further subdivided into
subpopulations based on their genetic identity and phys-
iology. Although we have only attempted to dissect the
roles of glutamatergic versus GABAergic vlPAG neurons
in pain modulation, future studies should examine the
interplay between other neuronal populations within the
vlPAG that can be defined with the expression of other
makers, such as neuropeptides, to assess their roles in
regulating nociceptive processing.

While the stimulation of vlPAG is predominantly associ-
ated with antinociceptive effects (Reynolds, 1969; Liebes-
kind et al., 1973; Carstens et al., 1988; Morgan et al., 1989;
Sandkühler et al., 1989; Hohmann et al., 2005; Maione et al.,
2006; Starowicz et al., 2007; Samineni et al., 2011), recent
studies also identified facilitatory effects of the vlPAG in
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the maintenance of neuropathic pain (Pertovaara et al.,

1996; Pertovaara et al., 1997; Heinricher et al., 2004; Guo

et al., 2006; Lü et al., 2010). We show here that chemo-

genetic activation of GABAergic neurons or inhibition of

glutamatergic neurons can lead to hypersensitivity to

mechanical and thermal stimuli, suggesting that any dis-

ruption of the balance between activity of the vlPAG

excitatory and inhibitory neurons might contribute to the

maintenance of chronic pain (Hahm et al., 2011; Ho et al.,

2013; Lau and Vaughan, 2014). Future studies should

explore the plastic changes in GABAergic and glutama-

tergic neurons that might contribute to the maintenance of

chronic pain.

The vlPAG has been shown to be instrumental in the

descending modulation of pain processing. The vlPAG is

known to form strong connections with the RVM, and the

locus coeruleus (Beitz et al., 1983; Behbehani, 1995; Antal

and Odeh, 1998; Odeh and Antal, 2001; Bowman et al.,

2013). Based on the data we present here, it will be of

great interest to determine which of these, or other, pro-

jection targets mediate the differential modulation of no-

ciception by glutamatergic and GABAergic projections

from the vlPAG.
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