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Diverse classes of constraints 
enable broader applicability 
of a linear programming‑based 
dynamic metabolic modeling 
framework
Justin Y. Lee & Mark P. Styczynski*

Current metabolic modeling tools suffer from a variety of limitations, from scalability to simplifying 
assumptions, that preclude their use in many applications. We recently created a modeling 
framework, Linear Kinetics‑Dynamic Flux Balance Analysis (LK‑DFBA), that addresses a key 
gap: capturing metabolite dynamics and regulation while retaining a potentially scalable linear 
programming structure. Key to this framework’s success are the linear kinetics and regulatory 
constraints imposed on the system. However, while the linearity of these constraints reduces 
computational complexity, it may not accurately capture the behavior of many biochemical systems. 
Here, we developed three new classes of LK‑DFBA constraints to better model interactions between 
metabolites and the reactions they regulate. We tested these new approaches on several synthetic 
and biological systems, and also performed the first‑ever comparison of LK‑DFBA predictions to 
experimental data. We found that no single constraint approach was optimal across all systems 
examined, and systems with the same topological structure but different parameters were often best 
modeled by different types of constraints. However, we did find that when genetic perturbations 
were implemented in the systems, the optimal constraint approach typically remained the same as 
for the wild‑type regardless of the model topology or parameterization, indicating that just a single 
wild‑type dataset could allow identification of the ideal constraint to enable model predictivity for a 
given system. These results suggest that the availability of multiple constraint approaches will allow 
LK‑DFBA to model a wider range of metabolic systems.

Mathematical and computational models are often used to study metabolism, the set of reactions that supply 
the chemical precursors necessary for almost all cellular processes. These metabolic models are significantly 
cheaper and faster to run than laboratory experiments, meaning that they can be of tremendous value when 
they are able to predict how changes in or to a metabolic system can affect its state. While a few pathways and 
sections of metabolism (e.g., glycolysis and central carbon metabolism) have been modeled and characterized 
quite well in a few organisms (e.g., Saccharomyces cerevisiae and Escherichia coli)1,2, genome-scale models that 
capture the kinetics of metabolism at a systems scale have been more difficult to develop. Metabolism involves 
many interconnected reactions and pathways, making it critical to include as much of metabolism as possible 
in metabolic models to better represent the system and generate accurate predictions. Metabolomics, which 
is the systems-scale measurement of metabolites in biological systems, thus has great potential to provide the 
information necessary to drive systems-scale metabolic models since metabolomics data are easier to acquire 
than, for example, metabolic flux data. However, creating genome-scale metabolic models that capture critical 
system behaviors like metabolic dynamics remains an outstanding challenge in the field, which has prevented 
the value of metabolomics data in this context from being fully realized.

The most popular type of frameworks for metabolic modeling are constraint-based models—including flux 
balance analysis (FBA)3,4—and ordinary differential equation (ODE) models. FBA assumes that the metabolic 
system is at steady state, which allows it to be modeled as a linear program (LP) that can be efficiently solved 
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(even at the genome scale) but precludes modeling metabolite dynamics without substantial changes to the 
framework. ODE models are more widely used when dynamics are important, but are typically limited to smaller-
scale modeling of well-studied pathways (e.g. central carbon  metabolism1 or  glycolysis5) and the best-studied 
organisms (e.g. CHO  cells6) due to uncertainty in the mathematical form and parameter values for the reaction 
kinetics terms. Only a few  exceptions7–10 have approached genome-scale ODE models, and they still require 
lengthy parameter estimation steps, prior information about kinetic constants, or have only been shown to be 
useful near the reference state of the system. As a result, steady-state fluxes continue to be the almost exclusive 
focus of study for genome-scale models. Modeling frameworks that can predict various metabolic phenotypes 
at the genome scale in a computationally tractable way have great potential for understanding, predicting, and 
controlling metabolism.

To address this problem, we recently developed Linear Kinetics-Dynamic Flux Balance Analysis (LK-DFBA), 
a modeling strategy to efficiently track metabolite  dynamics11. LK-DFBA combines advantages of both constraint-
based and ODE models, unrolling the temporal aspect of the system into a larger stoichiometric matrix that 
captures metabolite dynamics while retaining a LP structure. The most critical element to accomplishing this 
goal is the addition of linear kinetics constraints that model the interactions between metabolites and the reac-
tions whose fluxes they affect, including mass action kinetics and allosteric regulatory interactions. The use of 
these constraints requires the inclusion of some kinetic parameters, a disadvantage that results from the effort 
to capture kinetics (as an ODE model does) rather than steady state; however, the number of parameters in 
LK-DFBA that need to be estimated can be fewer or easier to estimate than in ODE models due to these linear 
kinetics constraints, which can partially ameliorate that disadvantage. This point is relevant since the difficulty 
in estimating a large number of kinetic parameters is one of the key reasons why it is a significant challenge to 
develop ODE-based models of large systems. Furthermore, other modeling frameworks that retain linear struc-
tures, as LK-DFBA does, can be used with many existing metabolic modeling tools that require constraint-based 
models, such as  OptKnock12; the application of LK-DFBA with such modeling tools is a potentially promising 
future direction. We have previously shown that LK-DFBA can outperform ODE-based modeling approaches 
when used in conditions most relevant to metabolomics data (low sampling frequency and high noise)11. A 
framework such as LK-DFBA that can be shown to model systems at the genome scale is essential to take full 
advantage of metabolomics data.

In our initial description of LK-DFBA, we explored two different approaches for model parameterization. 
The first approach, LK-DFBA (LR), parameterizes constraints solely via linear regression of interacting metabo-
lite concentration and flux data. The second approach, LK-DFBA (LR +), uses the parameters from the linear 
regressions as initial seeding values for a secondary optimization to identify the optimal constraints for each 
interaction. While LK-DFBA (LR +) yields better fits to training data than LK-DFBA (LR), the latter approach 
estimates its parameters with trivial computational effort while still producing results that are similar in error to 
ODE models. As the systems being studied get larger, the LK-DFBA (LR +) approach may become computation-
ally intractable for some systems at a certain size, and so LK-DFBA (LR) may be the preferable approach for the 
efficient construction and parameterization of metabolic models at the genome scale.

However, the overall LK-DFBA framework still has some limitations in terms of how accurately it represents 
the underlying biology and biochemistry of the system. For example, the linear kinetics constraints used in LK-
DFBA (LR) may be viewed as crude approximations of the interactions between metabolites and fluxes, which 
are typically non-linear in nature. While kinetic equations found in ODE models (such as Michaelis–Menten 
or biochemical system theory (BST)  representations13,14) can capture the non-linearity of these interactions, the 
current linear framework in LK-DFBA cannot. Additionally, when allosteric regulatory information is considered 
(which LK-DFBA includes in its framework), reaction fluxes are often controlled by multiple metabolites. Cur-
rently, LK-DFBA creates separate constraints for each metabolite that controls a flux, which precludes modeling 
how multiple metabolites simultaneously interact with a reaction flux.

Since the linear kinetics constraints are so critical in LK-DFBA’s functioning, it is likely that improving those 
constraints could have a substantial impact on LK-DFBA’s ability to capture and predict biological phenomena. 
Accordingly, we devised three new types of kinetics constraints for LK-DFBA to account for biologically impor-
tant features like non-linearity and simultaneous regulation by multiple metabolites. These new approaches 
were compared to the original LK-DFBA (LR) constraints by testing on synthetic model systems as well as 
models based on Lactococcus lactis and Escherichia coli1,2. We found that the ideal constraint for a given model 
depended not only on its structure, but also on its set of parameter values even for the same structure. The new 
types of constraints allowed improved fitting of data in many tested models. We then probed these constraint 
approaches for their robustness to model perturbation and their ability to predict phenomena not captured in 
training data. We found that while different model topologies and parameter sets have different optimal con-
straint approaches, the same constraint approach was optimal across the majority of perturbations for any given 
model (overall, 70% across all models and noise conditions reported here), indicating that just one set of data is 
sufficient for parameterization robust enough for predictions of model perturbations. We also showed that the 
LK-DFBA approach chosen for the L. lactis and E. coli models can be used to predict changes in several critical 
metabolites and fluxes in qualitative agreement with literature experimental results. The new constraint strategy 
and its robustness to model perturbations have promise for moving the LK-DFBA framework towards modeling 
increasingly large metabolic systems in the future.

Methods
LK‑DFBA. Linear Kinetics-Dynamics Flux Balance Analysis (LK-DFBA) is a recently developed modeling 
strategy that is capable of capturing metabolite dynamics and potentially scalable. The full details of this approach 
have been described in detail  previously11, so we only outline the most important aspects of our framework here. 
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In brief, LK-DFBA is a linearly-constrained quadratic program with temporal dynamics modeled by discretizing 
time and unrolling the system into a larger matrix A representing each time point separately. A consists of the 
stoichiometric matrix of the system and an identity matrix, which when multiplied by ⇀w (a vector of fluxes ⇀v  and 
pooling fluxes ⇀vp (i.e. d

⇀
x
dt

)), calculate the system’s mass balances at each time point tk . The fluxes are constrained 
by lower ( ⇀wLB ) and upper ( ⇀wUB ) bounds. LK-DFBA includes a quadratic objective function z where � is a small 
penalty on the norm of the solution vector ⇀ω and ⇀c  is a vector of weights. While LK-DFBA is technically a quad-
ratic program, we found that adding this penalty reduced the possibility of solution degeneracy and led to no 
appreciable increase in computation time compared to a linear objective function. The solution vector consists of 
fluxes ⇀v  and metabolite concentrations ⇀x  at each timepoint in the unrolled model. Like the fluxes, the metabolite 
concentrations are also constrained by lower ( ⇀x LB ) and upper ( ⇀x UB ) bounds. Linear inequality constraints that 
model mass action kinetics and metabolite-dependent regulation are included in the model; they are the driving 
force behind metabolite accumulation and depletion by limiting the maximum flux vi allowed based on the avail-
ability of metabolites xj over time. In the LK-DFBA (LR) approach, these linear kinetics constraints are modeled 
using linear regression on assumed available metabolomics and fluxomics data to estimate a and b parameters 
for each of the n pairings of metabolites that participate in a flux reaction. If fluxomics data are unavailable, 
dynamic flux estimation (DFE) can be used to infer flux values from concentration  data15. However, estimated 
fluxes that are far from their true values can significantly impact the accuracy of LK-DFBA and a substantial 
amount of metabolomics data is recommended before using the DFE approach. The formulation of an LK-DFBA 
model is presented in Eq. (1).

where

In the LK-DFBA (LR +) method, the parameters from the LK-DFBA (LR) approach are used as initial esti-
mates in a secondary optimization step that finds improved kinetics constraint parameters, though at the cost 
of computational time. Because LK-DFBA retains a simple QP structure with entirely linear constraints, it is 
potentially scalable and could be further developed to be used with current constraint-based modeling tools. The 
objective functions used for each individual model are described in the Supplementary Methods.

Constraint approaches. LK‑DFBA (LR). The original LK-DFBA approach uses linear kinetics con-
straints to model the interaction between a metabolite and a flux, parameterized using linear regression on 
available metabolomics and fluxomics data. These constraints take the form of v ≤ ax + b , where v is the flux 
being constrained, x is the concentration of a metabolite that interacts with the flux, and a and b are the linear 
constraint parameters. These interactions may be due to mass action kinetics, where the interactions are known 
based on the stoichiometric topology of the system, or they may stem from allosteric regulation. While we have 
previously shown that these linear approximations of metabolic interactions can be effective for modeling me-
tabolism, they are still approximations of the true non-linear and interconnected biochemical relationships in 
metabolism. Below, we discuss three new constraint approaches to address these potential limitations.

LK‑DFBA (NLR). While the key advantage of using constraint-based models is their LP structure that ena-
bles efficient identification of the optimal solution of the problem, most metabolite-flux interactions exhibit 
non-linear behavior that may not be captured well by linear equations. Recently, computational solvers have 
improved such that quadratically constrained programs (QCPs) are not much more computationally expensive 
than LPs. Accordingly, we implemented quadratic constraints into the LK-DFBA framework to explore their 
potential for improving model accuracy with only a modest increase in computational time. One important 
aspect of LPs and QCPs is that all of the constraints must create a convex feasible solution space to guarantee 
that a global optimum can be  found16. If v ≤ ax2 + bx + c represents a quadratic constraint, where v is the flux 
being constrained, x is the concentration of a metabolite that interacts with v, and a, b, and c are the parameters 
of the quadratic constraint, a must be a negative value to retain a convex solution space. If a is found to be a 
positive value during parameterization, we convert the quadratic constraint into its original linear form as found 
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in LK-DFBA (LR). The parameters were estimated using linear least squares regression. We refer to this overall 
approach as LK-DFBA (NLR).

LK‑DFBA (DR). Enzymatic reactions are often controlled by more than a single metabolite that can either 
induce or inhibit enzyme activity, which should ideally be captured in the model constraints. To model such 
regulation of a reaction by multiple metabolites, LK-DFBA (LR) creates individual linear constraints for each 
controller metabolite that are independent of each other and are thus unable to capture the synergistic or antago-
nistic effects of multiple metabolites working in conjunction to regulate a flux. We implemented a new strategy 
that uses dimensionality reduction to consolidate information content from all controller metabolites for a flux 
into a single constraint. Dimensionality reduction is often used in data analysis, including analysis of metabo-
lomics data, to more easily represent and digest datasets with many measured variables. Principal component 
analysis (PCA) is one of the most commonly used dimensionality reduction approaches; it linearly transforms 
the original variables into new, orthogonal composite variables called principal components that capture as 
much variance in the original variable data in as few principal components as  possible17. Ideally, the first or first 
few principal components capture the majority of the variance in the original dataset, which allows one to ana-
lyze only those composite variables rather than all of the original variables at once. Here, we use PCA to capture 
the maximal variance of the controller metabolite data in a single principal component and use that composite 
variable as the regressor during linear regression with the target flux data. These new constraints are represented 
as v ≤ aPC1 + b , where v is the flux being constrained, PC1 is the controller metabolite concentration data 
projected into the first principal component, and a and b are the constraint parameters. The parameters were 
estimated using linear least squares regression. We refer to this dimensionality reduction approach as LK-DFBA 
(DR).

LK‑DFBA (HP). Another approach we used to model interactions of a flux with multiple metabolites was 
hyperplane constraints. Unlike LK-DFBA (DR), which always builds constraints in two dimensions (i.e. the 
target flux vs. the first principal component), the hyperplane constraint exists in (n + 1) dimensions, where n is 
the number of metabolites that control a target flux. This approach may avoid loss of information content from 
metabolite data as is possible during dimensionality reduction: as the number of metabolites in an interaction 
increases, the likelihood of the first principal component not capturing the majority of variance in the data 
increases. The hyperplane constraint equation can be represented as v ≤ b+

∑n
i=1 aixi , where v is the flux being 

constrained, n is the number of metabolites that interact with v, xi is the concentration of metabolite i, ai is the 
constraint parameter for metabolite xi, and b is another constraint parameter. The parameters were estimated 
using linear least squares regression. We refer to the hyperplane approach as LK-DFBA (HP).

Test models. Synthetic model. The first system we examined was a simple synthetic model with five me-
tabolites and five fluxes that was derived from a branched pathway model used  previously11. This system is 
represented via an ODE-based model that uses power-law kinetics to represent reaction  fluxes14. The kinetic 
equations for each pathway are shown in Fig. 1. To create a variety of synthetic models with the same stoichio-
metric topology, we randomly generated a and b parameters in each kinetic equation. The parameters for each 
model can be found in Table S1. Time course metabolite and flux data were generated by solving the ODE system 
in MATLAB (2018b).

Lactococcus lactis model. This model was created by Costa et al. and comprises central metabolism and pro-
duction pathways for important metabolites such as mannitol and 2,3-butanediol2. The L. lactis model consists 
of 26 metabolites and 21 fluxes and is publicly available on  KiMoSys18. Noiseless data were generated in COPASI 
4.24 (Build 197) using the default initial conditions and parameters over a simulation time of two hours.

Figure 1.  Synthetic model. Adapted from another branched pathway model used in previous  work11.  v1,  v2,  v3, 
 v4, and  v5 are system fluxes (black arrows) and  x1,  x2,  x3,  x4, and  xBM are metabolites, where  xBM is a metabolite 
representing biomass. Green and red arrows represent positive and negative regulatory interactions, respectively. 
ODE equations for the model are shown in the inset, where blue a and b parameters are mass action kinetic 
parameters and green and red b parameters are positive and negative regulatory parameters, respectively.
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Escherichia coli model. The E. coli model developed by Chassagnole et al. encompasses glycolysis and the pen-
tose phosphate  pathway1. This model is publicly available on KiMoSys, but was rebuilt within MATLAB to allow 
easy creation of new models that use the original E. coli model’s topology and stoichiometry. Noiseless data for 
the original E. coli model were generated in MATLAB (2018b) using the default initial conditions and param-
eters, while random initial conditions and parameters were used for the new models with the E. coli topology. 
To be consistent with our previous work, we used a simulation time of ten  seconds11 to generate ODE data used 
to fit the constraint parameters in the LK-DFBA models. More information about model parameters, the objec-
tive functions used for each model, and additional implementation details can be found in the Supplementary 
Methods.

Pathway perturbations. To test the ability of LK-DFBA to predict metabolic behaviors not represented in 
the training data, we introduced perturbations into each system either through down-regulation (indicated with 
the prefix ‘d’ in all figures) or up-regulation (indicated with the prefix ‘u’) of reaction fluxes. For the synthetic 
models, we down-regulated  v2,  v3, and  v4 by multiplying their constraint equation parameters (a and b param-
eters in all approaches and also including the c parameter in the LK-DFBA (NLR) approach) by 0.5 × (which 
restricts their maximum allowable flux value) and up-regulated these pathways by doubling the constraint 
equation parameters. The pathways and reactions to be perturbed in the L. lactis2,19–22 and E. coli23–27 models 
were chosen based on previous literature. Reactions in the L. lactis model (lactate dehydrogenase, phospho-
fructokinase, acetate kinase, mannitol 1-phosphatase) were down-regulated to 0.1 × their original parameter 
values (since completely knocking out reactions would often produce infeasible solutions for the linear program) 
and up-regulated to 2 × their original parameter values, magnitudes that were necessary to effect significant 
perturbations to the system’s behavior. Reactions in the E. coli model (pyruvate kinase, phosphoglucose isomer-
ase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, triose-phosphate isomerase, ribulose-
phosphate epimerase, phosphoglucomutase) were down-regulated to 0.1 × and up-regulated to 2 × their original 
parameter values.

Generating noisy data. Noise was introduced into the system using the original noiseless data (50 time 
points) and a down-sampling of that dataset into nT time points evenly spaced over the time interval of interest. 
Both metabolite and flux values were then replaced with a random value drawn from the normal distribution 
Ni,k ~ (yi(tk),CoV∙yi(tk)), where yi(tk) is the value of species (metabolite or flux) i at time point k, and CoV is a coef-
ficient of variance. For each sampling frequency and CoV condition, ten noisy datasets were generated.

Results
Fitting and predicting phenotypes in synthetic models. We generated twenty random sets of 
parameters and initial conditions for the kinetic equations in the synthetic model to examine the utility of the 
new constraint approaches across models of the same topology but different parameter sets. We produced in 
silico metabolite concentration and flux data over a time interval of ten seconds by solving the ODEs in each 
synthetic system. The four constraint approaches were used for parameterization of LK-DFBA models to the 
twenty datasets. The fitted LK-DFBA models were then simulated over the same interval using the initial condi-
tions for each respective synthetic system to compare against the original ODE data. This process was performed 
on both noiseless (nT = 50, CoV = 0) and noise-added data with different sampling frequencies (nT = 50 or 15) 
and levels of noise (CoV = 0.05 or 0.15).

For the noiseless cases (Fig. 2A), the best-fitting constraint approach on the wild-type data (dark green boxes 
with X’s) varied across the different models. All four approaches performed best for at least one of the models. 
Given that these models all have the same topology and just different parameter values, one might have expected 
they would be sufficiently similar that one single type of constraint would perform best across all or most models. 
The fact that different constraints fit different models better may be due to different qualitative behaviors being 
evident in the metabolic dynamics in the different models. Since all parameters were resampled in each model, 
they might access fundamentally different regimes of concentration or flux values and thus be better fit by dif-
ferent types of constraints. Similar trends were evident in noisy data (representative example in Fig. 2B), where 
the optimal constraint approach varied across the different models (boxes with X’s in Fig. 2B).

Since a primary goal of building metabolic models is to predict the behavior of systems in conditions beyond 
those in which they are trained, we then tested the ability of each LK-DFBA model trained on wild-type data 
with different constraint approaches to predict the effects of defined genetic perturbations. We down- and 
up-regulated the  v2,  v3, and  v4 pathways in the original kinetic equations by multiplying the kinetic coefficient 
parameters (a parameters in the inset of Fig. 1) by 0.5 × or 2 ×, respectively, and generating new ODE data to 
compare to LK-DFBA predictions. We then simulated the LK-DFBA model after adjusting the fitted LK-DFBA 
constraints to reflect the down- or up-regulation by multiplying the kinetics constraint parameters by 0.5 × and 
2 ×, respectively. The normalized root mean square error (NRMSE; see Supplementary Methods) between the 
predicted LK-DFBA metabolite concentrations and the ODE concentration data from the perturbed synthetic 
models was then calculated.

Using noiseless training and test data, we observed that the best constraint approach for the wild-type training 
data (WT) was also the best for the test data across the majority of perturbations (dV2 through uV4), indicated 
by the clustering of dark green boxes in the rows for the constraint approach containing the box with an X for 
each model (Fig. 2A). The NRMSE heatmap with quantitative error values can be found in Fig. S1. This suggests 
that while perturbations that affect the entire network (i.e., by resampling all parameter values) can often lead 
to different constraint approaches being optimal, single perturbations yield sufficiently similar behavior to allow 
the same constraint approach to be optimal for both the training and the test data.



6

Vol:.(1234567890)

Scientific Reports |          (2022) 12:762  | https://doi.org/10.1038/s41598-021-03934-0

www.nature.com/scientificreports/

When using noisy data, similar trends were observed (representative example in Fig. 2B). While the best 
constraint approach for WT noisy data was not always the same as the best approach for noiseless data, the best 
constraint approach for a given noisy WT dataset was still the best in over half the cases for predicting the impacts 
of in silico genetic perturbations in the same model (dV2 through uV4). Interestingly, noisy data negatively 
affected the performance of LK-DFBA (HP) to a much greater extent than the other approaches, which caused 
LK-DFBA (HP) to never be identified as the best approach under the most realistic conditions of nT = 15 and 
CoV = 0.15 (nor for almost any other noisy data condition, except for one (Fig. S2)). NRMSE heatmaps with 
quantitative error values for the different sampling frequencies and noise levels can be found in Figs. S2–S5.

We also tested the effect of smoothing the noisy (nT = 15, CoV = 0.15) metabolite concentration and flux time 
course profiles by fitting to a previously  described28 impulse function (Fig. S6). Smoothing the noisy data often 
led to lower error of the final model but required increased computation time for estimating the parameters of 
the impulse function and in certain cases can actually increase error if a specific dataset deviates significantly 
from all of the profiles that an impulse function can capture. The best constraint approach for WT smoothed data 
was the same as for unsmoothed data in 19 of the 20 models. As with the unsmoothed cases, the best constraint 
approach for smoothed data was consistent between WT and the majority of in silico genetic perturbations, and 
there were no cases where LK-DFBA (HP) performed the best (and it was the worst out of the four approaches 
in 123 out of 140 cases) for smoothed data.

Fitting and predicting phenotypes in L. lactis and E. coli models. For the L. lactis model, we 
tested the four constraint approaches on noiseless data and noisy data under different conditions (nT = 50 or 15, 
CoV = 0.05 or 0.15). On the noiseless data, the best constraint approach for the WT system was LK-DFBA (HP), 
which also had the lowest NRMSE when predicting the results of perturbations to five different genes (Fig. 3A). 
At high sampling frequencies and low noise (nT = 50, CoV = 0.05), LK-DFBA (HP) still performed the best, but 
as more noise was added or lower sampling frequencies were used, LK-DFBA (NLR) overtook it to become the 
optimal approach. This is consistent with the findings described above for the small synthetic systems where 
LK-DFBA (HP) can produce low NRMSE with noiseless data but has difficulties under more realistic conditions.

Figure 2.  NRMSE heatmap of LK-DFBA approaches on different synthetic models. Each constraint approach 
was used to fit parameters to wild-type (WT) data and then used to simulate the WT system and in silico 
genetic perturbations with fluxes  v2,  v3, or  v4 down- or up-regulated. The best constraint approach for each WT 
model is indicated with an X. Dark green boxes represent the lowest NRMSE within each genetic perturbation 
for each synthetic model, while dark red boxes represent the highest NRMSE (meaning that the dynamic range 
of the color scale varies for each perturbation for each synthetic model to better convey the relative performance 
of different methods). Panel A shows results for noiseless data with a sampling frequency of 50 time points. 
Panel B shows results for noisy datasets with a sampling frequency of 15 time points and with noise added at a 
CoV of 0.15. The average NRMSE of 10 noisy datasets is shown in the heatmap. The same NRMSE heatmaps 
with explicitly annotated error values can be found in Figs. S1 and S5.
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Figure 3.  NRMSE heatmaps of constraint approaches on L. lactis and E. coli models. Each constraint approach 
was used to fit parameters to wild-type (WT) data and then used to simulate the WT system and the system 
with in silico genetic perturbations with literature-reported important pathways down- or up-regulated. The 
best constraint approach for each model is indicated with an X. Dark green boxes represent the lowest NRMSE 
within each phenotype for each model, while dark red boxes represent the highest NRMSE. Both the L. lactis 
(A) and E. coli (B) heatmaps show the mean of 10 noisy datasets, except for the noiseless condition (leftmost 
columns in each heatmap). The same NRMSE heatmaps with explicitly annotated error values can be found in 
Fig. S7.
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As with the L. lactis model, we tested all constraint approaches on both noiseless and noisy data from the E. 
coli model under different conditions (nT = 50 or 15, CoV = 0.05 or 0.15). For this model, LK-DFBA (NLR) was 
the best constraint approach for noiseless data (Fig. 3B). Noisy E. coli data produced the same results: for all 
noisy conditions, LK-DFBA (NLR) was optimal for the WT system. It was also optimal for 27 of the 28 in silico 
genetic perturbations, showing once again that the same constraint approach that was optimal for the WT system 
at a given sampling condition tends to be optimal for the perturbed systems, supporting the generalizability of 
selecting a constraint approach based only on WT data.

We also perturbed the original parameters and initial conditions (drawing from the random normal distri-
bution Ni ~ (pi,pi) and taking the absolute value, where pi is the original value of the ith parameter) of the E. coli 
model to create five new models with the same topology (more information about parameter randomization can 
be found in the Supplementary Methods). As with the twenty different versions of the small synthetic system, we 
found that across these models with identical topology and only different parameter values, the best constraint 
approach varied substantially (Fig. S8). Again, the rates of individual reactions and how they affect overall model 
dynamics appear to be critical factors in determining the optimal constraint approach.

Improved LK‑DFBA predictions yield qualitative consistency with experimental L. lactis 
metabolite concentration data. To further assess how well LK-DFBA performs when predicting dif-
ferent phenotypes, we compared the predictions of LK-DFBA to available experimental data—the first time 
such a comparison has been performed for this modeling framework. The previously described ODE-based L. 
lactis model was originally parameterized using experimental metabolite time course data from L. lactis cultures 
grown with an initial glucose concentration of 40  mM2 and validated by comparison to some experimental data 
from cultures grown at initial concentrations of 20 mM and 80 mM glucose. Here, we similarly fitted all LK-
DFBA approaches to data generated by the ODE model at 40 mM glucose and then, using the best constraint 
approach (based on the NRMSE compared to the ODE data), simulated the LK-DFBA model at 20 mM and 
80 mM initial concentrations of glucose for validation.

Figure 4A–C depict the metabolite concentrations predicted by LK-DFBA (HP) (the best approach for noise-
less data in the L. lactis model) when trained on noiseless data. For multiple initial glucose concentrations, 
LK-DFBA (HP) captured the general qualitative trends of glucose (depletion) and lactate (accumulation), two 
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Figure 4.  Comparison of LK-DFBA metabolite concentration predictions against ODE data and L. lactis 
experimental data when fitted to noiseless and noisy ODE data. Panels A, B, and C depict concentration profiles 
for LK-DFBA (HP) (solid red line) and the ODE model (dashed black line) compared to experimental data (blue 
circles) for initial glucose concentrations of 20 mM, 40 mM, and 80 mM, respectively, when LK-DFBA is fitted 
to noiseless data. Panels D, E, and F depict concentration profiles for LK-DFBA (NLR) on 10 noisy datasets 
(nT = 15, CoV = 0.15) and the ODE model compared to experimental data. The mean concentration profile 
(solid green line) is shown with each of the concentration profiles (solid red lines) from the 10 noisy datasets.
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key metabolites in L. lactis that are often  studied29,30. For cofactor metabolites that participate in many different 
reactions, such as ATP, NAD(H), and inorganic phosphate (Fig. S9), it was more challenging for LK-DFBA (HP) 
to predict their concentration profiles over the simulation interval, which is a problem found in other modeling 
 frameworks7. Although LK-DFBA’s predictions were overall not as smooth or quantitatively accurate as the ODE 
model, this is to be expected due to the lack of a validated objective function for this constraint-based model; 
the objective function we used was a gross approximation that likely does not reflect the cell’s true “goal”, and it 
is known that the objective function can significantly affect the predictions of FBA approaches. Nevertheless, as 
presented here, LK-DFBA can still qualitatively track important metabolite dynamics even when using a crude 
objective function. This is important to note, as many organisms that are not well-studied have no readily avail-
able objective function to use.

Figure 4D–F depict the glucose and lactate concentration profiles predicted by LK-DFBA (NLR) (the best 
approach for noisy data in the L. lactis model) after being fitted to 10 noisy datasets generated by the ODE 
model and simulated at 20 mM, 40 mM, and 80 mM initial glucose, respectively. Again, the LK-DFBA frame-
work captured qualitative trends of major metabolites such as glucose and lactate, though unsurprisingly not 
as accurately as when noiseless data are used and with difficulties predicting cofactor concentrations (Fig. S10). 
Because LK-DFBA (NLR) contains quadratic constraints, its results are smoother compared to the other LK-
DFBA approaches, which helped it predict some metabolites, such as PEP, arguably better than in the noiseless 
case. Furthermore, LK-DFBA (NLR) is less susceptible to noise for some metabolites, such as glucose and lactate, 
as observed in predicting similar time courses across the 10 noisy datasets. This could be advantageous if one 
is modeling a system with multiple noisy data sets and requires consistent predictions for certain metabolites. 
Likewise, if only using a single dataset, LK-DFBA (NLR) can ensure that these metabolic profiles would not 
dramatically change if a different dataset had been used. Other methods, such as the original LK-DFBA (LR) 
approach, can result in more varied predictions (Fig. S11) depending on the noisy dataset used; some appear 
to produce better predictions than LK-DFBA (NLR), while others are worse (though all predictions follow the 
same trends). These observations reiterate that the best approach is dependent on the systems and datasets being 
studied, so having multiple LK-DFBA approaches available is an improvement over only using the LK-DFBA 
(LR) framework.

Changes in LK‑DFBA flux profiles due to gene knockouts are correlated with experimental E. 
coli steady‑state flux data. We also compared the predictions of the best LK-DFBA approach (based on 
the NRMSE compared to the ODE data) on the E. coli model to experimental steady-state flux data obtained 
through gene knockout experiments by Ishii et al.24. Because the Chassagnole model, which LK-DFBA is fitted 
to, only encompasses central carbon metabolism, we focused on 13 gene knockouts (plus the wildtype system) 
and 14 fluxes that are included in both the Chassagnole model and the Ishii steady-state flux results. We used 
the dilution rate of 0.2  h−1 for all experimental data. To emulate a gene knockout in the LK-DFBA model, we 
down-regulated the pathway(s) that correspond with the gene by multiplying the parameters of the relevant 
constraints by 0.1 × instead of completely removing the reaction, as we found that this sufficiently reduced the 
possible flux reaction rate, while completely knocking out a reaction (i.e. setting the relevant constraints to 0) 
would sometimes cause infeasible problems. Additionally, it is not uncommon for enzymatic activity to remain 
in a biological pathway after single gene knockouts due to paralogous enzymes and enzyme promiscuity. Because 
the LK-DFBA predictions do not reach steady-state for the simulation time examined in this work and our previ-
ous work (ten seconds), we instead used the average flux of the predicted time course to describe how LK-DFBA’s 
predictions change from the wild-type to gene knockout phenotype (see “Methods”). We also examined longer 
simulation times that allowed LK-DFBA and the Chassagnole model to reach steady-state, but found that the 
kinetic model was not optimized for long simulation times (Fig. S12). Nevertheless, the average flux before and 
after a gene knockout should reflect whether the reaction rate generally increases or decreases across the studied 
time interval after a system perturbation. We used a Pearson correlation to determine if the average flux profiles 
of 14 reactions predicted by LK-DFBA and the original kinetic model behaved similarly to the experimental 
data before and after a gene knockout (see Supplementary Methods for details). Both the LK-DFBA and kinetic 
models were not fit to the Ishii data, which allowed us to compare the models to an independent set of experi-
mental E. coli data. A similar method has been used previously by Lima et al. to compare multiple E. coli models, 
including the Chassagnole model, to the Ishii  dataset31.

To evaluate how our framework compares to E. coli experimental data, we examined LK-DFBA (NLR), as it 
was the best approach in the case of low sampling frequency and high noise (Fig. 3B). Figure 5 shows the aver-
age Pearson correlation of the LK-DFBA (NLR) flux predictions (after being fitted to ten noisy datasets with 
nT = 15 and CoV = 0.15) and the average correlation of the ODE model flux predictions with the experimental 
steady-state flux data. When comparing LK-DFBA (NLR) predictions to the experimental data, we calculated 
correlation values greater than 0.55 in all but two cases and correlations greater than 0.7 in 8 out of 14 cases. These 
correlations were very similar to the correlations yielded by the ODE-based model. In 11 out of 14 phenotypes, 
the correlations calculated for LK-DFBA outperformed or were within 5% of the correlations calculated with 
the ODE-based model. LK-DFBA was comparatively even better when the simulation interval was extended to 
600 s (Fig. S12). These results support the potential promise of LK-DFBA approaches for predictivity comparable 
to that of standard models but with the additional benefits (including relative model simplicity and potential 
scalability) that accrue from using a LP-based formulation.
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Discussion
At the outset of performing this work, we intended to identify an LK-DFBA constraint approach to improve upon 
the originally published framework that used only linear kinetics constraints. Instead, we have demonstrated that 
the best constraint approach depends on both the topology and the parameters of the system being modeled. 
Despite each of the 20 small synthetic models having the exact same stoichiometric and regulatory topology, the 
optimal LK-DFBA approach varied across these 20 models, and for the majority of the models one of the new 
constraint approaches performed the best. This finding suggests that the emergent dynamics from the collective 
metabolic reactions are just as important as the topology of the system in determining which constraint approach 
best fits data from the system. It also supports the potential benefit of having multiple types of constraints to 
choose from, as done in this work, to enable more accurate modeling of any given system.

These findings from synthetic systems were reinforced by analysis of biological systems based on E. coli and 
L. lactis metabolism. While LK-DFBA (HP) performed the best on L. lactis noiseless data, LK-DFBA (NLR) 
performed the best on E. coli noiseless data. (We do note, though, that LK-DFBA (NLR) was superior for both 
systems under the lowest sampling frequency and highest noise data conditions). We further confirmed that 
topology is not the sole factor that determines the optimal constraint approach for a given system by randomizing 
parameters in the E. coli model (Fig. S8): again, the best constraint approach varied across these topologically 
identical new models. This finding has particular relevance to the development of metabolic models for organ-
isms beyond those few that are widely studied: many metabolic pathways are topologically well-conserved across 
many species (e.g. central carbon  metabolism1), though the kinetic and regulatory parameters in these pathways 
can be vastly different. Thus, having multiple constraint approaches to choose from will improve the ability to 
model different systems using LK-DFBA.

Critically, the potential use of multiple types of constraints for a given model does not appear to contribute 
substantially to overfitting. While the best constraint approach varied across different model parameterizations 
and topologies, the best approach for a given model for predicting metabolic phenotypes due to up- or down-reg-
ulating different pathways was consistent across the majority of perturbations. This trend remained true whether 
using noiseless data, data with low sampling frequency and high noise, or noisy data that had been smoothed. 
These results instill confidence that the best constraint approach found when fitting to a wild-type metabolic 
system will also be the best approach when predicting changes to that system, meaning that an approach entailing 
the selection of the best-fitting of multiple constraint frameworks is viable, likely to be successful, and unlikely to 
contribute substantially to overfitting. We speculate that the reason for the success of this approach may be due 
to the robustness of the emergent metabolic dynamics of a system. Resampling all of the kinetic parameters in a 
system (as we did for 20 synthetic models and 5 E. coli models) can yield qualitatively different metabolite or flux 
profiles exhibiting qualitatively different behaviors that are better captured by different types of constraints. When 
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individual genes or pathways are down- or up-regulated, though, it is common for only the nearest neighboring 
metabolites or pathways to be significantly affected, meaning that the emergent behavior from the system would 
not change too greatly and thus the same constraint approach would be optimal. To easily construct the optimal 
LK-DFBA model for a given biological system, we envision the workflow presented in Fig. 6. After compiling 
the relevant system stoichiometry, regulatory structure, and metabolomics and fluxomics data, one can fit each 
of the four LK-DFBA approaches to the data and determine which constraint approach is optimal. Again, based 
on our findings, this optimal constraint approach fitted to the wild-type dataset is the most likely to work the 
best for predicting the results of model perturbations.

While the best constraint approach was dependent on the system being modeled, we did find some possible 
trends among the four constraint methods. In several of the synthetic models and the L. lactis system, LK-DFBA 
(HP) was observed to be the best constraint approach when using noiseless data. However, as lower sampling 
frequencies were used and more noise was added to the data, LK-DFBA (HP) decreased in performance and 
was never the best approach under the most difficult conditions in any of the systems assessed, which indicates 
that LK-DFBA (HP) may be most useful when data are readily available and close to their true values. We also 
found that the NRMSEs of LK-DFBA (LR) were often similar to the NRMSEs of LK-DFBA (NLR), which is to be 
expected because the two approaches share similar constraints except LK-DFBA (NLR) includes an additional 
quadratic term when a concave quadratic constraint is feasible for a particular interaction. It is interesting that 
LK-DFBA (NLR) was not always better than LK-DFBA (LR), which suggests that the quadratic constraints could 
sometimes be allowing overfitting of the data. We also note that the NRMSEs for LK-DFBA (DR) were not con-
sistently similar to the results for any of the other constraint methods, likely due to the fundamental differences 
between the data reduction approach and the basic constraint approaches.

Figure 6.  Workflow for selecting the best constraint approach for LK-DFBA when modeling metabolic systems. 
Dynamic Flux Estimation (DFE) is applied to the system stoichiometry and available metabolomics data to infer 
instantaneous fluxes. The system stoichiometry, metabolomics data, inferred flux data, and system regulatory 
information are then used to estimate parameters for each LK-DFBA approach (blue arrow). Using multiple 
constraint approaches (green arrows), four different LK-DFBA models are created and tested for their respective 
abilities to recapitulate training data. The model with the lowest error is selected and can be used for future in 
silico predictions (red arrow).
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Beyond these investigations into the utility and robustness of new types of constraints for LK-DFBA, we 
also compared LK-DFBA predictions to experimental data. Using ODE models and experimental data from L. 
lactis and E. coli, we found that LK-DFBA can effectively predict qualitative trends in concentration profiles of 
some important metabolites. While we have previously shown that LK-DFBA captures metabolite dynamics in 
synthetic data generated by ODE models, this is the first time LK-DFBA predictions have been validated with 
experimental data. For key metabolites that are important inputs and outputs of the system (e.g. carbon sources 
or end products), LK-DFBA can qualitatively predict if their concentration profiles are expected to decrease or 
increase, which is an important capability when assessing how perturbations affect a system. Cofactors, on the 
other hand, are more difficult to model using LK-DFBA but are still predicted to be within an order of magnitude 
of the experimental data in most cases. This capability could be useful when assessing levels of accumulating 
toxic metabolites or cofactor imbalances if exact concentrations are not necessary. While these results hold some 
promise, LK-DFBA does not achieve the same quantitative accuracy as a kinetic model. Because LK-DFBA does 
not use mechanistic equations that describe the underpinnings of each kinetic reaction, LK-DFBA is not able 
to closely track metabolite concentrations when compared to ODE-based models. However, the novel kinetics 
constraints in a constraint-based framework have the potential to enable LK-DFBA to capture metabolic trends 
more efficiently, which with further work could enable better scale-up to modeling complex systems.

We also found that LK-DFBA flux profile predictions were similarly correlated with experimental flux data 
from genetic knockout experiments compared to the ODE-based model. We note, though, that this comparable 
predictivity is limited by the fact that LK-DFBA was trained using ODE-generated data; if it had instead been 
fitted to actual metabolomics and fluxomics time course data used in the Ishii experiments (which is not avail-
able), these correlation values could possibly be even higher. Similarly, an improved objective function over 
the reasonable but arbitrary and unoptimized one used here could also lead to significant improvements in the 
performance of LK-DFBA.

By showing for the first time that LK-DFBA can predict changes in metabolite concentrations and flux profiles 
qualitatively, these results support LK-DFBA’s potential for eventual use as a metabolic modeling tool once more 
of its limitations have been addressed. While many ODE-based modeling approaches require specific kinetic 
equations for each flux reaction, LK-DFBA is more generalized. With four types of kinetics constraints that 
account for different biological interaction phenomena between metabolites and fluxes, we have made LK-DFBA 
more amenable to different systems. Additionally, applying the four LK-DFBA approaches to these models of 
L. lactis and E. coli has established that our framework can handle various biological systems without the need 
for computationally taxing parameter estimation steps (using only regression for parameter estimation, as in 
this work). Because each of the four LK-DFBA approaches maintains an easily solvable LP or QCP structure, 
LK-DFBA is a prime candidate for scaling up to model a variety of genome-scale systems while also capturing 
their metabolite dynamics.

While the addition of new constraint approaches has significantly improved the original LK-DFBA (LR) 
framework, there are still several next steps that will need to be explored and areas where LK-DFBA must be 
improved before it can become a widely-used modeling framework. In this work, we have shown that LK-DFBA 
can model small synthetic and biological systems, but we have not yet validated our work on a larger system. 
LK-DFBA requires metabolomics and fluxomics data (if DFE is not possible) for each metabolite and reaction 
in the system, which is difficult to obtain experimentally. We previously determined that LK-DFBA models are 
slightly affected when data for a single metabolite is  missing11, but if a significant number of metabolite time 
course profiles are unavailable, this could more severely impact the framework. While simulating these data 
could be a viable option to characterize such behaviors, there are so few genome-scale kinetic models that even 
this alternative remains challenging. We initially attempted to use the genome-scale kinetic model described 
by Khodayari and  Maranas7, but the model uses normalized concentrations while LK-DFBA requires absolute 
concentrations. In the future, a large-scale synthetic system with hundreds of metabolites and reactions could 
be used to further test our framework.

In addition to testing a larger system, the effect of introducing multiple perturbations (either as gene over-
expressions, knockdowns, or a combination of both) should be examined. While we have shown that a single 
perturbation usually does not change the best LK-DFBA constraint approach compared to the best approach on 
the wild-type system, we have also determined that different sets of kinetic parameters greatly affect the results 
of each constraint approach. Perturbing multiple reactions in a system will likely have a greater effect on LK-
DFBA performance compared to a single perturbation. Examining different strengths of up- or down-regulated 
reactions (i.e. multiplying constraint parameters by values other than 0.1 × or 2 ×) can also be explored further 
to determine how predicted concentrations and fluxes are affected.

To improve the parameters in each of the new constraint approaches, a secondary optimization step can 
be used, as in the LK-DFBA (LR +) approach. However, this step can be computationally expensive, and as the 
system gets bigger the computational burden of parameter estimation in a large nonlinear system may become 
intractable. The most immediately scalable approach would be LK-DFBA (LR), and thus for this work we focused 
on developing new constraint approaches that could still be useful without parameter optimization. However, 
similar analyses in the context of LK-DFBA (LR +) could also be instructive.

In addition, as previously noted the objective function used in LK-DFBA is also a ripe target for future efforts 
to improve this modeling framework. Here we have chosen objective functions that lead to the maximization of 
putatively important fluxes, but unlike many other constraint-based models, there was no specific biomass or 
other objective flux to use. For the L. lactis system, we assessed an objective function that maximized all efflux 
reactions (similar to the E. coli system), but found that it led to worse performance (Fig. S13). Despite the worse 
performance, we still observed that the best performing constraint approach (which was once again LK-DFBA 
(HP) for noiseless data even with the different objective function) was still consistent between the wildtype and 
perturbed systems. Optimizing the weight of each flux or metabolite in the objective function could lead to even 
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lower observed errors compared to experimental data and may also provide insight into the selective pressures 
on real biological systems.

Conclusion
In this work, we have shown that the LK-DFBA modeling framework can be improved by implementing more 
complex constraints with increased biological relevance. We showed that there is no single best LK-DFBA 
constraint approach for all models, and that the optimal approach depends not just on the topology of the 
biochemical system but also its kinetics and parameters. Importantly, though, the constraint approach that per-
forms the best in recapitulating training data outperforms other constraint approaches at predicting the results 
of metabolic perturbations on the same system, suggesting that selecting between multiple different types of 
constraints improves model predictivity with limited contributions to overfitting. With these new constraint 
approaches, we are able to model a variety of metabolic systems more accurately than if we were to just use the 
original LK-DFBA (LR) method. Moreover, based on comparisons to experimental data, we showed that the 
improved LK-DFBA approaches can reasonably capture the qualitative dynamics of important metabolites and 
fluxes of interest to researchers. While these predictions may not be smooth or quantitative, the qualitative pre-
diction of trends of metabolite dynamics in response to major perturbations gives valuable insight for designing 
experiments that implement these genetic modifications. Moreover, we expect this computational framework to 
(with future effort) provide the potential for computationally reasonable scale-up to the genome scale. While the 
acquisition of quality metabolomics and fluxomics data to build the constraints in LK-DFBA is still a challenge, 
the work we have presented here lays the groundwork needed to take full advantage of these types of datasets as 
they become increasingly more readily available.

Data availability
The code and datasets generated during the current study are available at https:// github. com/ gtsty lab/ lk- dfba- 
const raints.
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