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Abstract 37	

Northern post-glacial lakes are a significant and increasing source of 38	

atmospheric carbon (C), largely through ebullition (bubbling) of microbially-39	

produced methane (CH4) from the sediments1. Ebullitive CH4 flux correlates 40	

strongly with temperature, suggesting that solar radiation is the primary driver of 41	

these CH4 emissions2. However, here we show that the slope of the temperature-42	

CH4 flux relationship differs spatially, both within and among lakes. 43	

Hypothesizing that differences in microbiota could explain this heterogeneity, we 44	
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compared site-specific CH4 emissions with underlying sediment microbial 45	

(metagenomic and amplicon), isotopic, and geochemical data across two post-46	

glacial lakes in Northern Sweden. The temperature-associated increase in CH4 47	

emissions was greater in lake middles—where methanogens were more 48	

abundant—than edges, and sediment microbial communities were distinct 49	

between lake edges and middles. Although CH4 emissions projections are 50	

typically driven by abiotic factors1, regression modeling revealed that microbial 51	

abundances, including those of CH4-cycling microorganisms and syntrophs that 52	

generate H2 for methanogenesis, can be useful predictors of porewater CH4 53	

concentrations. Our results suggest that deeper lake regions, which currently 54	

emit less CH4 than shallower edges, could add substantially to overall CH4 55	

emissions in a warmer Arctic with longer ice-free seasons and that future CH4 56	

emission predictions from northern lakes may be improved by accounting for 57	

spatial variations in sediment microbiota. 58	

 59	

Main text 60	

At high latitudes, lakes and ponds are recognized as a large and 61	

understudied source of methane (CH4)
1,3,4, a radiatively important trace gas. 62	

Post-glacial lakes (formed by glaciers and receding ice sheets, leaving mineral-63	

rich sediments) represent the largest lake area at high latitudes5. Because of 64	

their areal extent, these lakes contribute to approximately two-thirds of the 65	

model-predicted natural CH4 emissions above 50° N latitude1. Their 66	

geochemistry and emissions are distinct from thermokarst lakes formed by 67	

permafrost thaw6. With warming, permafrost thaw, and predicted increased 68	
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precipitation, northern lakes are expected to receive more terrestrially-derived 69	

carbon, likely increasing their carbon dioxide (CO2) and CH4 emissions7,8.  70	

Ebullition commonly accounts for > 50%, sometimes > 90% of the CH4 flux 71	

from post-glacial lakes, with the remainder primarily attributed to diffusion-limited 72	

hydrodynamic flux9,10. Ebullition moves CH4 rapidly from sediments directly to the 73	

atmosphere, typically bypassing microbial CH4 oxidation in the water column11. 74	

Incoming short-wave radiation and sediment temperature have been identified as 75	

strong predictors of ebullitive CH4 emission from sub-arctic post-glacial lakes on 76	

an annual basis, with higher temperature increasing emissions during the ice-free 77	

season2,12. However, the extent and drivers of spatial variability in this 78	

temperature response, particularly within lakes, are poorly understood.  79	

To address this knowledge gap, we analyzed CH4 emissions over a six-80	

year period and collected underlying sediment cores in July 2012 from the littoral 81	

(“edge”) and pelagic (“middle”) locations of two shallow post-glacial lakes, 82	

Mellersta Harrsjön and Inre Harrsjön, (Figure S1, Supplementary Table 1). These 83	

lakes are part of the Stordalen Mire complex, a hydrologically interconnected, 84	

discontinuous permafrost ecosystem encompassing post-glacial lakes and a 85	

mosaic palsa/wetland in approximately equal portions13. The lakes contribute 86	

~55% of the total ecosystem CH4 loss2 and are model sites for studying ebullitive 87	

emissions, which were collected at lake surfaces for the six summers from 2009-88	

201412,14 every 1-3 days9. Here, we linked site-specific (lake edge vs. middle) 89	

CH4 emissions to analyses of the microbiota and biogeochemistry in the 90	

underlying sediments. 91	
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Previous work has shown that annual ebullitive emissions are consistently 92	

higher from these lakes’ shallow littoral zones than their deeper pelagic zones9,15, 93	

as expected, since the shallow sediments experience higher temperatures for 94	

longer periods and also receive more substrate input from aquatic vegetation16. 95	

However, assessing the temperature sensitivity of ebullition for the two lake 96	

zones in this study revealed a previously unnoticed significant difference, with 97	

~5-fold higher temperature sensitivity in lake middles relative to edges (Figure 1, 98	

Supplementary Table 2). Predicted future emissions from post-glacial subarctic 99	

lakes are based on current measurements of temperature responsiveness1, 100	

which are dominated by ebullitive flux data from shallow lake edges because 101	

those locations currently experience a longer period of sufficient warmth for 102	

seasonal emissions than lake middles (~3 months relative to ~1 month)2. If, as 103	

suggested here by our spatially resolved emissions data, temperature 104	

responsiveness is substantively higher in the deeper sediments, then, as deeper 105	

regions warm and remain heated for longer before cooling off in the fall, future 106	

lake emissions would be greater than currently predicted. Thus, accurate CH4 107	

emission predictions rely on understanding the spatial heterogeneity and 108	

underlying causes of this temperature responsiveness. 109	

Ebullition is controlled by CH4 production (which is in turn driven by redox, 110	

substrates, temperature, and microbiota), consumption (driven by redox and 111	

microbiota)17-19, and the physics of bubble formation and escape (determined by 112	

sediment texture and overlying hydrostatic pressure, which is largely controlled 113	

by atmospheric conditions)2,15. Therefore, the edge-to-middle difference in 114	
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temperature responsiveness of CH4 ebullition could be partly due to differences 115	

in physicochemical characteristics (e.g., sediment texture, pressure, and redox), 116	

substrates (e.g., organic carbon), and/or microbiota (abundance, composition, 117	

and/or activity)20. Although differences in sediment texture were observed 118	

between the lake edge and middle in Mellersta Harrsjön, these differences were 119	

not consistent between lakes (Figure S2, Supplementary Table 3). Our previous 120	

work has shown higher and more variable ebullition rates during periods of 121	

dropping atmospheric pressure, but there were no differences in edge versus 122	

middle locations9. In terms of redox, we expect concentrations of terminal 123	

electron acceptors to be low, as the likely source would be runoff21, and total 124	

sulfur and nitrogen did not correlate with ebullition rates by lake or location15. In 125	

terms of measured substrates, carbon:nitrogen (C:N) ratios and bulk 13CTOC 126	

(indicative of vegetation composition) did not vary from edges to middles. Total 127	

organic carbon (TOC) varied by lake, with similar concentrations observed 128	

between lake edge and middle in Mellersta and appreciably higher TOC in 129	

middle sediments in Inre Harrsjön. Carbon quality, as assessed by visual 130	

comparisons of organic matter composition, revealed coarse, less decomposed 131	

detritus gyttja (organic-rich, peat-derived mud) in the edge sediments of both 132	

lakes, while middle sediments were characterized by fine-grained, generally 133	

more decomposed detritus gyttja15. Thus, higher temperature responsiveness 134	

occurred where there was lower potential substrate quality, suggesting that 135	

substrate differences do not readily explain differences in CH4 emission 136	
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responses to temperature in edge versus middle lake locations, although more 137	

detailed substrate analyses could further evaluate this in future. 138	

Next, we sought to characterize differences in microbiota that could 139	

contribute to the observed temperature response differences in CH4 emissions. 140	

We used a 16S rRNA gene amplicon sequencing approach to characterize 141	

microbial community composition from the edge and middle cores from each lake 142	

(Figure 2A-B, Supplementary Table 4). Although microbial community 143	

composition differed most significantly by depth within the sediment (Figure S3, 144	

Supplementary Table 5), as is typical for aquatic sediments22, significant 145	

differences between lake edges and middles (Figure 2C, PERMANOVA p = 146	

0.001) suggest that microbiota could contribute to the observed temperature 147	

sensitivity in CH4 emissions. Indeed, methanogens (defined here as populations 148	

from known methanogenic clades23, Supplementary Table 4) were significantly 149	

more abundant in lake middles than edges (Figure 2D, ANOVA p = 0.0001), 150	

while total microbial abundances correlated most strongly with depth and did not 151	

exhibit edge vs. middle differences (Figure S4, Supplementary Table 6). Aerobic 152	

methanotrophs, which are posited to have minimal impact on ebullitive loss due 153	

to rapid bubble movement through sediment11, were confined to the surface 154	

sediment layers as expected (Supplementary Table 7) and did not differ 155	

significantly in composition or relative abundance between edges and middles 156	

(ANOVA p = 0.76). Anaerobic methanotroph abundances differed significantly 157	

between lake edges and middles (ANOVA p = 0.014, Supplementary Tables 7-8) 158	

and were approximately one order of magnitude higher in edge sediments. 159	
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Although this could suggest that increased anaerobic methane oxidation in the 160	

edge sediments could contribute to the observed differences in temperature 161	

sensitivity, these anaerobic methanotrophs comprised only 0.1% of the 162	

community on average (up to 0.6%, Supplementary Tables 4 and 7), and 163	

ebullition is expected to largely bypass methane oxidation. 164	

 To test the relevance of these community differences to their observable 165	

CH4 production potential, we performed 48 ex situ anaerobic incubations of edge 166	

and middle sediments collected in 2012 (linked directly to our microbial and 167	

biogeochemical data) and 2013 (from the same four core locations) 168	

(Supplementary Table 9). These incubations at 5 and 22 °C confirmed that the 169	

lake-middle sediments had higher CH4 production potentials than lake-edge 170	

sediments at both temperatures (Figure 3), paralleling their higher methanogen 171	

abundances and indicating that the lake-middle methanogens can remain 172	

metabolically active at higher temperatures, despite never yet experiencing them 173	

in situ.  174	

In order to relate microbiota from discrete depths to in situ CH4 ebullition, 175	

we partitioned ebullition to its likely source depths. We applied isotope and mass 176	

balance calculations to infer ebullitive loss (“fugitive CH4”) at each depth, based 177	

on stable carbon isotope values and porewater concentrations of CH4 and 178	

dissolved inorganic carbon (DIC) (Supplementary Table 3). From this inferred 179	

ebullitive loss, total production at each depth interval was calculated and 180	

correlated with microbiota from the same depth. Mantel tests revealed a 181	
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significant correlation between microbial community composition and fugitive CH4 182	

(p = 0.016) (Supplementary Table 5).  183	

To more specifically investigate links between CH4-associated microbial 184	

functional guilds and CH4 chemistry, we identified multiple known CH4-cycling 185	

clades in the 16S rRNA gene amplicon data and applied targeted metagenomic 186	

sequencing to a subset of samples to examine diagnostic genes for CH4 cycling 187	

(and to assemble genomes for metabolic pathway reconstructions, discussed 188	

further below). From the metagenomes, we recovered 5,470 examples 189	

(sequencing reads) of 28 phylogenetically diverse functional genes indicative of 190	

CH4 production (mcrA) and consumption (pmoA) potential (Figure S5, 191	

Supplementary Table 10). We used partial least squares regressions (PLSR) and 192	

multiple linear regression (MLR) analyses to predict porewater CH4 193	

concentrations from methanogen and methanotroph relative abundances, as 194	

measured via 16S rRNA gene amplicon sequencing data. When using either 195	

PLSR or MLR to predict porewater CH4 concentrations, a better prediction was 196	

achieved when both depth-resolved abiotic variables (i.e., depth, TOC, DIC, 197	

13CTOC, S, and TOC:TS, see methods) and the relative abundances of predicted 198	

CH4-cycling organisms were included (PLSR: r2 = 0.640, p = 0.00001, MLR: 199	

adjusted r2 = 0.752, p = 0.0003), relative to including the abiotic variables alone 200	

(PLSR: r2 = 0.390, p = 0.002, MLR: adjusted r2 = 0.532, p = 0.0004) (Figure 201	

4A,B, Supplementary Table 11). These results suggest that direct measurements 202	

of microbial abundances could contribute to more accurate predictions of future 203	

CH4 emissions, consistent with previous statistical models that have linked 204	
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specific microbiota to C- and/or CH4-cycling dynamics in marine ecosystems and 205	

thawing permafrost peatlands24-28. 206	

By expanding our PLSR analyses to consider the full microbial community, 207	

in addition to known CH4-cyclers, our ability to predict CH4 concentrations 208	

improved further. This analysis considered the following groupings of 16S rRNA 209	

gene abundances as explanatory variables for the prediction of porewater CH4 210	

concentrations: 1) each operational taxonomic unit (OTU) at > 1 % relative 211	

abundance in any sample (Supplementary Table 4), 2) summed lineage 212	

abundances of all bacteria and archaea (mostly at the phylum or class levels, 213	

see Figure S3 for groupings), and 3) summed abundances of the most highly 214	

resolved lineage representative in the amplicon data for each metagenome-215	

assembled genome (MAG, a population genome computationally reconstructed 216	

from shotgun metagenomic community DNA sequencing data, Supplementary 217	

Table 12). In two cases, a MAG was linked directly to a specific OTU in the 218	

amplicon data through a co-binned 16S rRNA gene sequence in the MAG, such 219	

that the MAG relative abundance could be inferred from the amplicon data. In all 220	

other cases, the summed abundances of amplicon OTUs in the same lineage as 221	

the MAG were used as proxies for MAG abundances.  222	

Four of the top five microbial groups most predictive of porewater CH4 223	

concentrations in the PLSR analyses were lineages for which we were able to 224	

reconstruct a MAG (Figure 4C, Supplementary Tables 13-14), thus organization 225	

into MAGs helped to unravel the specific metabolic processes most predictive of 226	

carbon chemistry. In total, five MAGs were reconstructed with > 85 % 227	
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completeness and < 6 % contamination (Supplementary Discussion). The best 228	

overall predictor of porewater CH4 concentrations was the Syntrophaceae class 229	

of Deltaproteobacteria, which was considered in the PLSR analysis as the 230	

summed abundance of all OTUs in this clade. Syntrophaceae are known to be 231	

syntrophic (obligately mutualistic) with methanogens and produce the hydrogen 232	

needed for methanogenesis29. Consistent with hydrogen production, the 233	

Syntrophaceae MAG revealed 15 hydrogenase-associated genes, along with the 234	

capacity to ferment diverse carbon compounds (particularly carbon-sulfur 235	

compounds), with the added potential capacity for respiration (see 236	

Supplementary Discussion). Though the Syntrophaceae were overall most 237	

predictive of porewater CH4 concentrations, the most significantly predicitive 238	

single OTU was a member of the candidate phylum Aminicenantes, which we 239	

also recovered as a MAG. While this lineage has been previously predicted to be 240	

fermentative, saccharolytic, and/or aerobic30-32, our lake sediment genome 241	

revealed metabolic potential for several C1 metabolic processes, including 242	

methylotrophy through the assimilation of methylamines, methane-thiols, and/or 243	

dimethylsulfide, similar to previous recoveries of complete Wood-Ljungdahl 244	

pathways for C1 metabolism via carbonyl and methyl pathways in this lineage33. 245	

The predicted capacity for methylotrophy could explain the strong correlation 246	

between Aminicenantes relative abundance and porewater CH4 concentrations.  247	

The relative abundances of two other lineages with MAGs, the 248	

Thermoplasmata (a group of Archaea) and Phycisphaerae (a class of 249	

Planctomycetes bacteria), were also strongly predictive of both porewater CH4 250	
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concentrations in the PLSR analysis and of calculated fugitive CH4 in linear 251	

regressions (Supplementary Tables 14-15). Phylogenetic analyses showed that 252	

the Thermoplasmata MAG was derived from a divergent member of the 253	

Thermoplasmatales order, and it encodes the capacity for CO2 production from 254	

formate, along with peptide and amino acid degradation (as previously 255	

indicated34) and complex carbon degradation. Our recovered Phycisphaerae 256	

population genome appears to have the capacity to metabolize a wide variety of 257	

complex carbon compounds, potentially via fermentation, consistent with 258	

previous predictions for the Planctomycetes phylum35. While direct ties to CH4 259	

are not obvious in these two genomes, we speculate that their contributions to 260	

overall carbon cycling may be driving these strong correlations with CH4 261	

concentrations and emissions. 262	

Interestingly, the only lineage represented by a MAG that was not a 263	

significant predictor of porewater CH4 concentrations in the PLSR analysis was a 264	

member of the archaeal Methanomassiliicoccales, a lineage previously 265	

presumed to consist exclusively of obligate H2-dependent methylotrophic 266	

methanogens36,37. While we cannot make a definitive claim based on a single 267	

MAG, we hypothesize that our lake sediment Methanomassiliicoccales 268	

population does not have the capacity for methanogenesis, as we did not recover 269	

any genes from the methanogenesis pathway in this 95% complete genome. The 270	

genome does encode a complete pathway for propionate fermentation and 271	

partial pathways that may be indicative of the potential to ferment benzoate, 272	

butyrate, and succinate. 273	
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In conclusion, we found significant differences in the slope of the 274	

temperature vs. CH4 flux relationship between sub-arctic lake edges and 275	

middles, suggesting that radiative forcing (temperature) and a concomitant 276	

increase in microbial metabolic rates are not the only primary controls on CH4 277	

emissions. Significant differences in microbial community composition between 278	

lake edges and middles, including significantly higher methanogen abundances 279	

in lake middles, and significantly higher CH4 emissions from lake middle 280	

sediments when incubated at the same temperatures as lake edges suggest that 281	

sediment microbial community composition contributes to spatial differences in 282	

the response of CH4 emissions to increasing temperature. In addition, the 283	

abundances of CH4-cycling organisms and their reconstructed population 284	

genomes (MAGs) were significantly better predictors of sediment CH4 285	

concentrations than abiotic variables alone. Syntrophic lineages, which can 286	

generate the hydrogen required for hydrogenotrophic methanogenesis, and 287	

lineages capable of C degradation to CO2 (also potentially ‘upstream’ of 288	

methanogenesis) were also predictive of sediment CH4 concentrations. Together, 289	

these results suggest that when lake middles reach the temperatures of lake 290	

edges, they may emit even more CH4 than the lake edges currently do, such that 291	

our projected future CH4 emissions may be underestimating contributions from 292	

subarctic lakes, and that knowledge of microbial community composition and 293	

metabolism could improve these predictions. Future investigations that consider 294	

the combined effects of microbiota, carbon quality, and temperature on lake CH4 295	
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emissions will help to provide a more comprehensive understanding of 296	

spatiotemporal controls on global CH4 emissions. 297	

 298	

Methods 299	

Field site and sample collection 300	

Stordalen Mire is a subarctic peatland complex located 10 km east of 301	

Abisko in northern Sweden (68°21′N, 19°02′E). Lakes Mellersta Harrsjön and 302	

Inre Harrsjön are 1.1 and 2.3 ha in area, reaching maximum depths of 7 and 5 m, 303	

respectively38. These lakes are post-glacially formed. Mellersta Harrsjön receives 304	

water from a small stream while Inre Harrsjön is fed through groundwater and 305	

runoff from the surrounding mire. Ebullitive and diffusion-limited CH4 emissions 306	

from these lakes have been documented, using floating funnels and chambers 307	

distributed across the lakes and sampled frequently2,9,12. Ebullition varies 308	

spatially with higher emissions from shallow zones and in the presence of 309	

plants9,15. 310	

We collected quadruplicate sediment cores (four cores from two locations 311	

in each of two lakes: Mellersta Harrsjön edge (68°357832’N, 19°042046’E) and 312	

middle (68°358291’N, 19°042132’E) and Inre Harrsjön edge (68°357880’N, 313	

19°048525’E) and middle (68°358418’N, 19°045650’E)) on July 10 and 18, 2012 314	

at the Stordalen Mire nature reserve, a research site near Abisko, northern 315	

Sweden (Supplementary Table 1). Samples were taken from cores (as described 316	

below) along a depth gradient (ranging from 4 - 40 cm) for geochemical 317	

measurements and microbial DNA sequencing data. 318	
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Geochemical data collection and analysis 319	

 For each set of four cores, we sampled the first core for sediment C, N, 320	

and S (weight percent), percent total organic carbon, and bulk sediment 13CTOC 321	

and 15NTOC. Samples of 1 cm3 were taken in 6 cm increments from the top of the 322	

core to the bottom. The samples were then dried, ground, and split into an 323	

untreated sample for total carbon (C) and an acidified TOC sample. Details 324	

regarding sample preparation for measurement on a Perkin Elmer 2400 Series II 325	

CHNS/O Elemental Analyzer at the University of New Hampshire (UNH) were 326	

described previously15. Repeatability error was established by analyzing replicate 327	

samples and calculating the standard deviation. Duplicate samples were run 328	

approximately every 10 samples. Potential outliers were also run in duplicate. 329	

Isotopic analysis was performed by combusting dried sediment samples in a 330	

Costech ECS 4010 elemental analyzer coupled to a Thermo Trace GC Ultra 331	

isotope ratio mass spectrometer (IRMS), based on calibration with acetanilide, 332	

Atlantic cod, black spruce needles, sorghum flour, corn gluten, NIST 1515 apple 333	

leaves and tuna muscle standards (UNH Stable Isotope Lab). In 2013 we also 334	

collected sediment cores in the same locations in these lakes. We report 335	

sediment textural analyses from these cores as % sand, % silt, and % clay 336	

(Supplementary Table 3). Those samples were dried and run through a laser 337	

particle size analyzer (Malvern Mastersizer 2000). 338	

The second replicate core was used for quantifying total CH4 in the core 339	

sediment reported in µM. After coring, we pulled 2 cm3 sediment plugs using cut 340	

plastic syringes through pre-drilled holes cut at 4 cm increments along the core 341	
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liner. The sediment plugs were transferred to 30 ml serum vials containing 5 ml 342	

of 2 M NaOH, capped quickly and shaken39,40. After sitting overnight then heating 343	

for 1 hour at 60 °C, the headspace of the vials was analyzed for CH4 using a 344	

Shimadzu GC-2014 gas chromatograph with a flame ionizing detector9. The CH4 345	

measured represents the total, that is, nearly all of the CH4 dissolved in the water 346	

from the sediment plug and any bubbles that may have been trapped in the 347	

sediment. The remaining sediment samples in the vials were weighed and dried 348	

to constant weight to determine the mass of water in the samples to be used for 349	

calculating the CH4 concentration in µM. 350	

The third replicate core was used for measurement of DIC. Rhizon 351	

samplers were inserted every 2 cm through pre-drilled holes in the core and a 352	

vacuum was pulled with a 30 ml polypropylene syringe. The first ~1 ml of 353	

sediment water was discarded because of contamination with DI water. After 10 354	

ml of sediment pore water was collected, it was injected to a 30 ml evacuated 355	

serum vial with 1 ml 30% H4PO4 solution. This caused forms of inorganic C in the 356	

water to form CO2. A headspace sample was then extracted and run on an 357	

infrared gas analyzer (IRGA) to determine the CO2 concentration. 358	

Methods for measuring ebullition and water temperature have been 359	

described previously9. In brief, measurements of CH4 bubble flux during the ice-360	

free season (June to September) have been ongoing at these lakes since 2009. 361	

A total of 40 bubble traps, distributed in a depth-stratified sampling scheme were 362	

sampled frequently (every 1-3 days). For this study, averages of CH4 bubble flux 363	

were calculated for each lake by binning data from edge and middle areas 364	
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separately in 1°C intervals (total of 4-22°C) of corresponding surface sediment 365	

temperature. For this we used flux and temperature data collected from 2009-366	

2014. Water and surface sediment temperatures were measured in profiles 367	

continuously using intercalibrated Onset HOBO v22 loggers, as previously 368	

described9 (data are available here: https://bolin.su.se/data/). The binned flux 369	

data were used to construct Arrhenius equations in order to investigate 370	

differences in temperature response on the ebullition from edge and middle 371	

areas. 372	

Porewater isotopic composition was determined in samples from cores 373	

collected in the same locations in 2014. Methods were described previously24. 374	

Briefly, sample vials that were collected for CH4 and dissolved inorganic carbon 375	

(DIC) were acidified with 0.5 ml of 21% H3PO4 and brought to atmospheric 376	

pressure with helium. The sample headspace was analyzed for d13C of CH4 and 377	

CO2 on a continuous-flow Hewlett-Packard 5890 gas chromatograph (Agilent 378	

Technologies) at 40°C coupled to a FinniganMAT Delta S isotope ratio mass 379	

spectrometer via a Conflo IV interface system (Thermo Scientific). 380	

 381	

DNA extraction and 16S rRNA gene sequencing 382	

A fourth replicate core was collected for DNA extraction. After coring, we 383	

pulled 2 cm3 sediment plugs using cut plastic syringes through pre-drilled holes 384	

cut at 4 cm increments along the core liner. Samples were immediately put in 385	

Eppendorf tubes and placed in a cooler until returned to the research station 386	

where they were stored at -80 °C until extraction. 387	
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For DNA extraction from each core depth range, 0.25 g of sediment was 388	

collected under sterile conditions and added to a MoBio PowerSoil DNA Isolation 389	

Kit (MoBio, Inc., Carlsbad, CA, USA). DNA was extracted according to the 390	

manufacturer’s instructions. PCR amplification and sequencing were performed 391	

at the Environmental Sample Preparation and Sequencing Facility (ESPSF) at 392	

Argonne National Laboratory, in accordance with previously described 393	

protocols41-43. Briefly, 515F and barcoded 806R primers with Illumina flowcell 394	

adapter sequences were used to amplify the V4 region of bacterial and archaeal 395	

16S rRNA genes44. Each 25 µl PCR reaction contained 12 µl of PCR water 396	

(MoBio, Inc., Carlsbad, CA, USA), 10 µl of 1x 5 PRIME Hot Master Mix (5 PRIME 397	

Inc., Bethesda, MD, USA), 1 µl each of F and R primers (5 µM concentration, 398	

200 pM final), and 1 µl of template DNA. PCR cycling conditions were as follows: 399	

94 °C for 3 min, 35 cycles of [94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s], 400	

72 °C for 10 min. A PicoGreen assay (Life Technologies, Grand Island, NY, USA) 401	

was used to measure amplicon concentrations. Equimolar concentrations for 402	

each barcoded sample were combined and then cleaned with the UltraClean 403	

PCR Clean-Up Kit (MoBio Inc., Carlsbad, CA, USA) and then quantified using the 404	

Qubit (Invitrogen, Carlsbad, CA, USA). The pool was then diluted to 2 nM, 405	

denatured, and then diluted to a final concentration of 4 pM with a 10% PhiX 406	

spike for sequencing on the Illumina MiSeq platform.  407	

Quantitative PCR (qPCR) 408	

A quantitative polymerase chain reaction (qPCR) was performed to 409	

measure microbial abundances in units of 16S rRNA gene copies per g wet 410	
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sediment43,45. Each reaction used 5 µl of 2X SYBR Green PCR Master Mix 411	

(Applied Biosystems, Carlsbad, CA, USA), 4 µl of template DNA, and 1 µl of 412	

primer mix. The 16S rRNA gene 1406F/1525R primer set (0.4 µM, F - 413	

GYACWCACCGCCCGT and R - AAGGAGGTGWTCCARCC) was designed to 414	

amplify bacterial and archaeal 16S rRNA genes. The rpsL primer pair (0.2 µM, F 415	

- GTAAAGTATGCCGTGTTCGT and R - AGCCTGCTTACGGTCTTTA) was 416	

used for inhibition control samples to amplify Escherichia coli DH10B only. Three 417	

dilutions (1/100, 1/500, and 1/1000), as well as an inhibition control (1/100 418	

dilution of E. coli DH10B genomic DNA spiked into a 1/100 dilution of the sample), 419	

were run in triplicate for each sample and standard. For the standards, E. coli 420	

DH10B genomic DNA dilutions of 10-2, 10-3, 10-4, 10-5 and 10-6 of the 20 ng/µl 421	

stock solution were used. The qPCRs were run on the ViiA7 Real-Time PCR 422	

System (Applied Biosystems, Carlsbad, CA, USA), with cycling conditions as 423	

follows: 10 min at 95 °C, 40 cycles of [15 s at 95 °C, then 20 s at 55 °C, then 30 424	

s at 72 °C]. A melt curve was produced by running a cycle of 2 min at 95 °C and 425	

a final cycle of 15 s at 60 °C. The cycle threshold (Ct) values were recorded and 426	

analyzed using ViiA7 v1.2 software, and 16S rRNA gene copy numbers were 427	

calculated for each sample, accounting for the genome size (4,686,137 bp) and 428	

16S rRNA gene copy number (7) of the standard. 429	

Incubations for CH4 production rates 430	

Anaerobic incubations of lake sediment samples were performed to 431	

assess rates of production of CH4. Four replicate sediment samples (4 ml) from 432	

three depths in 2012 (0-5, 10, 20 cm) were collected in the field and immediately 433	
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sealed in a 120 ml serum vial. The headspace was flushed for 5 minutes with 434	

UHP N2 to establish an anaerobic headspace. The vials were stored in coolers, 435	

taken to the research station, and then stored as follows: 2 vials were incubated 436	

at 5°C and 2 vials were held at room temperature (22°C) for each depth. Five ml 437	

of headspace was sampled daily for five days and analyzed on a Flame 438	

Ionization Gas Chromatograph (GC) to determine CH4 fluxes. Fluxes were 439	

normalized by sediment mass after incubations when vials were dried and 440	

weighed to determine sediment dry weight. We also report data from incubations 441	

in 2013 that were run the same way with samples collected at depths consistent 442	

with changes in core sediment transitions: Inre Harrsjön edge: 2.5, 27.5, 47.5 cm; 443	

Inre Harrsjön middle: 4.5, 35, 60 cm; Mellersta Harrsjön edge: 7.5, 22.5, 37.5 cm; 444	

and Mellersta Harrsjön middle: 2.5, 27.5, 47.5 cm. 445	

Calculations of depth-resolved fugitive CH4 446	

Depth-resolved fugitive CH4 (CH4 released from the sediments) was 447	

calculated from concentration and stable carbon isotopic composition of CH4 and 448	

DIC in sediment porewater46. The approach leverages that fact that 1) microbial 449	

fermentation and respiration, which generate CO2, do not fractionate carbon, 450	

while methanogenesis, which generates CH4 and CO2 (1:1), does fractionate 451	

carbon, and 2) that DIC largely remains dissolved in water while dissolved CH4 452	

escapes porewater by ebullition. In this framework, the measured isotopic 453	

composition of CH4 in porewater was used to calculate the fraction factor 454	

associated with methanogenesis, assuming the starting isotopic composition of 455	

the substrate matched that measured for organic carbon in the sediment. This 456	
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fractionation factor, along with the measured isotopic composition of DIC in 457	

porewater, was used to determine the relative amount of DIC that came from 458	

methanogeneis versus non-fractionating pathways (e.g., fermentation). Because 459	

any CO2 produced was assumed to stay dissolved in porewater, the relative 460	

amount of DIC generated from methanogenesis could be multiplied by the 461	

measured concentration of DIC to determine the concentration of CO2 and CH4 462	

generated through methanogenesis. This generated CH4 concentration was 463	

larger than the actual measured concentration of CH4 in porewater, and the 464	

difference between the two was assigned as ‘fugitive’ methane. Calculations 465	

assumed that the system was at steady state. 466	

16S rRNA gene sequence processing and OTU table generation for microbial 467	

analyses 468	

Sequences were processed as previously described43. Briefly, after 469	

demultiplexing by sample, each pair of forward and reverse 16S rRNA gene 470	

reads was merged. Sequences were then quality-filtered, and singletons were 471	

removed with QIIME47 and UPARSE48. Dereplicated sequences were then 472	

clustered at 97% nucleotide identity using UCLUST v749 to generate a database 473	

containing one sequence for each operational taxonomic unit (OTU). Sequencing 474	

reads from the full dataset were then clustered to the database to generate an 475	

OTU table. Each OTU was assigned taxonomy via the Ribosomal Database 476	

Project taxonomic classifier50, and all OTUs assigned as mitochondria or 477	

chloroplasts were removed. The resulting OTU table was rarefied to 3,000 16S 478	

rRNA gene sequences per sample. Following this OTU table curation, 36 479	
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samples across 21 core-depth combinations were retained, of which 30 were 480	

replicates (i.e., 15 pairs). For each pair of replicates, each OTU count was 481	

averaged (for 14 of 15 pairs, replicates were indistinguishable, Figure S6), and 482	

the averages were used for all downstream analyses. For the six samples 483	

without successful replicates, OTU counts from a single sample were used. 484	

Metagenomic sequencing, genome reconstruction and annotation, and methane-485	

cycling functional gene characterization 486	

Based on preliminary 16S rRNA gene amplicon sequencing data from 8 487	

samples (IHM4, IHM36, IHE4, IHE28, MHM4, MHM34, MHE4, and MHE16), 488	

three samples with the most distinct microbial communities (IHM4, IHE28, and 489	

MHE16) were selected for metagenomic sequencing to maximize recovery of 490	

diverse microbial populations. DNA (from the same extractions described above 491	

for 16S rRNA gene sequencing) was sent to the Australian Centre for 492	

Ecogenomics for metagenomic library construction and sequencing on the 493	

Illumina NextSeq platform, as previously described25,26. Metagenomic assembly, 494	

genome binning to recover microbial metagenome-assembled genomes (MAGs), 495	

and annotation (to predict gene functions and reconstruct metabolic pathways) 496	

were performed as previously described51. Briefly, each metagenome was 497	

separately assembled using the CLC de novo assembler v4.4.1 (CLCBio, 498	

Denmark), reads were mapped to contigs using BWA v0.7.12-r103952, and the 499	

mean coverage of contigs was obtained using the ‘coverage’ command of 500	

CheckM v1.0.653. Genomes were binned using MetaBAT v0.26.354 with all five 501	

preset parameters (verysensitive, sensitive, specific, veryspecific, superspecific), 502	
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and genome completeness and contamination were estimated using CheckM53. 503	

To investigate predicted metabolic functions of interest in the metagenomic data, 504	

metagenomic reads with sequence similarity to genes diagnostic of specific 505	

metabolic functions (e.g., methane monooxygenase, pmoA, and methyl-506	

coenzyme M reductase, mcrA, indicative of aerobic methane oxidation and 507	

methanogenesis, respectively) were identified using GraftM55. 508	

Sequencing data availability 509	

Data are currently available here: https://isogenie-db.asc.ohio-510	

state.edu/datasources#lake_data . Upon publication, sequencing data from this 511	

study will be available at NCBI, with accession numbers provided here.  512	

Statistical analyses 513	

 Unless otherwise indicated, statistical analyses were performed using 514	

PRIMER v756,57. The rarefied OTU table was square-root transformed, and Bray-515	

Curtis similarity matrices were generated for sample comparisons and used to 516	

make a Principal Coordinates Analysis (PCoA) plot. We used permutational 517	

ANOVA (PERMANOVA) to test for significant differences in microbial community 518	

composition between categorical groups of samples (e.g., between the two lakes 519	

and between the edges and middles of the lakes), and we used Mantel tests with 520	

Spearman’s rank correlations to compare microbial community composition 521	

(Bray-Curtis similarity matrices) to continuous variables (Euclidean distance 522	

matrices), including sediment depth and biogeochemical data. ANOVA and linear 523	

regression analyses (Supplementary Tables 8 and 15) were performed with 524	

StatPlus v6.1.7.0. 525	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.08.934661doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.934661


	 23	

We performed partial least squares regressions (PLSR) in the R 526	

programming language via the package PLS (function PLSR)58-60 to predict 527	

measured sediment CH4 concentrations from biotic and abiotic variables, similar 528	

to our previously described PLSR analyses25. Briefly, PLSR models a causal 529	

relationship between explanatory variable(s) (in this case, abundances of abiotic 530	

measurements and/or microorganisms) and the response variable being 531	

predicted (here, measured sediment CH4 concentrations). Abiotic variables 532	

included all depth-resolved abiotic measurements that were not directly related to 533	

CH4, as such measurements could be confounding variables in our analysis. The 534	

included abiotic variables were: depth, TOC, 13CTOC, DIC, S, and TOC:TS. The 535	

PLSR analysis yielded Pearson’s product moment correlations between 536	

measured environmental and/or geochemical variables, the abundances of 537	

microbial lineages, and the abundances of specific microbial populations, 538	

allowing for a quantification of the added value of microbial abundances in 539	

predicting sediment CH4 concentrations, relative to predictions from abiotic 540	

factors alone. Variance in projection (VIP) scores for each explanatory variable 541	

indicate the extent to which that variable was predictive of the response variable 542	

(i.e., sediment CH4 concentrations), with VIP scores ≥ 1 considered to be highly 543	

significant61. 544	
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Figure 1. Temperature responsiveness of ebullitive methane flux from two post-

glacial lakes. Ebullitive CH4 flux as a function of surface sediment temperature (data 

were binned in 1 °C intervals; see methods) for the edge versus middle regions of:

A. Lake Mellersta Harrsjön (MH) and B. Lake Inre Harrsjön (IH), from June - September 

2009 - 2014; MH edge - n = 1,609, MH middle - n = 810, IH edge - n = 2,347, IH middle -

n = 549. Error bars are 95% confidence intervals, fit lines are 2nd degree polynomials.

C. Arrhenius plots of the data in A & B; ln (bubble CH4 flux) versus the inverse surface

sediment temperature in K. Data are color-coded by lake and by edge and middle areas. 
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Figure 2. Lake sediment bacteria and archaea in two post-glacial lakes. A, B. Schematic overview of lakes and cores collected for DNA sequencing

analyses, with core subsections indicated by horizontal lines. Cores in each lake are referred to as “Lake edge” or “Lake middle”, with overlying water

depth as indicated, and the four colored circles are used to distinguish each core and/or lake location throughout the figures. Yellow stars indicate

cores and depths targeted for shotgun metagenomics. C. Principal coordinates analysis (PCoA) of microbial community composition across samples

(each core subsection, n = 21), based on 16S rRNA gene amplicon abundances of microbial operational taxonomic units (OTUs); circles represent 

samples, and samples in closer proximity have more similar microbial community composition. Thin arrows along colored lines indicate increasing 

depth within each core. P-values from PERMANOVA indicate how significantly microbial community composition differed according to the indicated

categorical variable (significant if p < 0.05). D. Percent relative abundance of OTUs identified as methanogens in 16S rRNA gene amplicon data in lake

edges compared to lake middles (P-value from Student’s T-test, significant if p < 0.05).
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Figure 3. Methane production from anaerobic laboratory incubations of lake

sediments. Sediments were collected from edges and middles of lakes Inre

Harrsjön and Mellersta Harrsjön in 2012 and 2013 (see methods) and incubated at

A. 5 oC (n = 12) and B. 22 oC (n = 12). Headspace CH4 concentrations were measured 

daily for 5 days, and average daily CH4 fluxes were calculated for each sample. Lines 

in boxes depict the median, boxes indicate 75th percentile, whiskers 95th 

percentile, and points are outliers. ds = dry sediment.
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Figure 4

Figure 4. Partial Least Squares Regression (PLSR) statistical modeling to predict sediment CH4

concentrations. PLSR analyses tested the ability of different suites of explanatory variables to predict

measured sediment CH4 concentrations in the four cores from 2012 across depths (n = 21); in all 

models, all measured abiotic variables (except those related to CH4 concentrations, see methods) were

included as explanatory variables, and biotic variables were added as indicated. Biotic variables 

included relative abundances of specific OTUs and/or summed OTU abundances grouped by

taxonomy or predicted metabolism (as indicated), from 16S rRNA gene amplicon data. A. Correlation

coefficients (r2) for PLSR models predicting sediment CH4 using different combinations of explanatory

variables. B. Linear regression of measured and model-predicted sediment CH4, considering all abiotic

variables and methanogen and methanotroph abundances as explanatory variables; each point is a

sample, colored by core. C. For the model with the highest r2 (rightmost in panel A), VIP scores are 

plotted to indicate the relative contribution of each explanatory variable; a VIP score > 1 is considered

significant, and higher VIP scores indicate a more significant contribution to the model; all VIP scores

> 1 are shown (n = 26 out of n = 153 total, Supplementary Table 14).
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