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ABSTRACT Motor imagery (MI) based brain-computer interface (BCI) is a research hotspot and has

attracted lots of attention. Within this research topic, multiple MI classification is a challenge due to the

difficulties caused by time-varying spatial features across different individuals. To deal with this challenge,

we tried to fuse brain functional connectivity (BFC) and one-versus-the-rest filter-bank common spatial

pattern (OVR-FBCSP) to improve the robustness of classification. The BFC features were extracted by

phase locking value (PLV), representing the brain inter-regional interactions relevant to the MI, whilst the

OVR-FBCSP is used to extract the spatial-frequency features related to the MI. These diverse features were

then fed into a multi-kernel relevance vector machine (MK-RVM). The dataset with three motor imagery

tasks (left handMI, right handMI, and feetMI) was used to assess the proposedmethod. Experimental results

not only showed that the cascade structure of diverse feature fusion and MK-RVM achieved satisfactory

classification performance (average accuracy: 83.81%, average kappa: 0.76), but also demonstrated that

BFC plays a supplementary role in the MI classification. Moreover, the proposed method has a potential to

be integrated into multiple MI online detection owing to the advantage of strong time-efficiency of RVM.

INDEX TERMS Multiple motor imagery, filter-bank common spatial pattern (FBCSP), phase locking value

(PLV), brain functional connectivity (BFC), multi-kernel relevance vector machine (MK-RVM).

I. INTRODUCTION

Motor imagery (MI) is the imagination of actions and is

associated with a specific activation in the brain. MI has been

widely used in sport training, neurological rehabilitation, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Zia Ur Rahman .

brain-computer interface (BCI). For instance, the EEG-based

MI BCI can enable a user to control a system based on the

user’s imagery movements of limbs [1]. Moreover, the MI

BCI can be used in the stroke rehabilitation training [2].

Due to the high temporal resolution and non-invasive record-

ing manner, EEG is widely used in brain studies and BCI

applications. The brain activity recorded via EEG can be
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classified depending on the frequency of the signal. In par-

ticular, the alpha activity (8-12 Hz) and the beta activity

(12-30 Hz) are mostly related to MI [3]. In addition, the

increase or decrease in the activity at a certain frequency

band locked to the onset of the MI refer to the event-related

synchronization and desynchronization (ERS/ERD), respec-

tively [4]. And thus, ERS and ERD are always used for

characterizing MI [4]. Typically, the imaginary movements

are four categories, which are left hand movement, right

hand movement, movement of the feet, and movement of

the tongue. More than two categories included in the classi-

fication forms multi-class classification. To extract effective

features is quite important for the MI classification.

The feature extraction of MI-based EEG is a process

that extracts discriminative information from filtered EEG

signals. And such extracted information directly influences

the classification accuracy of a classifier for MI. Typically,

the basic feature extraction methods include the time-domain

approaches and frequency-domain techniques. For exam-

ple, autoregression and quaternions are typical time-domain

methods and Fourier transform is based on frequency-

domain [5]–[8]. However, independent use of time-domain

or frequency-domain method may cause absence of fea-

tures due to the ignorance of the spectral information or

temporal features. Therefore, time-frequency domain tech-

niques seem to satisfy both sides which combines spec-

tral and temporal information together [9]. For example,

Zhou et al. used a cascade structure in which the dis-

crete wavelet transforms (DWT) decomposed EEG signals

whereas the Hilbert transform (HT) could transform the

decomposed one to wavelet envelop [10]. In addition to time-

frequency domain techniques for feature extraction, the spa-

tial domain analysis is also widely used for the classification

of MI-based EEG signals [11]. Specifically, common spatial

pattern (CSP) as well as its variants such as the common

spatio-spectral pattern (CSSP) [12], the common sparse

spatio-spectral patterns (CSSSP) and sub-band common spa-

tial pattern (SBCSP) have attracted many interests [13], [14].

The variants of CSP aim to speed up the computational

efficiency and improve classification accuracy. In this study,

we propose a one versus the rest filter-bank common spatial

pattern (OVR-FBCSP) method for the feature extraction of

MI-based EEG.

The feature extraction can be considered in terms of

the different domains of the signal. However, the infor-

mation between different nodes of the electrode can show

the property of neuron populations and thus neural con-

nectivity should be paid attention during feature extraction.

Recently, through the analysis of neural connectivity in

the brain, the general function and communication between

different regions of the brain are described. For example,

Liang et al. [15] and Lee et al. [16] proved the functional

connectivity in the process of motion imagination planning.

Gong et al. proposed a brain network modeling method based

on time-frequency cross mutual information of four classes

of MI. Through statistical analysis and topological feature

analysis, they observed significant differences in response

level, response time, and activation target of four classes of

MI tasks [17]. Moreover, Xu et al. proposed to use phase

synchronization information to extract features to classify

more than one category of MI of the same limb [18]. More

remarkable is that Li et al. combined ERD/ERS analysis

with dynamic networks in different MI stages to explore the

dynamic processing of MI information. The results showed

that the specific dynamic network structure conformed to the

ERD/ERS evolution model [19].

Apart from the feature extraction method influences the

accuracy and running speed of MI-based EEG classifi-

cation, the classifier is another important issue. Typical

classifier includes support vector machine (SVM), linear

discriminant analysis (LDA), logistic regression, and arti-

ficial neural network (ANN) [8], [20], [21]. To further

improve the classification accuracy of MI-based EEG signal,

deep learning approach and recurrent neural network have

been widely paid attention to [22], [23]. For example,

Cheng et al. used deep neural network (DNN) as the

classifier for the exploration of MI-based EEG pattern in

stroke patients [24]. And DNN method (74.9%) gained a

higher classification accuracy than that with SVM (67.7%).

To achieve a trade-off between computational efficiency and

classification accuracy, the multi-kernel method has attracted

many interests [25]. In MI-based EEG classification, due to

the variability of the EEG signal, single kernel function can-

not be suitable for all imaginary movements. Here, we use a

multi-kernel relevant vector machine (MK-RVM) to classify

features of selected band subsets.

In this paper, we propose a cascade structure of one-versus-

the-rest filter-bank common spatial pattern (OVR-FBCSP)

method and MK-RVM for the classification of three imagery

movements (left-hand movements, right-hand movements,

and feet movements). This dataset was shared by the intel-

ligent information processing and human-computer interac-

tion laboratory at the Anhui University. The arrangement

of this work is organized as follows. Section 2 shows the

method of our study, which includes the experiment and data

acquisition, signal preprocessing, feature extraction, feature

selection, and classifier. Section 3 provides results of the

method assessment. Discussions are presented in section 4.

Finally, we give a conclusion in section 5.

II. METHOD

In this section, we focus on data acquisition and preprocess-

ing, feature extraction, feature selection, and the classifier.

A. DATA ACQUISITION AND PREPROCESSING

The data were collected at the intelligent information pro-

cessing and human-computer interaction laboratory of Anhui

University. Six healthy subjects ranged from 22 to 28 years

old participated in theMI experiment. During the experiment,

subjects sit in front of a computer screen. The duration of each

trial was 10 s and the onset of each trial was hinted with a

‘‘beep’’ tone.
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Then the screen displays the cue arrows with the dif-

ferent directions which promote the subject to perform

imagerymovements (left-handmovements, right-handmove-

ments, and feet movements). To prevent the subject from

pre-imagining and to obtain stable EEG signals, the appear-

ance of the arrows during the experiment was random with

a duration of 6 s. After that, the computer displays a black

screen and thus the subject can relax and wait for the next trial

experiment. The data segments between 0.5-2.5 s (0.5-2.7 s

for Subject 3, 0.5-2.6 s for Subject 5) relevant to the onset

of visual cues presented to participants are used in this study.

Each subject underwent 6 sessions, each of which comprises

75 trials (The numbers of trials for each category are not

identical due to randomization). During the experiment, EEG

signals were collected from the scalp using a headset with

14 electrodes (Fp1, Fp2, FC3, FCz, FC4, C3, Cz, C4, CP3,

CPz, CP4, O1, Oz, and O2). Nine of them were used in this

study (see Fig. 1). The sampling frequency was 250 Hz, and

the data were sampled with a notch filter of 50 Hz and a

band-pass filter of 0.5-100 Hz [26]. The details can be found

in [27]. Then, we used the EEGLAB toolbox to do the data

preprocessing, which included baseline subtraction, common

average reference (CAR), and band-pass filtering. As the

amplitude and spectrum power in µrhythm (8-12 Hz) and

βrhythm (14-30 Hz) are mostly relevant to the MI, we chose

six filter bands (7-12 Hz, 12-17 Hz, 17-22 Hz, 22-27 Hz,

27-32 Hz, 7-30 Hz) to extract features.

FIGURE 1. The layout of EEG electrodes according to the standard
international 10-20 system. Red points are the electrodes used in this
study.

B. FEATURE EXTRACTION

The feature extraction was performed by a combination of the

FBCSP method and the brain functional connectivity (BFC)

method.

1) FILTER-BANK COMMON SPATIAL PATTERN

The projection matrix C of CSP is constructed for filtering

band data. In this paper, the first three pairs and the last three

pairs of eigenvalues in the projection matrix are selected, and

a total of six independent CSP filters are used for spatial

filtering. Then we define the triple classes of MI EEG signals

as X1, X2, and X3, respectively. Then the covariance model

of multiple-class MI space is shown as following [28]:

Ri =
XiX

T
i

trace(XiX
T
i )

, i = 1, 2, 3 (1)

The dimension of Xi is the multiplication of the number of

channels, the time window, and the sampling frequency.Ri is

the spatial covariance of EEG signals for each MI class. Then

the composite covariance matrix can be denoted as:

R = R1 + R2 + R3 (2)

The singular value decomposition of covariance matrix R

can be carried out as:

R = U03CU
T
0 (3)

where U0 is the unitary matrix of principal components, and

3C is the diagonal matrix of eigenvalues. After calculating

singular value decomposition of eigenvector and eigenvalue

matrix, the transformation matrix of covariance matrix can be

obtained:

Q = 3
−1/2
C UT

0 (4)

In this paper, we need to calculate threeOVR-CSP patterns.

For example, the left-hand MI CSP versus the rest CSP can

be calculated as:

R̃1 = R̃2 + R̃3 (5)

Then we transform R1 and R̃1 into:

E1 = QR1Q
T , Ẽ1 = QR̃1Q

T (6)

Furthermore, we do eigenvalue decomposition for

E1 and Ẽ1:

E1 = U131U
T
1 , Ẽ1 = U13̃1U

T
1 (7)

By combining the equation (1)-(7), we can get:

(QTU1)
TR1(Q

TU1)+ (QTU1)
T R̃1(Q

TU1) = I (8)

where U1 is the common eigenvector matrix. Then we can

get the CSP projection matrix C1 = UT
1Q and the selected

features of left-hand MI can be obtained as following [29]:

f1 = log

(

diag(C1XiX
T
i C

T
1 )

n

)

(9)

where n is the number of samples in the class i. Six frequency

bands for each trial need 6× 6 CSP filters for feature extrac-

tion. And six eigenvalues extracted from each frequency band

aremerged to obtain 36 eigenvalues. Thenwe carried out such

feature extractionwith normalization for each frequency band

and thus the normalized feature can be obtained as:

Fi =
{

fi,1, fi,2, fi,3, fi,4, fi,5, fi,6
}

, i = 1, 2, 3 (10)

Furthermore, three classes of OVR-FBCSP features can be

obtained as:

Ffbcsp = [F1,F2,F3] (11)

Ffbcsp of each trail is used to form 108 eigenvalues.
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2) FUNCTIONAL BRAIN NETWORK

In this study, we use the phase locking value (PLV) to

calculate brain connectivity as it has good performance in

functional brain network analysis [18], [30]. The expression

of PLV is as follows:

PLV =
1

N

∣

∣

∣

∣

∣

N
∑

k=1

exp
(

j
(

σ1(t, k)− σ2(t, k)
)

)

∣

∣

∣

∣

∣

(12)

where N is the total number of sample points in a trial,

σ1(t, k) − σ2(t, k), k = 1, 2, . . . ,N represents the phase

difference of a pair of electrodes at time t . Due to the binary

network will lose a lot of information in the process of

binarization, we choose the weighted network as the feature

of this study. PLV value is between [0, 1], in which 0 is no

connection between channels whereas 1 is the perfect con-

nection between channels [18]. We use four measures for the

evaluation of PLV which are degree, clustering coefficient,

average path length, and local efficiency. These measurement

methods are obtained by graph theory analysis through the

brain connection toolbox [31].

(1) Degree: The degree of a node represents the number

of edges of a node, which can be calculated with the

following formula:

Di =
∑

j∈G

wij (13)

where G is the set of all nodes in the network and wij is

an element of the weighted network matrix. In the weighted

network, the higher degree of a node, the more important it

is.

(2) Clustering coefficient: The clustering coefficient indi-

cates the clustering degree of brain function network

nodes, which can be calculated with the following

formula:

Ci =
2R

Di(Di − 1)
(14)

where R represents the number of neighboring nodes that

directly connected to the node i.

(3) Average shortest path length: The average shortest path

length reflects the information transferabilitywithin the

brain function network, which can be expressed as:

L =
1

M (M − 1)

∑

i≥j

Lij (15)

where Lij is the shortest path length between node i and j,M

is the number of nodes.

(4) Local efficiency: Local efficiency is used to measure

the ability of local information transmission and pro-

cessing which can be expressed as:

Elocal(G) =
1

M

∑

i∈M

Eglobal(Gi) (16)

where M is the number of nodes. Eglobal(Gi) is the global

efficiency of node i.

Eglobal(G) =
1

M (M − 1)

∑

i 6=j∈M

1

Lij
(17)

The measures of the PLV are extracted as the features of

functional brain network.

3) FEATURE FUSION

The feature dimension of clustering coefficient and local

efficiency extracted in each frequency band of each trail are

Channels × Trials, while the feature dimension of average

node degree and average shortest path length extracted in

each frequency band of each test are 1× Trials.

To check the effect of average shortest path length, we set

up two combined schemes (PLV1: clustering coefficient,

local efficiency, and average node degree; PLV2: cluster-

ing coefficient, local efficiency, average node degree, and

average shortest path length) for the feature fusion with

FBCSP [31]. Finally, FBCSP features and PLV complex

network measure features were combined:

F = [Ffbcsp,Fplv] (18)

C. FEATURE SELECTION

In this study, we use the F-score feature selection method as

it is a simple but effective method for the selection of the

discriminative power of each feature in a feature set [33].

The dataset is divided into positive and negative classes. For

example, the left hand is defined as positive class n+ whereas

the right hand and feet are defined as negative class n−.

We use F-score to sort the features and select the top n feature

sets in the ranking list. And the value of n varies from 1 to half

of the total [34]. Given the train dataset xk , k = 1, 2, . . . ,m.

Then, the F-score of the f th feature of the dataset is defined

as [35]:

Sf =
(x̄

(+)
f − x̄f )

2 + (x̄
(−)
f −x̄f )

2

1
n+−1

n+
∑

k=1

(

x
(+)
k,f −x̄

(+)
f

)2
+ 1

n−−1

n−
∑

k=1

(

x
(−)
k,f − x̄

(−)
f

)2

(19)

where x̄f , x̄
(+)
f and x̄

(−)
f are the mean value of the f th fea-

ture on the whole training dataset, the mean value on the

positive dataset, and the mean value on the negative dataset,

respectively. x̄
(+)
k,f is the eigenvalue of the f th feature of the k th

positive class, and x̄
(−)
k,f is the eigenvalue of the f th feature of

the k th negative class. The great value of Sf indicates strong

discrimination of features within different classes.

D. CLASSIFIER

In this paper, we use MK-RVM to realize multi-class

MI recognition. The log marginal likelihood ℓ(A) =

logP(Y|K,A) = log
∫

P(Y|K,W)P(W |A )dW which can
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further be expressed as [36]:

ℓ(A) =

C
∑

c=1

−
1

2

[

N log 2π + log |C| + yTc C
−1yc

]

(20)

where C = I + KTA−1K, K is the kernel. A is the scales

matrix. yc is the c
th column of regressor target Y ∈ ℜC×N .

W ∈ ℜC×N is the regressor that expresses weight for a

specific class. And the log marginal likelihood can be also

decomposed into:

ℓ(A) = ℓ(A−i)+

C
∑

c=1

1

2

[

log γi−log(γi + si)+
q2ci

γi + si

]

(21)

where si is the sparsity factor and qci is the new multi-class

quality factor. The sparse factor is the measure of overlap

between a sample ki and the ones already included in the

model. The quality factor qci measures the quality of a sample

that describes a specific class. αi is a hyperparameter.

We can get stationary points with the derivation

∂ℓ(A)/∂αi = 0 and αi can be expressed as:

αi =
Cs2i

C
∑

c=1

q2ci − Csi

, if

C
∑

c=1

q2ci > Csi

αi = ∞, if

C
∑

c=1

q2ci ≤ Csi (22)

SoA can be updated with Eq.(22) whereas the regressorW

can update as:

W = (KKT + A)−1KYT (23)

In addition, Y can be updated as:

ỹcn← ŵT
c kn−

εp(u)
{

Nu(ŵ
T
c kn−ŵ

T
i kn, 1)8

n,i,c
u

}

εp(u)

{

8(u+ ŵT
i kn − ŵT

c kn)8
n,i,c
u

} , c 6= i

ỹcn ← ŵT
c kn − (

∑

j 6=i

ỹjn − ŵT
j kn), c = i (24)

where ỹcn is a standardized noise model, u ∼ N (0, 1) and 8

the Gaussian cumulative distribution function. kn is each row

of kernel K.

In this paper, we use the 5-fold cross-validation to do the

classification [6]. The whole procedure can be described as

follows:

Step 1 Preprocessed each session was randomly divided

into five sets, of which four sets are training samples (80%)

and the remaining set is testing samples (20%).

Step 2 FBCSP and PLV measures were calculated, which

was followed with feature fusion.

Step 3 Fused features were selected by the F-score feature

selection method.

Step 4 The selected features were fed into the MK-RVM

classifier.

E. PERFORMANCE MEASURE

Some measurement performances are used in this paper. The

classification accuracy can be expressed by the following

formula [34], [37]:

Accuracy =
(TP+ TN )

Ntotal
Ntotal = TP+ TN + FP+ FN (25)

where TP is true positive, TN is true negative, FP is false

positive, FN is false negative. (TN + TP) is the number of

correctly classified samples. Ntotal represents the total num-

ber of test samples.

Precision and recall are two measures widely used in the

field of statistical classification, which are used to evaluate

the classification results [37].

Precision =
TP

(TP+ FP)
(26)

Recall =
TP

(TP+ FN )
(27)

As a performance indicator of BCI, kappa is often used

to measure multiple classes of problems. It is considered

more robust than the overall agreement (accuracy) because

it needs to take into account the chances of the agreement

occurring [34]. We can be expressed as [38]:

Kappa =
p0 − pe

1− pe
(28)

where p0 is the overall agreement of the test samples, which is

equal to the accuracy. pe is the chance agreement probability

value of the test samples, which can be obtained by the

following formula:

pe =

∑

i aibi

Ntotal × Ntotal
i = 1, 2, 3 (29)

where ai and bi represent the sum of ith class real samples and

ith class predicted samples of the confusion matrix, respec-

tively. Ntotal is the total number of test samples.

The receiver operating characteristic (ROC) is an index

to evaluate the performance of classifiers. In ROC space,

the abscissa of each point is the false positive rate (FPR)

and the ordinate is the true positive rate (TPR), which

describes the trade-off between TP and FP.

FPR =
FP

(FP+ TN )
(30)

TPR =
TP

(TP+ FN )
(31)

where FPR represents the probability that a negative case is

misclassified into a positive one, TPR represents the proba-

bility of pairing positive examples.

III. RESULTS

In the performance assessment, the data of each subject

were divided into five equal sets randomly, of which four

sets were for training and the remaining set was for testing.

155594 VOLUME 8, 2020
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FIGURE 2. Classification accuracies for subject 1 to subject 6. The error-bar is the standard error of
mean (SEM) of the accuracies of 5-fold cross-validation for each subject with different methods.

FIGURE 3. Kappa value for subject 1 to subject 6. The error-bar is the standard error of mean (SEM) of
kappa of 5-fold cross-validation for each subject with different methods.

Each set was used as the testing samples one time to per-

form the 5-fold cross-validation. To demonstrate the clas-

sification performance, we compared the proposed method

(FBCSP+PLV2) to the other four methods (PLV1, PLV2,

FBCSP, FBCSP+PLV1, FBCSP+PLV2) and their accuracies

are shown in Fig. 2. The best classification accuracy was

found in Subject 4 and the classification accuracy of the

proposed method is 94.89%±2.91% (Mean±SEM). Kappa

as a measure multi-class classification performance [34] and

the result is shown in Fig. 3. The kappa value for Subject 4

with the proposed method can reach 0.923±0.046.

To intuitively show the brain activity during MI, we draw

topographical maps of OVR-FBCSP features extracted from

EEG signals of subject 1. As mentioned in the section of

feature extraction, selected features are transformed with

corresponding projection matrix C in which the first three

pairs of eigenvalues represent the selected features and the

last three pairs are fused with the rest features. As can be seen

from Fig. 4, when the subject does the leftward/rightward

MI, the contralateral hemisphere is highly active. In addition,

when the subject does the MI of feet, the central area of

the selected nodes is active whereas the peripheral of the

nine nodes is inactive with the combination of other two

MI protocols (left-hand and right-hand movements). The

connectivity matrix for each MI trial was constructed based

on the EEG segment firstly, then they were divided to three

groups according to the label. Fig. 5 showsmean connectivity

matrices of left hand, right hand, and feet MI for Subject 1.

The average connectivity matrix of left hand, right hand and

feet MI is similar, and the diagonals of the three connectivity

matrices are relatively large, which proves that the strong syn-

chronization mainly occurs in temporal and parietal channels.

VOLUME 8, 2020 155595
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FIGURE 4. Topographies of FBCSP weights for subject 1. For each line, the left side is the FBCSP weights for MI of the left hand, right hand, and feet
whereas the right side is FBCSP weights of the counterpart.

FIGURE 5. The mean connectivity matrix obtained from motor imagery EEG for Subject 1.

However, the upper right and lower left corners are dark blue,

which indicates that the synchronization between frontal and

occipital channels is weak.

Fig. 6 shows the confusion matrix of the sum of 5- fold

cross-validation of 6 sessions for each subject under the

FBCSP+PLV2 method. Fig. 7 shows the confusion matrix of

the sum of 5-fold cross-validation of 6 sessions for each sub-

ject and the ROC curve of each subject and the average curve

of three categories for each subject under the FBCSP+PLV2

method. We can see that this method has good classifica-

tion performance and robustness. We calculate the precision

and recall rate according to the confusion matrix under the

FBCSP+PLV2 method, as shown in Table 1. Table 2 com-

pares the FBCSP+PLV2 method with the other four methods

and uses a t-test to calculate the p-value.

Furthermore, we also compared the time consumption

among the adopted five methods (Table 3). The time cost

is the averaged time of 5-fold cross-validation of the testing

TABLE 1. Averaged precision and recall of three categories for each
subject (6-session for each subject) under the FBCSP+PLV2 method.

TABLE 2. Paired t-test (p-value) between the FBCSP+PLV2 and the other
four methods.

time for six subjects. The method combined by FBCSP and

PLV2 has more features than the other four methods and thus

takes a long-time cost. However, compared with SVM as the

baseline, RVM showed stronger timely effectiveness.
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FIGURE 6. The confusion matrix obtained from motor imagery EEG for Subject 1 to Subject 6 under the FBCSP+PLV2 method. Each row represents the
forecast category, and each column represents the real category.

FIGURE 7. The multiple MI ROC obtained from motor imagery EEG for Subject 1 to Subject 6 under the FBCSP+PLV2 method, where Class1 is the left
hand category, class2 is the right hand category, and class3 is the feet category.

IV. DISCUSSION

In this paper, we focus on classify three classes of MI data

derived from the EEG signal. First, the collected data are

pre-processed with the selection of the time window and

frequency band. Then we extract features of pre-processed

data, using the fusion of FBCSP and PLV complex network

measure. Finally, we feed selected features into MK-RVM

to classify the multiclass of MI. Here we aim to discuss

the proposed classification structure in terms of time win-

dow optimization, feature fusion, classifiers, MI experiment,

Comparison of different training protocols of MI tasks, and

the limitation and prospect of the experiment.

VOLUME 8, 2020 155597



H. Wang et al.: Diverse Feature Blend Based on FBCSP and BFC for Multiple Motor Imagery Detection

TABLE 3. Averaged total testing time for each subject (6-session for each
subject) with 5-fold cross-validation.

A. TIME WINDOW SELECTION

The selection of the time window can remove the segmen-

tation of EEG signals that have nothing to do with MI or

eliminate data that is not the key time point of MI [27]. Our

previous study has also shown that choosing the optimal time

window for each subject can indeed improve the classifi-

cation accuracy [39]. Although the optimal time windows

of each subject’s MI are different, it is found that the time

between 0-2.5 s after the onset of visual cue can benefit the

classification considering adequate sample points for sub-

sequent data processing [40]. In this study, data between

0.5-2.5s (Subject 3 takes 0.5-2.7 s, Subject 5 takes 0.5-2.6 s)

after the onset of the visual cue direction were used.

B. FEATURE FUSION STRATEGY

In this paper, by fusing the features of FBCSP and PLV

complex network measure, we have achieved a good classifi-

cation performance of multiple classes of MI. Feature fusion

technique has also been applied in some other EEG-analysing

related tasks. Ai et al. proposed a feature extraction method

that combined the features of brain function network and

local characteristic-scale decomposition (LCD) together. The

good performance of this method was verified on the

self-designed real-time BCI robot control and has put for-

ward four classes of dataset [41]. In addition, to measure

the complexity of EEG time series, Wang et al. proposed

a fusion entropy (sample entropy, approximate entropy, and

spectral entropy) analysis method for EEG and EOG sig-

nals. Results showed that the average accuracy of the fusion

entropy analysis method combined with EOG and EEG can

reach 99.1±1.2% [42]. Furthermore, Zhu et al. discussed the

performance of multi-user MI-BCI idle detection based on

common spatial pattern (CSP) and brain network features and

proposed several cross-training feature fusion strategies [30].

The advantage of feature fusion was also found in other

classification studies [43]–[45]. Based on the above studies,

we can see that feature fusion outperforms single feature in

the classification.

C. CLASSIFIER

The classifier selection plays a key role in the recognition of

multipleMI tasks. MK-RVMhas shown good performance in

many aspects of classification tasks [36], [46], [47]. However,

most of the studies on multi-class MI used multiple binary

RVM. For example, Dong et al. added chaos dynamics into

the kernel function of the RVM classifier in the framework

of one versus one common spatial pattern (OVO-CSP) and

thus made it excel in multi-class MI tasks [48]. Zhang et al.

combined the location of EEG dipoles with CSP to extract

TABLE 4. Different method for MI classification.
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features from multi-class MI and extracted features were fed

as the input to RVM [49]. Furthermore, Dong et al. proposed

a new hybrid kernel RVM in which fused Gaussian kernel

and polynomial kernel together. In MI tasks, by using the

OVO-CSP strategy, phase space CSP (PSCSP) features were

extracted and fed into the RVM classifier [50]. However,

no relevant MK-RVM research has been found in multiple

classes of MI tasks based on EEG signals and thus we use the

MK-RVM classifier to classify three classes of MI tasks, and

the best average accuracy can reach 83.81% (kappa: 0.76).

D. COMPARISON OF DIFFERENT TRAINING PROTOCOL

OF MI TASKS

Here we summarize the related research of MI in recent years

(Table 4). It can be seen from the Table 4 that the research

on multiple classes of MI has gradually increased, but most

of the research is still focused on offline data analysis, and

there are few online analysis experiments. Comparedwith tra-

ditional classifiers and deep learning methods, the proposed

method can achieve a medium to high classification accuracy.

We use FBCSP and PLV feature fusion, and then use

MK-RVM for multiple MI recognition. Compared with the

other latest methods (see Table 4), the method based on

the feature fusion of FBCSP and PLV achieved better per-

formance. This is due to the diverse features representing

different MI-related information and help in the classification

of MI tasks. The results demonstrated that the combination of

FBCSP and PLV can extract discriminative features of both

spatial-frequency and brain inter-regional interactions rele-

vant to MI tasks. These complementary features could also

benefit the understanding of underlying neural mechanisms

of MI.

E. THE LIMITATION AND PROSPECT OF THE EXPERIMENT

There are some limitations to this study. First, our study per-

formed the classification on three MI categories and the sam-

ple size for each category was not large. It would be better to

evaluate the proposed method with more categories and more

samples. Second, the proposed method is still an offline one

and the processing of fused features takes a relatively long

time. Moreover, the analysis has shown that in certain sub-

jects, the selected channel number and frequency band have

different optimal choices for different subjects [54]–[57].

Therefore, we will conduct more experiments on channel

number and frequency bands in different subjects in future

studies to verify this hypothesis.

V. CONCLUSION

In this paper, we proposed a cascade structure of feature

fusion and MK-RVM for the classification of three-class MI

tasks. The feature fusion integrates the OVR-FBCSP with

PLV. The average classification accuracy reached 83.81%.

The proposed method has a potential to be applied in

real-time MI-based BCI applications.
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