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ABSTRACT

The abundance and ubiquity of graphs (e.g., Online Social Net-
works such as Google+ and Facebook; bibliographic graphs such
as DBLP) necessitates the effective and efficient search over them.
Given a set of keywords that can identify a Data Subject (DS), a re-
cently proposed relational keyword search paradigm produces, as
a query result, a set of Object Summaries (OSs). An OS is a tree
structure rooted at the DS node (i.e., a tuple containing the key-
words) with surrounding nodes that summarize all data held on the
graph about the DS. OS snippets, denoted as size-l OSs, have also
been investigated. Size-l OSs are partial OSs containing l nodes
such that the summation of their importance scores results in the
maximum possible total score. However, the set of nodes that max-
imize the total importance score may result in an uninformative
size-l OSs, as very important nodes may be repeated in it, domi-
nating other representative information. In view of this limitation,
in this paper we investigate the effective and efficient generation of
two novel types of OS snippets, i.e. diverse and proportional size-
l OSs, denoted as DSize-l and PSize-l OSs. Namely, apart from
the importance of each node, we also consider its frequency in the
OS and its repetitions in the snippets. We conduct an extensive
evaluation on two real graphs (DBLP and Google+). We verify
effectiveness by collecting user feedback, e.g. by asking DBLP au-
thors (i.e. the DSs themselves) to evaluate our results. In addition,
we verify the efficiency of our algorithms and evaluate the quality
of the snippets that they produce.

1. INTRODUCTION
Keyword search on the web (W-KwS) has dominated our lives,

as it facilitates users to find easily and effectively information using
only keywords. For instance, the result for query Q1=“Faloutsos”
consists of a set of links to web pages containing the keyword(s) to-
gether with their respective snippets. Snippets are short fragments
of text extracted from the search results (e.g., web pages); they sig-
nificantly enhance the usability of search results as they provide an
intuition about which results are worth accessing and which can be
ignored. Furthermore, snippets may provide the complete answer
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EXAMPLE 1. The OS for Michalis Faloutsos

Author: Michalis Faloutsos
...Paper: On Power-law Relationalships of the Internet Topology.
......Conference: SIGCOMM. Year: 1999.
......Co-Author(s): Christos Faloutsos, Petros Faloutsos.
......Cites: Building Shared..., ...Cited by: The Structure...,
...Paper: BLINC: Multilevel Traffic Classification in the Dark.
......Conference: ACM SIGCOMM Computer Comm. Review Year:2005.
......Co-Author(s): T. Karagiannis, K. Papagiannaki.
......Cites: A Parametrizable methodology..., ...Cited by: P4P: Provider...,
...Paper: Transport Layer Identification of P2P Traffic.
......Conference: SIGCOMM. Year:2004.
......Co-Author(s): T. Karagiannis, A. Broido.
......Cites: Their Share: Diversity..., Cited by: Internet Traffic......
...
...

to the searcher’s actual information needs (if, for example, the user
is only interested in whether Michalis Faloutsos is a Professor),
thus preventing the need to retrieve the actual result [27].

The keyword search paradigm has also been introduced in re-
lational databases (R-KwS) (e.g., [19]). According to the R-KwS
paradigm, we search for networks of tuples connected via foreign
key links that collectively contain the keywords. For example, the
query “Faloutsos”+“Agrawal” over the DBLP database returns tu-
ples Faloutsos and Agrawal from the Author table and their associ-
ations through co-authored papers. However, the R-KwS paradigm
may not be very effective when searching information about a par-
ticular data subject (DS) (e.g., Faloutsos and his papers, co-authors,
etc.), because it only returns tuples containing the keywords (in this
case only Faloutsos Author tuples). Hence, R-KwS fails to address
search for the context of most important tuples around a central
tuple (i.e., DS).

In view of this, in [12], the concept of object summary (OS) was
introduced; an OS summarizes all data held in a database about a
particular DS, searched by some keyword(s). More precisely, an
OS is a tree with the tuple nDS containing the keywords (e.g., Au-
thor tuple M. Faloutsos) as the root node and its neighboring tu-
ples, containing additional information (e.g., his papers, co-authors
etc.), as child or descendant nodes. The precise definition of an OS
is discussed in Section 2; in a nutshell, a tuple is included in the
OS if it is of high importance (based on link properties in the tu-
ple network graph of the database) and it is connected to nDS via a
short path. For instance, the result for Q1 is a set of OSs: one for
each Faloutsos brother. Example 1 illustrates the OS for Michalis
(the complete set of papers and the OSs of the other two broth-
ers are omitted due to lack of space). Note that the OS paradigm
is in more analogy to the W-KwS paradigm, compared to R-KwS
paradigm. For instance, Example 1 resembles a web page (as both
include comprehensive information about the DS). Therefore, for
the non-technical users with experience only on W-KwS, the OS
paradigm will be friendlier and also closer to their expectations.



EXAMPLE 2. The size-15 OS for Michalis Faloutsos

Author: Michalis Faloutsos
...Paper: On Power-law Relationalships of the Internet Topology.
......Co-Author: Christos Faloutsos,...
...Paper: Power Laws and the AS-Level Internet Topology.
......Co-Author: Christos Faloutsos,...
...Paper: ACM SIGCOMM‘ 99. ......Co-Author: Christos Faloutsos,...
...Paper: Information survival thr.... .Co-Author: Christos Faloutsos,...
...Paper: The Connectivity and Fault... .Co-Author: Christos Faloutsos,...
...Paper: BGP-lens: Patterns and An... .Co-Author: Christos Faloutsos,...
...Paper: The eBay Graph: How Do.... .Co-Author: Christos Faloutsos,...

EXAMPLE 3. The DSize-15 OS for Michalis Faloutsos

Author: Michalis Faloutsos
...Paper: On Power-law Relationalships of the Internet Topology.
.......Conference: SIGCOMM. Year: 1999.
.......Co-Author: Christos Faloutsos, ....
...Paper: Information Survival Threshold in Sensor and P2P Networks.
......Co-Author: S. Madden, ..., Conference: INFOCOM.
...Paper: Power Laws and the AS-Level Internet Topology.
.......Conference: IEEE/ACM Tr. Netw. Year: 2003.
.......Co-Author: Christos Faloutsos,..
...Paper: Network Monitoring Using Traffic Dispersion Graphs.
......Co-Author: M. Mitzenmacher, ...Conference: SIGCOMM.

EXAMPLE 4. The PSize-15 OS for Michalis Faloutsos

Author: Michalis Faloutsos
...Paper: On Power-law Relationalships of the Internet Topology.
.......Conference: SIGCOMM. Year: 1999.
.......Co-Author: Christos Faloutsos, ....
...Paper: Denial of Service Attacks at the MAC Layer...
......Co-Author: S. Krishnamurthy, ..., Conference: MILCOM.
...Paper: Power Laws and the AS-Level Internet Topology.
.......Conference: IEEE/ACM Tr. Netw.
.......Co-Author: Christos Faloutsos,..
...Paper: Reducing Large Internet Topologies for Faster Simulations
......Co-Author: S. Krishnamurthy, L. Cui,...Conference: NETWORKING.

In general, an OS is a concise summary of the context around any
pivot database tuple or graph node, finding application in (interac-
tive) data exploration, schema extraction, etc. (e.g., [16]). Another
application of this summarization concept is on semantic knowl-
edge graphs [25, 6].

In [14, 15], OS snippets are proposed (denoted as size-l OSs);
size-l OSs are composed of only the l most important nodes. Ex-
ample 2 illustrates the size-l OS for M. Faloutsos with l = 15 on
the DBLP database. According to [14, 15], a size-l OS should be a
standalone sub-graph of the complete OS, composed of the l most
important nodes only, so that the user can comprehend it without
any additional information. For this reason, the l nodes should form
a connected graph that includes the root of the OS (i.e., nDS). To
distinguish the importance of an individual node ni to be included
in a size-l OS, a local importance score (denoted as li(ni)) is de-
fined. Based on the local importance scores of the nodes of an OS,
we can find the partial OS of size l with the maximum importance
score.

However, this selection criterion (i.e., maximizing importance
score) can render such snippets ineffective. For instance, in Exam-
ple 2, the co-authorship of Michalis with Christos Faloutsos, who
is a very important author monopolizes the snippet with papers co-
authored only with Christos. Thus, we argue that the diversity of
constituent nodes will improve the snippet’s effectiveness. In addi-
tion, we argue that frequent appearances of nodes in an OS should
also be proportionally represented in an effective snippet. Hence,
in this paper we propose two novel snippets, namely diverse and
proportional size-l OSs denoted as DSize-l OS and PSize-l OS re-
spectively. More precisely, in a DSize-l OS we favor diversity by
penalizing repetitions of nodes, whereas, in a PSize-l OS, we favor
proportionality, i.e., a frequent node should be analogously repre-
sented, facilitating diversity at the same time. For instance, the

DSize-l OS of Example 3 includes C. Faloutsos only twice, allow-
ing the appearance of other important co-authors as well. Similarly,
the PSize-l OS of Example 4 includes also frequent co-authors S.
Krishnamurthy and L. Cui who do not appear at all in the DSize-
l OS. To compute them, we calculate a combined score per node,
which integrates (1) importance, (2) affinity to the data subject node
nDSand (3) diversity or proportionality. The efficient generation of
DSize-l or PSize-l OSs is a challenging problem since informa-
tion about the repetitions and frequencies of nodes is required and
incremental computation is not possible (as opposed to the orig-
inal size-l OS computation problem [14]). We propose a brute
force algorithm, BF-l, that produces optimal solutions but scales
badly. Then, we propose a greedy algorithm (LASP) and its opti-
mization (2-LASP). Both algorithms are general and can address
both DSize-l and PSize-l OS snippet types (with minor modifica-
tions). In addition, we propose two preprocessing techniques for
the two snippet types (PPrelim-l and DPrelim-l, respectively) that
prune the input OSs before processing them.

We conducted an extensive experimental study on the DBLP bib-
liographic and Google+ social network datasets. We verify effec-
tiveness by collecting user feedback, e.g., by asking DBLP authors
(i.e., the DSs themselves) to evaluate our size-l OSs. The users
suggested that the results produced by our method are very close
to their expectations and they are more usable than the respective
size-ls OSs, which disregard diversity. In addition, we investigated
in detail and verified the efficiency and approximation quality of
our algorithms.

The contributions of this paper can be summarized as follows:
(1) the introduction of two novel OS snippets, DSize-l and PSize-
l OS, which capture diversity and proportionality respectively; (2)
the introduction of a brute force algorithm and efficient greedy al-
gorithms for their generation; (3) an extensive experimental evalu-
ation that verifies the proposed methodologies.

The rest of the paper is structured as follows. Section 2 describes
background and related work. Section 3 describes the semantics of
DSize-l and PSize-l OSs. Sections 4 and 5 introduce the optimal
and greedy algorithms respectively, whereas Section 6 introduces
preprocessing algorithms for DSize-l and PSize-l OS computation.
Section 7 presents experimental results. Finally, Section 8 provides
concluding remarks.

2. BACKGROUND AND RELATED WORK
In this section, we first describe the concepts object summary

(OS) and size-l OS, which we build upon in this paper. We then
present related work in R-KwS, ranking, and summarization. To
the best of our knowledge, no previous work has focused on the
computation of diverse and proportional size-l OSs.

2.1 Object Summaries
According to the keyword search paradigm of [11, 12], an object

summary (OS) is generated for each node (tuple) nDS found in a
graph (database) that contains the query keyword(s) (e.g., “Michalis
Faloutsos” node of Author relation in the DBLP database1). An OS
is a tree structure having nDS as a root and its neighboring nodes
(i.e., those associated through foreign keys) as its children/descendant
nodes. To construct the OSs, the relations which may hold the
queried Data Subjects (DSs), denoted as RDS (e.g., the Author rela-
tion), and the relations linked around RDS are used. For each RDS,
a Data Subject Schema Graph GDS is generated. Figure 2 illus-
trates the GDS for the Author relation of the DBLP database, whose
schema is shown in Figure 1. A GDS is a directed labeled tree with

1www.informatik.uni-trier.de/∼ley/db/



Paper AuthorConfYearConference

Figure 1: The DBLP Database Schema

a fixed maximum depth that has an RDS as a root node and captures
the subset of the schema surrounding RDS; any surrounding rela-
tions participating in loop or many to many relationships are repli-
cated accordingly. Namely, a GDS is a “treelization” of the schema
graph, where RDS becomes the root, RDS’s neighboring relations
become child nodes and so on. Any looped and many to many re-
lationships are replicated. Each relation in GDS is also annotated
with statistical information that we describe later together with our
methods. In order to generate an OS, the relations from GDS, which
have high affinity with RDSare accessed and joined. The affinity of
a relation Ri to RDS can be calculated by the formula:

af(Ri) =
∑

j

wjmj · af(RParent), (1)

where j ranges over a set of metrics (m1,m2, . . . ,mn) and their
corresponding weights (w1, w2, . . . , wn), and af(RParent) is the
affinity of Ri’s parent to RDS. The metrics’ scores range in [0, 1]
and the corresponding weights sum to 1; thus, the affinity score of
a node is monotonically non-increasing with respect to the node’s
parent. More precisely we use four metrics: m1 considers the dis-
tance of Ri to RDS, i.e., the shorter the distance the bigger the affin-
ity between the two relations. The remaining metrics consider the
connectivity of Ri on both the database schema and data-graph. m2

measures the relative cardinality, i.e., the average number of tuples
of Ri that are connected with each tuple in RParent whereas m3

measures their reverse relative cardinality, i.e., the average number
of tuples of RParent that are connected with a tuple in Ri. m4 con-
siders the schema connectivity of Ri (i.e., the number of relations
it is connected to in the relation graph). Given an affinity threshold
θ, a subset of GDS can be produced. Given a node (tuple) nDS in
RDS, by traversing the GDS (e.g., by joining the corresponding re-
lations) we can generate the OSs (Algorithm 4). For instance, for
Q1=“Faloutsos”, and for nDS=“Michalis Faloutsos” in the Author
RDS of the DBLP database, the OS presented in Example 1 will be
generated.

Every tuple vi in the database carries a global importance weight
gi(vi), calculated using PageRank-inspired measures such as Ob-
jectRank [3, 28] and ValueRank [13]. Due to the “treelization” of
the schema graph by GDS, multiple tuples in an OS may correspond
to the same tuple in the database. For instance, the same co-author
(e.g., Christos Faloutsos) may appear multiple times (e.g., 12) in
the OS of Michalis. Formally, for a node n of an OS, we use func-
tion g(n) to denote the corresponding tuple v in the database. Thus,
for two OS nodes ni and nj , we may have g(ni) = g(nj) = v.
We also denote as fr(v) (i.e., fr(g(ni), or simply fr(ni)) the fre-
quency of v in the given OS.

2.2 Size-l OSs
According to [14], given an OS and an integer l, a candidate size-

l OS is any subset of the OS composed of l nodes, such that all l
nodes are connected with nDS. The authors in [14] argue that a good
size-l OS should be a standalone and meaningful synopsis of the
most important and representative information about the particular
DS (so that users can understand it as is, without any additional
nodes). In particular, any intermediate nodes that connect nDS (e.g.,
M. Faloutsos) with other important nodes (e.g., C. Faloutsos) in the

Author (1)
1.05, 7.38,

1, 1

(1), 1,1

Paper (0.92)
8.82, 7.38, 

1, c(Paper)

(33), 1, ( )
max(nDS)=0.6

Conference(0.78)
0.22, 0,

∞→c(Paper), ()

( ), 33, 21

Co-author (0.82)
0.86, 0,

∞→c(Paper), ( )

( ), 33, 21
mw(nDS)=0.7
mFr(nDS)=21

ConfYear (0.83)
0.84, 0.22,

∞→c(Paper),c(Paper)

(33), 33, 21

PaperCites (0.77)
7.38, 0, 

∞→c(Paper), ( )

( ), 33, 21

PaperCitedBy(0.77)
7.38, 0, 

∞→c(Paper), ( )

( ), 33, 21

Figure 2: The DBLP Author GDSs, annotated with relation in-

dexes: (affinity), max(Ri), mmax(Ri), UBFr(Ri), c(Ri), and

exemplary nDS indexes: (c(Ri)), UBFr(Ri, mFr(nDS))

size-l OS guarantee that the size-l remains standalone, since these
connecting nodes (e.g., co-authored papers) include the semantics
of the associations. For instance, in Example 2, if we exclude paper
“On Power-law . . . ” but only include the co-authors, we exclude
the semantic association between nDSand co-author(s), which in
this case is their common paper.

The holistic importance Im(Sl) of any candidate size-l OS Sl
is defined as Im(Sl) =

∑
ni∈Sl li(ni), where li(ni) = af(ni) ·

gi(ni). The affinity af(ni) of a node ni equals the affinity of the
relation where ni belongs (Eq. 1); the global importance gi(ni)
was defined in Section 2.1. A candidate size-l OS is an optimal

size-l OS, if it has the maximum Im(Sl) over all candidate size-l
OSs.

The generation of a size-l OS is a challenging task because we
need to select l nodes that are connected to nDS and at the same time
result in the maximum score. An optimal dynamic programming
algorithm (requiring O(nl2) time where n is the amount of nodes
in the OS) and greedy algorithms were proposed in [14].

2.3 Keyword Search and Ranking
R-KwS paradigms facilitate the discovery of joining tuples (i.e.,

Minimal Total Join Networks of Tuples (MTJNTs) [19]) that col-
lectively contain all query keywords and are associated through
their keys; hence the concept of candidate networks is introduced
(e.g., DISCOVER [19, 18]). R-KwS paradigms differ from OSs
semantically, since they search for connections of keywords. Pré-
cis Queries [22, 24] resemble size-l OSs as they append additional
information to the nodes containing the keywords, by considering
neighboring relations. However, a précis query result is a logical
subset of the original database (see [12] for a detailed comparison
to size-l OSs). Other works in this context also investigate indexing
and ranking techniques to facilitate efficiency [23].

Related ranking paradigms consider Importance, which weights
the authority flow through relationships (e.g., ObjectRank [3, 28],
ValueRank [13], PageRank [4], etc.) In this work we use nodes’
importance to model gi and more precisely global ObjectRank (for
DBLP). Our algorithms are orthogonal to how importance of nodes
is defined (alternative methods could also be investigated).

Document Summarization. Web snippets [26, 27, 20] are ex-
amples of document summaries that accompany search results of
W-KwSs in order to facilitate their quick preview. They can be



Table 1: Authors (ranked in descending pw[1] order)
Name li fr pq[1] pw[1] pq[2] pw[2] dv[1] dw[1] dv[2] dw[2]

S.Krishnamurthy 0.6 37 12.3 7.4 7.4 4.4 1.0 0.6 0.9 0.5
C.Faloutsos 1.8 12 4.0 7.2 2.4 4.3 1.0 1.8 0.9 1.6
J.Cui 0.8 11 3.7 3.0 2.2 1.8 1.0 0.8 0.9 0.7
T.Karagiannis 0.7 10 3.3 2.3 2.0 1.4 1.0 0.7 0.9 0.6
M.Mitzenmacher 1.4 3 1.0 1.4 0.6 0.8 1.0 1.4 0.9 1.2
G.Varghese 1.4 2 0.7 0.9 0.4 0.6 1.0 1.4 0.9 1.2
K.Papagiannaki 0.6 4 1.3 0.8 0.8 0.5 1.0 0.6 0.9 0.5
S.Madden 1.6 1 0.3 0.5 0.2 0.3 1.0 1.6 0.9 1.4
M.Chrobak 0.3 4 1.3 0.4 0.8 0.2 1.0 0.3 0.9 0.3
J.Eriksson 0.2 7 2.3 0.4 1.4 0.2 1.0 0.2 0.9 0.1

either static (e.g., the first words of the document or metadata) or
query-biased (e.g., containing the query keywords). However, the
direct application of such techniques on OSs and databases in gen-
eral is ineffective as they disregard the relational associations (e.g.,
for Q1, papers authored by Faloutsos will be disregarded as they do
not include the "Faloutsos" keyword).

2.4 Diversity
Diversification of query results has attracted a lot of attention re-

cently as a method for improving the quality of results by balancing
similarity (relevance) to a query q and dissimilarity among results.
Typically, given a query q and a desired number of results k, firstly
we get a ranked list of results S in descending order of their similar-
ity sim(si, q) to q. Then, the objective of diversification is to find a
subset of S, R ⊆ S of size k, such that the elements in R are similar
to q (w.r.t sim(q, si)) and at the same time dissimilar to each other
(w.r.t. dis(si, sj)). The definition of sim and dis scores is orthog-
onal to the diversification problem per se and a variety of IR-based
or probabilistic approaches have been used to define such functions
(e.g., PageRank-based similarity). In most cases, the same function
is used to estimate both scores (i.e., dis(si, sj) = 1−sim(si, sj)).
One of the earliest and most influential diversification functions
is Maximal Marginal Relevance (MMR) [5], which trades off be-
tween the novelty (a measure of diversity) and relevance of search
results; a parameter is used to control this trade off. A general
framework for result diversification appears in [17] with eight ax-
ioms. In [17, 29], max-sum and max-min mono-objective objective
functions and algorithms are proposed. Our proposed diversity def-
inition is inspired by this mono-objective approach, where for each
document, a single score trades off the relevance to the query and
the dissimilarity from other documents. In [1, 2], probabilistic in-
terpretations of sim and dis functions and objective functions are
proposed. In [9, 10], an intuitive definition of diversity, called DisC

diversity, is proposed where the computed diverse subset R covers

all elements of S in the sense that for element in S there should be
a similar element in R and at the same time the elements in R are
dissimilar to each other (i.e., diversity). In [21], LogRank is pro-
posed, a principled authority-flow based algorithm that computes a
representative summary of the user’s activities by selecting activi-
ties that are simultaneously important, diverse and time-dispersed.

Proportionality. [30, 8, 7] investigate proportional diversifica-
tion. More precisely, in [8] an election-based method is proposed
to address the problem of diversifying searched results proportion-
ally (our work is inspired by this approach). However, this method
disregards the similarity (or importance) of the computed set R to
the query q and thus may result in including irrelevant objects into
R. In [30], this limitation is addressed by considering relevance in
the objective function.

Differences. Our problem has two significant differences from
the existing related works that renders their straightforward appli-
cation inappropriate. (1) Related work considers diversifying a set

of mutually independent results (i.e., S and R sets) whereas we aim
at finding an l-sized connected subtree of the OS, which is required
to include the root nDS . (2) Previous work considers interval-
scaled pairwise dissimilarity of elements (i.e., each element si ∈ S
has a degree of dissimilarity to any other element sj ∈ S) whereas
in our problem the dissimilarity between nodes is binary, i.e., OS
nodes are either equal or not (i.e., either g(ni) = g(nj) or g(ni) 6=
g(nk)).

3. DSIZE-L AND PSIZE-L SNIPPETS
We propose two types of size-l OSs, namely diverse DSize-l OSs

and proportional PSize-l OSs, which extend the size-l OS defini-
tion [14] to capture diversity and proportionality, respectively. Sim-
ilarly to size-l OSs, both DSize-l OSs and PSize-l OSs should be
standalone sub-trees of the OS, composed of l important and repre-
sentative nodes only, so that the user can understand them without
any additional information. Thus, the l nodes should form a con-
nected graph that includes the root of the OS (i.e., nDS). We argue
that an an effective DSize-l (PSize-l) OS should gracefully com-
bine diversity (proportionality) and the local importance scores of
constituent nodes. Hence, we propose that for each OS node ni,
we estimate a respective score for diversity, proportionality, and
local importance, denoted by dv(ni), pq(ni) and li(ni), respec-
tively. dv(ni) (pq(ni)) and li(ni) are combined to a single score
dw(ni) (pw(ni)) for a DSize-l (PSize-l) OS, simply denoted by
w(ni) when the context (i.e., diversity or proportionality) is clear.
Then, the objective is to select the l nodes that (1) include nDS and
form a connected subtree of the OS and (2) their sum of their w
scores is maximized. Local importance (i.e., li(ni)) can be cal-
culated as in the original size-l OS problem (i.e., by multiplying
affinity with global importance [14]), thus hereby we discuss only
diversity and proportionality.

Recall that each OS node corresponds a single graph node (i.e.,
tuple) and that two different OS nodes may either correspond to the
same tuple (e.g., g(ni) = g(nj) = v) or to different ones (e.g.,
g(ni) 6= g(nj)) and this is the only criterion for their similarity.
We do not consider the textual similarity among nodes, because
this restricts the generality of our problem. For instance, although
we can define similarity between papers (e.g., “On Power-law re-
lationships of the Internet Topology” vs. “Power laws and the AS-
Level Internet topology”) meaningfully, it does not make sense to
define similarity between authors (e.g., “Chen” vs. “Cheng”). By
considering categorical similarity only, we signify the importance
of frequent nodes regardless their respective local importance.

3.1 Diversity (DSize-l OSs)
We suggest that the l nodes should be diversified by prevent-

ing the domination of very important nodes. For example, in the
Michalis Faloutsos OS, the co-authorship with the very important
author Christos Faloutsos dominates the snippet and this renders
the snippet not representative. A natural criterion objective towards
measuring diversity is to maximize the sum of dissimilarities be-
tween nodes. Thus, for a given graph node we suggest to estimate
diversity as follows:

dv(ni) = 1−
∑

nj∈S,ni 6=nj

sim(ni, nj)

l − 1
= 1−

z(g(ni))− 1

l − 1
, (2)

where sim(ni, nj)=1 if g(ni) = g(nj) or 0 otherwise; therefore
the summation of similar nodes for ni in a snippet is z(g(ni))− 1,
where z(g(ni)) is the amount of times g(ni) appears in the snippet.
Dividing by l− 1, we normalize dv(ni) in the range [0,1]. We also



denote as dv[z] the diversity for any node considering it appears
z times in the snippet. For instance, for all nodes appearing only
once, dv[1] = 1. As another example, consider l = 10 and that C.
Faloutsos appears 2 times (i.e., z =2); dv[2] = 1 − 2−1

10−1
= 8

9
=

0.89 (Table 1). Note that this score corresponds to the graph node
g(ni); thus, both nodes will have the same dv, i.e 0.89 (an alterative
way would be to score the first occurrence as 1 and the second as
0.78, since 1+0.78=0.89+0.89). This equation is inspired by (1)
max-sum diversification that maximizes the sum of the relevance
and dissimilarity of a set and by (2) the use of a mono-objective

formulation, which, similarly to our equation, combines relevance
and dissimilarity to a single value for each document [17].

Note that, in general, diversification approaches trade off (1) the
similarity of results with the given query and (2) the dissimilar-
ity among such results using a similarity measure (e.g., IR tech-
niques). For instance, given a query “Internet Topology”, papers
“On Power-law relationships of the Internet Topology” and “Power
laws and the AS-Level Internet topology” have some similarity to
this query but they also have some similarity among them; both
types can be estimated using a common IR metric. This is not the
case here, since (1) we do not have a similarity of nodes to the
query but a local importance score in relation to nDS and (2) the
similarity among nodes is categorical. Thus, local importance and
categorical similarity are not meaningfully comparable. Note also
that their respective values may not be in the same range (e.g., lo-
cal importance may range in [0,10] whereas dv always ranges in
[0,1]). Hence, unlike most diversification approaches, in the com-
bining function dw(.) (to be defined in Section 3.3) we do not sum
up local importance and dissimilarity, but multiply them.

3.2 Proportionality (PSize-l OSs)
We observe that in an OS we often find graph nodes (i.e., database

tuples) multiple times. For instance, in the Michalis Faloutsos OS
(see Table 1), we have 37 instances of S. Krishnamurthy, 12 in-
stances of C. Faloutsos, 18 papers in INFOCOM, etc. We denote
the frequency of a graph node v in an OS as fr(v) (or simply by
fr when the context is clear). Graph nodes that appear in an OS
multiple times could sometimes be comparatively weak in terms of
importance, but still given their frequency in the OS, they should
be represented analogously in an effective snippet. Thus, we sug-
gest that in a PSize-l snippet, disregarding local importance (i.e.,
assuming that all nodes have the same li), we should include nodes
in proportion of their frequency. For example, if a graph node v ap-
pears 37 times in the total of 1,259 OS nodes, then v should ideally
appear ⌊l·37/1, 259⌋ times in the respective PSize-l OS. (Note that
this may not practically possible as in-between nodes may also be
required, i.e., the co-authored papers in our example.)

Since l is small in size, we need some incremental selection pol-
icy to cover proportionally the different frequent sets; namely, at
each iteration we can append a different frequent node (facilitat-
ing to some extend a round-robin selection). For this purpose, we
propose the use of the proportional quotient as follows:

pq(ni) =
fr(g(ni))

α · z(g(ni)) + 1
, (3)

where z(g(ni)) is the times that the node ni is about to be added
in the snippet (i.e., it has already been added z-1 times), fr(g(ni))
is the frequency that the node appears in the OS and α is a con-
stant that can tune proportionality. This equation is inspired by
the Sainte-Laguë Algorithm [8] (with α = 2) and empirically we
found that it is very effective for our problem (other equations can
also be considered, e.g., [7, 30]). For a given z value, i.e., a given
z(g(ni)), we denote the respective quotient as pq(ni)[z]. The ra-

tionale of this quotient is to favor a frequent node and each time a
node is added to the snippet its pq(ni)[z] score is significantly de-
cayed so that other frequent items will be selected, in turn. This
way diversification is also facilitated. For instance, considering
fr = 12 and α = 2 for C. Faloutsos, by adding this node for
the first time we get pq[1] = 12/3 = 4 and for the second time we
get pq[2] = 12/5 = 2.4.

Nodes Addition Order Criterion. Note that the order we con-
sider adding a node determines the respective pq(ni)[z] and thus
the aggregate score of a PSize-l OS PSl. Thus we choose to
add them in the order that maximizes the holistic Im(PSl) score
(Equation 5; to be defined in Section 3.3). For instance, consider
OS nodes ni and nj with g(ni) = g(nj); if we add ni first, we get
pq(ni)[1] that will result to the aggregate score Im(PSl1); if we
add nj first, we get pq(nj)[1] and respective aggregate Im(PSl2)
score. Therefore, we choose the order that will result to the largest
aggregate score (i.e., argmax( Im(PSl1), Im(PSl2))). Note
that we need this constraint as otherwise we may not get deter-
ministic aggregate score (i.e., the same PSize-l OS may produce
different scores depending the order we consider to append nodes).

3.3 DSize-l and PSize-l Definitions
Based on the above discussion, for DSize-l OSs, we propose the

following combining score per node:

dw(ni) = li(ni) · dv(ni), (4)

where li(ni) = af(ni) · gi(ni) is the local importance of ni and
dv is the diversity factor (Equation 2). Table 1 depicts examples of
how these scores can be obtained by constituent scores for l =10.
For instance, consider the simplified example where we need to se-
lect 5 authors (and thus an intermediary paper), then we will select
twice C. Faloutsos (i.e., 0.89*1.8+0.89*1.8=1*1.8+0.78*1.8) and
once S. Madden (1*1.6), M.Mitzenmacher (1*1.4) and G.Varghese
(1*1.4). Note that a third addition of C. Faloutsos cannot compete
the total 1.4 score, as the additional score is only 1.12 (i.e., (3*0.78-
1-0.78)*1.8=0.56*1.8=1.08).

DEFINITION 1 (DSIZE-l OS). Given an OS and l, a DSize-l
OS is a subset of OS that satisfies the following:

(1) The size in nodes of DSize-l OS is l (where l ≤ |OS|)
(2) The l nodes form a connected tree rooted at nDS

(3) Each node ni carries a weight dw(ni) (obtained by Eq. 4)

(4) The aggregated score of a DSize-l OS DSl can be calculated

by:

Im(DSl) =
∑

ni∈DSl

dw(ni), (5)

Let a candidate DSize-l OS be any OS subset satisfying condi-

tions 1-3; then, the optimal DSize-l OS is the candidate snippet that

has the maximum Im(DSl) among all such candidates.

PROBLEM 1 (FIND AN OPTIMAL DSIZE-l OS). Given an OS

and l, find the candidate DSize-l OS of maximum score (according

to Definition 1).

Analogously, we define the proportionality score per node (i.e.,
pw = li · pq instead of Eq. 4), PSize-l OS and the optimal PSize-
l OS problem (a formal definition is omitted due to the interest of
space). For instance, we observe that our selection policy will favor
first the addition of S. Krishnamurthyan author and the respective
co-authored paper; then, the addition of author C. Faloutsos with a
co-authored paper; then, another round with these two authors, etc.

Notation. For simplicity, we unify dw and pw into a single no-
tation w and use w(n) to refer to the corresponding diversity or



Algorithm 1 The BF-l Algorithm

BF-l (OS, l)

1: maxScore=0
2: OSize-l ={}, curQ ={}, CSize-l ={}
3: OptimalS-l(OS, l, OS.nDS , CSize-l)
4: return OSize-l

OptimalS-l (OS, curLen, sNode, CSize-l)

1: if (curLen==0) then

2: Score=Calculate(CSize-l) ⊲ Eq. 4
3: if (Score>MaxScore) then

4: OSize-l =CSize-l
5: MaxScore=Score
6: return

7: curNode=sNode
8: while (curNode6=null) do

9: AddS-l(CSize-l, curNode)
10: enQueue(CurQ, ChildrenOf(curNode))
11: NextBF= deQueue(curQ)
12: OptimalS-l(OS, curLen-1, NextBF, CSize-l)
13: curNode= deQueue(curQ)

proportionality score of a node n in a DSize-l OS or PSize-l OS, re-
spectively. In the rest of the paper, whenever the context is clear, we
drop n from the notation and denote the diversity/proportionality
score of a node simply by w. In addition, by w(n)[i] (or w[i] when
the context is clear), we denote the diversity/proportionality score
of node n, for z = i (i ≥ 1)

4. BRUTE FORCE (BF-L) ALGORITHM
A brute force (BF-l) algorithm for computing the optimal DSize-

l (or PSize-l) OS would consider all candidate size-l trees, compute
the respective scores, and eventually find the optimal solution. BF-
l generates all possible candidate trees by traversing the complete
OS in a breadth first fashion, recursively (alternative traversals such
as depth first can also be applied). Apparently, this algorithm com-
putes the optimal results of both DSize-l and PSize-l OS problems
(and even the original size-l OS problem [14]), since it considers
all candidates. We present a pseudo code of BF-l in Algorithm 1
and hereby we describe the algorithm in more detail.
Generation of candidate size-l OSs (CSize-l). Recursively, we
add new nodes to the CSize-l (line 9); we start from the first node
(i.e., the root) and we continue in a breadth first order by adding
new nodes (e.g. by adding as next the first leftmost child, then its
right sibling, etc.; we denote such a node as the next BF node and
we describe it below in more detail). Once, we have appended l
nodes to CSize-l (line 1), we enter in the if statement (curLen ==
0), where we calculate the score for the particular CSize-l (using
the respective equation). Then, we continue with recursions by
replacing the lth item with all possible remaining nodes, then the
(l− 1)th item etc., until we consider all candidate trees. Note that,
because we replace nodes according to a breadth first traversal, i.e.,
from left to right and from top to down order, our algorithm does
not produce duplicate candidate size-l OS results.

The time complexity of BF-l is O( n!
(n−l)!l!

), where n is the num-

ber of nodes in OS and l is the required size. Note that an appli-
cation of a dynamic programming algorithm [14] that could reduce
this cost is not possible here, because the score of a diversified size-
l OS (either DSize-l or PSize-l) is not distributive w.r.t. the scores
of the subtrees it is composed of; the reason is that the two sub-
trees that contain one or more common tuples are not independent
(i.e., they affect each others’ score due to the diversity components
of the scoring formulae). In other words, given an OS tree T that
can be decomposed to subtrees T1, T2, etc., the optimal diversified

Algorithm 2 The Largest Averaged Path Algorithm

LASP (l, nDS )

1: OS Generation (nDS ) ⊲ generates OS, HFr and W
2: while (|size-l| < l) do

3: pi=path from maximum W node ⊲ i.e., m(pi)
4: add first (l−|size-l|) nodes of pi to size-l
5: if (|size-l| < l) then

6: remove selected path pi from the OS tree and from W
7: for each child v of nodes in pi do

8: for each node nj in the subtree rooted at v do

9: update AP (nj) on the OS tree
10: update AP (nj) on W
11: for each node g(v) in pi do

12: if (g(v) in HFr) then

13: HFr[g(v)].z++
14: for each (OS node n && g(n) == g(v)) do

15: for each node nj in the subtree rooted at n do

16: update AP (nj) on OS tree using HFr[g(v)].z
17: update AP (nj) on W
18: return size-l

size-l OS is not necessarily composed by some optimal diversified
size-l′ OSs (l′ < l) of the subtrees T1, T2, etc. (which is the case
for size-l OSs [14]). The reason is that the computation of an op-
timal diversified size-l′ OS in a subtree Ti disregards the diversity
of its constituent nodes w.r.t. the snippets chosen from the other
subtrees Tj 6= Ti . If we were to consider all possibilities of graph
node frequencies in the snippets of other subtrees, this would re-
quire exponential space.

5. LARGEST AVERAGED SCORE PATH

(LASP)
The BF-l algorithm can be very expensive for large values of

l or |OS|; thus we propose LASP, a greedy algorithm, that can
produce a size-l OS of high quality at a much lower cost. In a
nutshell, LASP firstly generates the OS. It also calculates for each
node ni the w(ni)[1] score (i.e., using Equation 4 for z=1) and its
corresponding average w(ni) score per node (denoted as AP (ni))
of the path from ni to the root.

Then, the algorithm iteratively selects and adds to the size-l OS
the path pi of nodes with the largest AP . The rationale behind se-
lecting paths instead of single nodes with the largest score is that,
we can include nodes of very large importance while their ancestors
have less importance as their score is averaged. LASP can com-
pute both types of size-l OSs, i.e., PSize-l and DSize-l OSs. The
difference between the two types is that the proportionality equa-
tion also considers the frequency of each node, which is calculated
during the OS generation process. Thus, given an OS annotated
with w and AP scores, the problem of determining either PSize-l
or DSize-l is the same. Algorithm 2 is a pseudocode of the heuristic
and Figure 3 illustrates an example.

More specifically, LASP firstly generates the OS; during the OS
generation, we also maintain a hash table of graph nodes and their
frequency in the OS tree, denoted as HFr. HFr indexes for each
graph node vi (1) fr(vi), the frequency of vi in the OS, and (2)
z(vi), the current occurrences of vi in the size-l OS. HFr can eas-
ily be compressed by excluding nodes appearing only once in the
OS; thus, if a node does not exist in HFr we can infer that it only
appears once (line 12). For each node we also calculate the cor-
responding AP (ni) of the path pi from the particular node to the
root. In order to better manage nodes and their AP scores, during
OS generation, we use a priority queue W . We then select the node
with the largest AP and add the corresponding path to the size-l
OS. We remove this pi from the OS and from W (lines 6). By re-
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Figure 3: The LASP Algorithm: The size-5 OS (annotated with OS and (graph) node ID, w and AP ; selected nodes are shaded)

moving the nodes of pi from the OS, the tree now becomes a forest;
each child of a node in pi is the root of a tree. Accordingly, the AP
of affected nodes is updated (1) to disregard the removed nodes in
the path selected at the previous step (lines 9 and 10) (2) and also to
consider the revised z’s (i.e., z++, lines 12-17). This process (i.e.,
the selection of the path with the largest AP , the addition to the
size-l OS, and the required updates) continues iteratively as long as
the selected nodes are less than l. If less than |pi| nodes are needed
to complete the size-l OS only the top nodes of the path are added
to the size-l OS (because only these nodes are connected to the
current size-l OS). Note that each time a path is selected, it is guar-
anteed to be connected with the previously selected paths (as the
root of the selected path should be a child of a previously selected
path), therefore the selected paths will form a valid size-l OS.

Take for instance the example of Figure 3. Node n11 (i.e., graph
node v7) has AP=48.6, because its path includes nodes n1, n5 and
n11 with average w(n11) being (30+36+80)/3=48.6. Assuming
that l=5, at the first iteration, the algorithm selects and appends
to size-l OS the path comprising nodes n1, n5 and n11 with the
largest AP , i.e., 48.6. For the remaining nodes, AP is updated to
disregard the removed nodes (Figure 3(b)) and also w and thus the
respective AP s are updated according to new occurrences of graph
nodes. Namely, the new AP for n10 is 50.5, because its path now
includes only n4 and n10 with average w(n10) being 50.5. Also,
nodes n7 and n9 which correspond to the same graph node as n11

which has just been added to the size-l OS (i.e., g(n7) = g(n9) =
g(n11) = v7) also need to be updated with new w and AP scores
as to consider the revised z(v7) = 2. In general, if such nodes have
descendants, then their descendants should also be updated because
both their AP s and w are affected. The next path to be selected is
that ending at n10, which adds two more nodes to the size-l OS
(Figure 3(c)). Note that AP (ni) for each node ni corresponds to
the path starting from ni to the root of the corresponding unselected
tree (from the unselected forest). For instance, during the second
update, p10 comprises n4 and n10. Note also that the path’s root
(e.g., n4) is always the child of a node (in the OS) which already
exists in the current size-l OS, e.g., n1 in this case. Thus, each time
we select a path to append to the size-l OS, we always get a valid
OS.

The time complexity of the algorithm is O(nl log(n)), where n
is the size of the complete OS, as at each step the algorithm may
choose only one node which causes the update of O(n) paths twice
(firstly for the path size update and secondly for the z updates).
Each update costs log(n) time using the priority queue W . In terms
of approximation quality, this algorithm empirically produces very

good results. Hereby, we show cases where this algorithm will
return the optimal DSize-l and PSize-l OSs.

THEOREM 1. If the nodes of an OS have monotonically de-

creasing w scores with respect to their distance from the root (i.e.,

when the score of each parent is not smaller than that of its chil-

dren), then LASP returns the optimal PSize-l OS or DSize-l OS. We

denote such an OS as monotonic OS(w).

PROOF. The optimal PSize-l or DSize-l should include the l
nodes with the largest possible w score. Thus, we need to prove
that our algorithm can achieve this goal when monotonicity on the
w scores hold. Firstly, we show that since monotonicity holds on
w, the respective AP scores should also be monotonic. For in-
stance, consider the path n1, n2, . . . , nk with w(n1) > w(n2) >
. . . > w(nk). Then, AP (n1) > AP (n2) > .... > AP (nk) since

for i < j we have AP (ni) = w(n1)+...+w(ni)
i

and AP (nj) =
w(n1)+...+w(nj)

j
. As a result, j · (w(n1) + . . . + w(ni)) > i ·

(w(n1) + ... + w(nj)) and finally that w(n1) + . . . + w(ni) >
i · · ·w(nj). Thus, we can also easily see that the w score of a
node is greater than the AP scores of all its descendants. Also note
that Equation 4 is monotonic for both types to the repetitions of the
same node (i.e., anti-monotonic to z), e.g., w(ni)[1] > w(ni)[2].
Also, we still maintain the monotonicity of descendant nodes after
repetitions, i.e., w(n1)[z] > w(n2)[z] where n1 is the ancestor of
n2 (since dv or pq score is common and li is smaller; also note that
a child node can not have a z greater than its ancestor).

Thus, this algorithm will always select the unselected node with
the maximum w score which is always a child of an already se-
lected node (i.e., a root of a tree of the unselected forest). Note
that because of the monotonicity properties mentioned above, only
child nodes of already selected nodes can have the largest score.
Thus, progressing iteratively, the l nodes will comprise the opti-
mal PSize-l or DSize-l OSs since this set of l nodes will give the
maximum score.

THEOREM 2. When the nodes of an OS have monotonically de-

creasing local importance (li) to their distance from the root (we

denote such an OS as monotonic OS(li)), then LASP returns the

optimal DSize-l OS.

PROOF. The dv equation (in contrast to pq) is monotonic to li.
That is dv(ni)[z] ≤ li(ni) for any z. Thus, if an OS is monotonic
w.r.t. li, it will also be monotonic w.r.t. w. Thus, based on Theorem
1, the algorithm will give the optimal result.

THEOREM 3. When we have a monotonic OS(li) and all nodes

have fr ≤ α+ 1, then LASP returns the optimal PSize-l OS.
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Figure 4: 2-LASP Algorithm

PROOF. The pq equation (in contrast to dv) is not always mono-
tonic to li. It is only monotonic when fr ≤ α+1 that gives a w in
[0, 1] and thus for these frequencies pq[z] ≤ li. Thus, since the OS
is monotonic w.r.t. li, it is also monotonic w.r.t. pq. Thus, based
on Theorem 1, the algorithm will compute the optimal result also
in this case.

5.1 2-LASP
The runtime cost of LASP is dominated by the numerous up-

dates it applies; each time we add a node (or path) to the snippet,
we have to update up to twice each of the remaining nodes. Hereby,
we investigate the potential of reducing these updates by exploiting
useful monotonicity properties. We observe that because of the
proposed equations we expect recurrent monotonicity in the OSs;
i.e., recurrent cases where the w of the parent is bigger than that
of its child. More precisely, li = af · gi where af is monotonic
by definition and additionally both dv and pq equations are mono-
tonic to z, where z is expected to be larger at the bottom levels of
the OS tree. Thus, we propose to relax LASP by averaging w pairs
of nodes (hence the name 2-LASP). Namely, we take the average
between the current node and the parent instead of the whole path
from the current node to the root. As a consequence of this relax-
ation, updates will be required only on the affected pairs rather on
the whole path to the root. Recall that the rationale of consider-
ing the average from each node to the root in LASP was to exploit
nodes lower on the tree with larger scores than their ancestors.

Specifically, in 2-LASP, at each addition, we update only pairs
of scores (denoted as 2−AP ), i.e., AP between the affected node
and its parent (instead of all remaining paths towards the root). For
example, consider Figure 4; after adding n11, in 2-LASP we only
need to update (1) nodes at level 1, except the included n5 node
(since node n1 is removed), plus n13 (since node n11 is removed)
and (2) nodes n7 and n9 because of their z increment to 2. The
first set of updates can easily conducted as they refer to child nodes
of the selected path. The second set of nodes cannot be deter-
mined without traversing the whole tree. Thus, in HFr, instead
of keeping the frequency of a graph node (i.e., fr), we keep the set
of the OS nodes corresponding to the particular graph node (i.e.,
frS, which also facilitates the frequency as well). In this example,
HFr[v7].frS = {n7, n9, n11}; thus we can find and update all
affected nodes in constant time.

The worst case complexity of this algorithm remains the same
as LASP. However, in practice it is much faster; for instance, for
an exemplary OS of size 735 and l=50, LASP conducts 24,267
updates (in 145ms) whereas 2-LASP performs only 214 updates
(in 14ms), resulting to snippets of similar quality. We can easily
show that all optimality theorems that hold for LASP also hold for

2-LASP. Empirically, 2-LASP provides snippets of almost the same
quality as LASP.

We also investigated the 3-LASP algorithm (i.e., averaging the
score of a node with that of its parent and grandparent). We found
that 3-LASP is slower than 2-LASP as it requires more operations,
while again giving results of similar effectiveness and quality as 2-
LASP and LASP. Note that LASP is in fact a 4-LASP algorithm for
the DBLP and Google+ GDSs that we use in our experiments, as
both graphs have a maximum path length 4.

6. PRELIM-L ALGORITHMS
The aforementioned algorithms operate on the complete OS. In-

spired by the prelim-l approach [14], we propose to produce a sub-
set of the OS, denoted as DPrelim-l (or PPrelim-l) OS, that prunes
nodes from the OS which have low probability to be considered
for the size-l OS; this saves a lot from the OS generation time and
the consequent size-l OS computation time. Note that the prelim-
l generation approach of [14] considers the inclusion of the top-
l nodes, i.e., the l nodes with the highest li in the OS (allowing
their repetitions); for clarity, we refer to this algorithm as VPrelim-
l. The direct application of VPrelim-l is inappropriate here, espe-
cially for the PPrelim-l OS, for the following three reasons: (1) it
allows the consideration in the top-l set of nodes repeatedly which
is against the diversification requirements of PSize and DSize; (2) it
fails to manage the non-monotonic relationship between w[z] and
li of proportionality (i.e., w[1] > li), which requires the challeng-
ing estimation of frequency per node in the OS; and (3) it does not
facilitate further pruning of nodes that are included multiple times.

Recall, however, that the two properties, proportionality and di-
versity, are based on different equations and thus have different
properties in measuring the w score. More precisely, the propor-
tionality equation is more challenging as it requires the apriori knowl-
edge of fr per node in order to produce w scores. Thus we first
present more comprehensively a generalized version of the VPrelim-
l approach, which addresses proportionality. This algorithm, de-
noted as PPrelim-l, considers the frequency and respective frequency
upper bounds of nodes in an OS, in order to produce the so called
PPrelim-l OS. Then, we present more synoptically the DPrelim-l
algorithm with the required specializations and simplifications in
order to produce DPrelim-l OS.

6.1 PPrelim-l
The computation of the optimal PSize-l OS is very expensive

and, as a consequence, so is the computation of any PPrelim-l OS
that is guaranteed to include the optimal PSize-l OS. Thus, we re-
sort to a heuristic that aims to generate a PPrelim-l OS that includes
at least the l distinct graph nodes with the largest w[1] scores (de-
noted as the topwl set). The rationale is that while searching for
topwl and by appending the retrieved nodes to the PPrelim-l OS,
we will generate a good superset of the PSize-l OS. The constraint
of including only distinct nodes in topwl is necessary in order to
facilitate eventual diversity. We generate the PPrelim-l OS by ex-
tending the complete OS generation algorithm (see Algorithm 4,
described in [12]) to include three pruning conditions. For this pur-
pose, cheap pre-computed indexes with statistics per GDS relation
and per nDSnode are employed (to be described shortly). More pre-
cisely, we traverse the GDS graph in a breadth first order, according
to Algorithm 3. Let t be the distinct node with the lth largest w[1]
retrieved so far. If the current tuple ni is greater than t, ni is added
to the l-sized priority queue Wl which manages the topwl set (line
7, function AddNode of Algorithm 3). We also maintain HFr, a
hash table managing the frequency of nodes. By considering the
computed frequency HFr[ni].fr of a node ni so far, which is less



Algorithm 3 The PPrelim-l OS Generation Algorithm

PPrelim-l (l, GDS)

1: t = 0; nj = nDS ; Wl = {};Q = {}
2: addNode(nj )
3: while !IsEmptyQueue(Q) do

4: Xnj = nj ; nj = deQueue(Q)

5: for each child relation Ri of R(nj) in GDS do

6: if (UBFr(Ri)>1) then

7: if (R(nj) 6= R(Xnj)) then ⊲ nj ∈ new relation
8: cmFr(Ri) = 0; i = c(RPari)
9: else

10: UBFr(nj , Ri)=min{–i+cmFr(Ri), mFR(nDS)}
11: else

12: UBFr(nj , Ri) = 1

13: UBw(nj , Ri)= min{mw(nDS), f(min{max(Ri), max(nDS)},

min{(mFr(nDS), UBFr(Ri), UBFr(nj , Ri)}, 1)}

14: dUBw(nj , Ri)= min{mw(nDS), f(min{mmax(Ri),

max(nDS)}, min{(mFr(nDS), mUBFr(Ri)}, 1)}
15: if !(t≥UBw(nj , Ri) && t≥dUBw(nj , Ri)) then ⊲ PrC.1
16: if (t≥dUBw(nj , Ri)) then ⊲ PrC.2
17: Ri(nj): get up to l nodes with w[1] > t where

w[1] = f(li, UBFr(nj , Ri), 1)
18: else

19: get Ri(nj)
20: for each tuple ni of Ri(nj) do

21: if !((HFr[g(ni)].fr>1) && (w(ni)[2]<t)) then ⊲ PrC.3
22: addNode(ni)
23: return PPrelim-l

addNode (ni)

1: EnQueue (Q, ni)
2: add ni on PPrelim-l as child of nj or as root if ni is nDS

3: if (UBFr(Ri)>1) then

4: UpdateHFr (ni) ⊲ cmFr(ni)
5: w(ni)= f (li, HFr[g(ni)].fr, 1) ⊲ Eq. 4
6: if ((w(ni)[1] > t) && (g(ni) /∈ Wl)) then

7: EnQueue (Wl, ni)
8: if (|Wl| > l) then

9: DeQueue(Wl)
10: if (|Wl| < l) then
11: t = 0
12: else

13: t =minimum(Wl)

than or equal to actual frequency of ni, in fact we consider the
lower bound of w. In the sequel, we first introduce the constructed
indexes and then the pruning conditions.

Index per GDS Relation. The following indexes are calculated
during pre-processing per GDS relation Ri: (1) max(Ri), i.e., the
maximum value of li in Ri; (2) mmax(Ri), i.e., the maximum value
of max(Ri) of all Ri’s descendant nodes in GDS or 0 if Ri has no
descendants (i.e., Ri is a GDS leaf node); (3) UBFr(Ri), i.e., the up-
per bound of joins a node in Ri can have with any nDS. During pre-
processing, we can determine only for some cases these bounds;
e.g., when up to 1 node from a relation (e.g., RPaper) can only
join with nDS. Otherwise, we assume infinite joins (e.g., the same
co-author may appear in many papers); e.g., we assume UBFr(Co-
author)=∞. In order to facilitate the calculation of UBFr(Ri), we
also introduce the c(Ri) variable which is the summation of tu-
ples from Ri that can join with nDS. Thus, for N:1 relationships,
c(Ri) = c(RPari), where c(RDS) = 1 and RPari is the parent
relation of Ri. Thus, given c(RPari) for cases where UBFr(Co-
author)=∞, we can estimate UBFr(Ri) as a function of c(RPari),
i.e., UBFr(Ri)= c(RPari) (denoted as ∞ → c(Ri) in Figure 2);
this association will be useful later, during the online calculation
of tighter frequency bounds. Also note that since, we only need

c(RPari), we do not need to calculate c(Ri) for leaf nodes (thus
we denote their c(.) as () in Figure 2).

Index per nDS node. During pre-processing we also maintain
the following indexes per nDS: (1) max(nDS) is the maximum li
for all nodes in an OS (excluding nDS); e.g., in Figure 2, max(nDS)
=0.6 is found in relation Paper. Note that this score overrides the
maximum li score of all GDSrelations (i.e., max(Ri) and mmax(Ri)).
(2) mw(nDS) is the maximum w[1] of any node in the OS (ex-
cluding nDS). Similarly to max(nDS), this score is considered as
the upper bound of w of all nodes of all relations (e.g., in Figure 2,
mw(nDS)=0.7 is found in relation Co-Author). (3) mFr(nDS), i.e.,
the maximum frequency of any node in the OS that belongs to a re-
lation Ri with UBFr(Ri)>1, where mFR(nDS) ≤ UBFr(Ri). For
instance, in the example of Author GDS in Figure 2, mFr(nDS) =21
< UBFr(Ri)=33, thus we can use this as a tighter bound and thus
override the UBFr(Ri) bound.

Variables and data structures. Let Ri(nj) be the subset of Ri

that joins with nj and R(ni) be the relation where to ni belongs.
HFr is a hash table which indexes for each graph node n fr(n),
the computed frequency of n in the OS so far.

While processing nj (in R(nj)) against a relation Ri with
UBFr(Ri)> 1, we try to get a tighter bound than UBFr(Ri) and
mFr(nDS), denoted as UBFr(nj , Ri). For this purpose we main-
tain the current maximum frequency, denoted as cmFr(Ri), a node
was found so far from Ri (i.e., from processing predecessor nodes
n1, ..., nj−1 of nj against Ri, i.e., from their respective
Ri(n1), ..., Ri(nj−1) sets). For instance, let the node nt from
Ri be the most frequent among all Ri(n1), ..., Ri(nj−1) sets that
was found so far and it was found 10 times; thus cmFr(Ri) =10.
Given cmFr(Ri), UBFr(nj , Ri) assumes that nt will appear in all
the remaining sets Ri(nj), ..., Ri(n|Ri|) after processing nj . At
the beginning, UBFr(nj , Ri) can be very loose, so we compare it
with mFr(nDS), to keep the minimum of the two (lines 6-12).

Then, we denote by UBw(nj , Ri) the upper bound of the w[1]
score that can be obtained from Ri(nj) (line 13). We denote as
dUB(nj , Ri) the upper bound of w[1] of all nodes form Ri’s de-
scendant relations that can join with nj or 0 if Ri has no descen-
dants. Similarly to UBw(nj , Ri) calculation, dUBw(nj , Ri) f(.)
is defined by Equation 4 and z = 1 (line 14). Also note that, if
Ri is a leaf node on GDS then mmax(Ri)=0 and thus dUBw(ni,
Ri)= 0. UBw(nj , Ri) and dUBw(nj , Ri) bounds are specializa-
tions of max(Ri) and mmax(Ri) that have been used in prelim-l
[14] in pruning conditions 1 and 2 respectively; however, they are
tighter bounds as they are specific for the given nDS.

Pruning Conditions. Each time we further process a node nj

we employ three pruning conditions:
Pruning Condition 1. If t is greater than or equal to the w[1] of
all tuples of the current relation Ri and all its descendants (i.e.,
t >UBw(nj , Ri) and t >dUBw(nj , Ri)), then there is no need to
traverse the sub-tree starting at Ri (line 15).
Pruning Condition 2. We can limit the amount of tuples returned
by an Ri(nj) join, up to l nodes (i.e., avoid computing the entire
join of nj with Ri) if we can infer that none of Ri’s descendants
(if any) can be fruitful for the topwl; i.e., when (t >dUB(nj , Ri))
(line 16). Then, we can extract only up to l tuples with w[1] greater
than t (line 17).
Pruning condition 3. When pruning condition 2 holds, we can
safely extract only up to l nodes. However, when UBFr(Ri)>1,
it is still possible that we extracted nodes which have already been
added on the PPrelim-l and thus their w(ni)[z] is actually used
(where z >1). Thus, we introduce a new pruning condition that
checks first if a node ni already exists and then whether w(ni)[2]
is less than t (line 21).



6.2 DPrelim-l OS
We simplify the previous algorithm by excluding all work con-

cerning calculating or upper bounding the frequencies of nodes.
For instance, indexes such as UBFr(Ri), mFr(nDS) and calcula-
tions of UBFr(nj , Ri) are not required. We adjust accordingly our
algorithm to include these alterations (e.g., exclude calculations of
UBFr(nj , Ri); functions (line 13, 14) use Eq. 2 and 4, etc.).

6.3 Discussion
In terms of cost, in the worst case, we need up to n extractions of

nodes, where n is the amount of nodes in the complete OS. In prac-
tice, however, there can be significant savings if the topwl tuples
are found early and large sub-trees of the complete OS are pruned.
The PPrelim-l (resp. DPrelim-l) OS does not essentially contain
the optimal PSize-l (resp. DSize-l) OS; in practice, however, we
found that this is the case in most problem instances. This means
that the PSize-l (resp. DSize-l) OS computation algorithms most
likely give the same results when applied either on the PPrelim-l
(resp. DPrelim-l) OS or the complete OS. Similarly to LASP and
2-LASP algorithms, DPrelim-l and PPrelim-l algorithms will pro-
duce optimal results (i.e., supersets of the respective optimal size-l
OSs) when we have a monotonic OS(li) and monotonic OS(w) re-
spectively. Note that PPrelim-l can not return an optimal solution
when we have simply a monotonic OS(li) because the proportion-
ality equation (in contrast to to the diversification equation) is not
monotonic to li. The following theorem proves that if the li scores
of modes are monotonic then the computed DPrelim-l OS will be
optimal.

THEOREM 4. If the local importance scores of nodes (li) are

monotonically non-increasing with respect to the distance of the

nodes to nDS, then DPrelim will produce the optimal DPrelim-l OS

(i.e., a superset of the optimal DSize-l OS).

PROOF. The DPrelim OS will include the (1) topwl set, i.e., l
distinct nodes with the largest w[1] scores where t is the minimum
(topwl) and (2) also all repetitions of topwl nodes with w[2] >
t, denoted as repwl (since we only prune nodes with w[1] < t
and w[2] < t in pruning condition 2 and 3 respectively). When
we have a monotonic OS, we can produce the optimal DSize-l OS
by using the LASP algorithm (Theorem 2) as follows. Initially,
we will include j distinct nodes with the largest li scores (as they
also correspond to the largest AP since w[1] = li, where j < l);
where, a subset of these j nodes may have fr > 1. All these
nodes are members of the topwl by definition. Then, consider that
if the next node to be added (according to LASP) is a repetition of
a node (i.e., we include it considering its w[2]); then, this node is
member of repwl by contradiction since it should have w[2] > t (as
otherwise another distinct node would have been selected). Thus,
we conclude that the optimal DSize-l will comprise nodes from
either topwl or repwl nodes which are included in DPrelim-l by
definition.

THEOREM 5. Similarly, based on Theorems 1 and 4 we can

easily see that the PPrelim can produce an optimal PPrelim-l OS if

we have a monotonic OS(li) and all nodes have fr(ni) < α+ 1.

7. EXPERIMENTAL EVALUATION
We experimentally evaluate the proposed snippets and algorithms.

We emphasize on effectiveness comparisons between the two types
of diversified snippets and also against the non-diversified size-l
snippets [14]. Firstly, we thoroughly investigate the effectiveness
and usability of the produced snippets with the help of human eval-
uators. Then, we evaluate the quality of the size-l OSs produced

by the greedy heuristics. Finally, we comparatively investigate the
efficiency of the proposed algorithms.

We used two databases: DBLP and Google+. The two databases
have 3M and 14M tuples and occupy 513MB and 800MB on the
disk, respectively. Google+ dataset was constructed by combining
real data extracted from Google+ (i.e., users, activities and reac-
tions which are publicly available). Followers and circles which
were dealt as private by Google+ (and thus were publicly unavail-
able) were generated from the synthetic SNAP dataset 2. We cal-
culate global importance by using global ObjectRank [3]. For the
DBLP dataset we use the default setting used in [3] and [14], i.e.,
the GA shown in Figure 10(a) and d = 0.85 and for Google+ the
GA presented in Figure 10(b) and also d = 0.85. We calculate af
as in [14], (alternatively an expert can define the GDS’s and affinity
manually, i.e., to select which relations to include in each GDS and
their affinity). For proportionality, we use α =2. We used Java,
MySQL, and a PC with an AMD Phenom 9650 2.3GHz (Quad-
Core) processor and 8GB of memory.

7.1 Effectiveness
We conducted an effectiveness evaluation with the help of hu-

man evaluators. The evaluators were professors and researchers
from Universities in Cyprus and Hong Kong. Since the DBLP
database includes data about real people, we asked the DSs them-
selves where possible (i.e., twelve authors or students of authors
listed in DBLP) to suggest their own Author DSize-l and PSize-l
OSs. The rationale of this evaluation is that the DSs themselves
(even their students) have the best knowledge of their work and
can therefore provide accurate summaries. For Google+, we pre-
sented 10 random OSs to nine evaluators and asked them to DSize-l
and PSize-l them. First, we familiarized them with the concepts of
OSs in general and the three types of size-l OSs. Specifically, we
explained that a good size-l OS should be a stand-alone and mean-
ingful synopsis of the most important information about the partic-
ular DS. In addition, we explained that DSize-l OSs and PSize-l
OSs consider diversity and proportionality respectively. However,
we avoided to discuss the advantages or disadvantages of the three
types as to avoid any bias. In order to assist them with their tasks we
provided them useful information per node, such as fr, li, dv[1],
pq[1] and w[1]. For instance, we provided them, with the amount
of times the co-author C. Faloutsos appears in the M. Faloutsos
OS, his li etc. We also provided summative ranked tables (similar
to Table 1 at the end of each OS ) with the top-15 most frequent
and top-15 most important nodes and their respective w[1],...,w[5]
scores. None of our evaluators were involved in this paper.

7.1.1 Precision and Recall

We provided evaluators with OSs and asked them to DSize-l and
PSize-l them for l 10, 15, 30. Figure 5 measures the effectiveness
of our approach as the average percentage of the nodes that exist in
both the evaluators’ size-l OS and the computed size-l OS by our
methods. This measure corresponds to recall and precision at the
same time, as both the OSs compared have a common size. Figures
5(a) and 5(b) plot the recall of the DSize-l and PSize-l for DBLP
Author and Google+ User GDS’s. On average, the effectiveness
of DSize-l and PSize-l OSs ranges from 67% to 82% for all cases,
which is very encouraging. The results of Figure 5 are obtained us-
ing the LASP algorithm (as the BF algorithm was prohibitively ex-
pensive). We omit results obtained by our other algorithms as they
do not vary from these results. For instance, the 2-LASP algorithm
gave almost identical results as LASP and the use of DPrelim-l
OSs or PPrelim-l OSs had no impact on effectiveness. As we show

2http://snap.stanford.edu/data/egonets-Gplus.html
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Figure 6: Usability of Size-l, DSize-l and PSize-l

later, they have very minor impact on the quality of the computed
snippets.

7.1.2 Usability Test

We conducted a comparative study of the usability of the three
types that verifies users’ preference for DSize-l and PSize-l OSs
over size-l OSs. Usability is the ease of use and learnability of a
human-made object; namely, how efficient it is to use (for instance,
whether it takes less time to accomplish a particular task), how easy
it is to learn and whether it is more satisfying to use3. More pre-
cisely, for a given OS, we measured the ease of use of all types
through a usability test. We presented to users the three versions
of size-l OSs in a random order to avoid any bias and we also gave
them four tasks to complete for each OS. Then, we asked them to
give a score in a scale of 1 to 10 and also to justify in their answers,
where possible, the usability of the three approaches when com-
pleting these tasks. Namely, to score them considering (1) the ease
of accomplishing each task, (2) how easy and (3) satisfying are to
learn and use.

For instance, the first task (T1) was to score the general use of
all types; namely which one they prefer as a representative and
informative snippet. For this purpose, we emphasized again that
snippets should be short, stand-alone and meaningful synopsis of
the most important and representative information about the partic-
ular DS; we avoided to discuss any advantages/disadvantages. The
rest of the tasks were to extract information about the DSs. For
instance, task 2 (T2), focusing on the Author relation, was to de-
termine a couple of the most frequent co-authors of a given author
(e.g., whether C. Faloutsos and S. Krishnamurthy are among the
most frequent collaborators of M. Faloutsos); task 3 (T3) to deter-
mine a couple of the most important co-authors (e.g., whether C.
Faloutsos and S. Madden are among the most important co-authors

3www.wikipedia.org/wiki/Usability
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Figure 7: Quality on DBLP and Google+

of M. Faloutsos); and task 4 (T4) to determine the most frequent
journal/conference the DS has published. Similar tasks were used
for Google+.

Figure 6 averages the evaluators’ usability scores of the three
methods per GDS and per task. The results show that evaluators pre-
ferred firstly PSize-l OSs, then DSize-l OSs and lastly size-l OSs
for both datasets; they also preferred size l=30 over l=15. For in-
stance, the average scores of all tasks and both values of l for PSize-
l, DSize-l, and size-l OSs are 7.5, 6.9, and 6.0 respectively for the
Author GDS. The evaluators also provided justifications for their
scores; we summarize them for each type and l. They explained
that in general they prefer the concept of PSize-l OS as it also con-
siders frequent nodes; which is a property other types do not con-
sider. However, they pointed out although the inclusion of repeated
frequent items is informative, it comes with the cost of excluding
other important nodes. They found DSize-l very useful in covering
the most important elements of an OS; however, they pointed out
that rare but important elements may appear which again can be
to some extend misleading. They found the non-diversified size-l
summaries [14] more misleading as very important nodes are too
dominant in them. The evaluators explained that l = 30 results
include more information in the snippets, giving a better represen-
tation of frequent and important information of an OS.

7.2 Quality of Snippets
We now compare the holistic importance Im() scores of DSize-l

and PSize-l OSs produced by the greedy methods. More precisely,
the results of Figure 7 represent the average holistic scores for 10
random OSs per GDS. The average size (i.e., the amount of nodes)

of OSs is also indicated (denoted as (|OS|)). The results show that
in most cases the results of LASP and 2-LASP are of very similar
quality, i.e., they have similar holistic Im() scores. The evaluation
also reveals that using the DPrelim-l and PPrelim-l OSs result very
minor quality loss compared to using the complete respective OSs;
e.g., by using LASP on either a complete OS or the corresponding
DPrelim-l OS, we obtain a DSize-l OS of the same Im(DSl). In
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Figure 8: Efficiency on DBLP and Google+

the case of PSize-l OSs, the maximum score difference between 2-
LASP and LASP is between 20 and 15.5. We did not compare with
the optimal results, as the BF-l algorithm is too expensive.

7.3 Efficiency
We compare the run-time performance of our greedy algorithms

in Figure 8. We used the same OSs as in Section 7.2 (i.e., the
same 10 OSs per GDS). The Figures (a)-(e) show the costs of our
algorithms for computing DSize-l (resp. PSize-l), excluding the
time required to generate and pre-process OSs (i.e., the generation
of scores (e.g., w and AP scores), priority queue W , etc.), where
each algorithm operates on. More precisely, Figures 8(a)-(d) show
the costs of our algorithms for computing size-ls from OSs of the
two GDSs with various sizes and using a range of l values. The
average sizes of the OSs on which the algorithms operate are in-
dicated in brackets for each GDS. Figure 8(e) shows the scalabil-
ity for Author PSize-l of different sizes, after fixing l=10 (analo-
gous results were obtained from User GDSand DSize-l and thus we
omit them). Each value on the x-axis represents an OS size (and
the corresponding PPrelim-10 size). Comparing these numbers,
we can get an indication of preliminary OSs savings; e.g., the OS
with size 1,309 has a PPrelim-10 size 157 (i.e. 11% of the size of
the complete OS). Finally, Figure 8(f) breaks down the cost to OS

generation and pre-processing time (bottom of the bar) and size-
l computation (top of the bar) for each method for PSize-l. The
figure also shows the average sizes of the complete OSs and the
PPrelim-l for l = 10 and l = 50, respectively. The preliminary
OS generation is always faster than that of the complete OS; for
instance the PPrelim-5 OS’s size is approximately 10% of the size
of the complete OS and its generation can be done up to 2.5 times
faster. Also, 2-LASP is always faster at both phases (i.e. during
OS generation and pre-processing and during size-l calculation) as
at both phases more operations are required by LASP (recall that
during pre-processing, the AP of a node in LASP corresponds is
the path to the root, whereas in 2-LASP is the node with its parent
only). In general as expected, both the OS size and l negatively
affect the cost.

The cost of the BF-l algorithm becomes unbearable for moderate
OSs sizes and values of l. For instance, although using BF-l we
could get results for l=5 (e.g., 16ms for the Author RDS), we had to
terminate the algorithm for l≥10 as it exceeded 30min of running.
In summary, the BF-l algorithm is not practical at all whereas our
greedy algorithms are very fast and as we showed in Section 7.2,
their results are snippets of high quality. In addition, the use of
preliminary OSs and 2-LASP is constantly a better choice over the
complete OSs and LASP respectively since they are always faster
with a negligible quality loss.

8. CONCLUSION AND FUTURE WORK
In this paper, we introduced and investigated the effectiveness

and efficiency of two novel types of size-l OSs, namely DSize-
l OSs and PSize-l OSs. We proposed a brute force algorithm,
two efficient greedy heuristics and a preprocessing strategy that re-
stricts processing on only a subset of the OS. Finally, we conducted
a systematic experimental evaluation on the DBLP and Google+
datasets that verifies the effectiveness, approximation quality and
efficiency of our techniques. The evaluation verified that the two
novel snippets are preferred by human evaluators over non-diversified
size-l OSs [14]. A direction of future work concerns the investi-
gation of inter-diversity and inter-proportionality among a set of
query results. For instance, for Q1 we get three OSs, one per
Faloutsos brother; we can diversify M. Faloutsos DSize-l by avoid-
ing information included in the C. Faloutsos DSize-l. Another chal-
lenging problem is the combined size-l and top-k ranking of OSs.
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Appendix

Algorithm 4 The OS Generation Algorithm

OS Generation (nDS , GDS)

1: enQueue(Q, nDS ) ⊲ Queue Q facilitates breadth first traversal
2: add nDS as the root of the OS
3: while !(isEmptyQueue(Q)) do

4: nj=deQueue(Q)

5: for each child relation Ri of R(nj ) in GDS do

6: get Ri(nj )
7: for each tuple ni of Ri(nj ) do

8: enQueue(Q, ni)
9: add ni on OS as child of nj

10: return OS
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