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Abstract: This manuscript consist of diverse forms of lump: lump one stripe, lump two stripe,
generalized breathers, Akhmediev breather, multiwave, M-shaped rational and rogue wave solutions
for the complex cubic quintic Ginzburg Landau (CQGL) equation with intrapulse Raman scattering
(IRS) via appropriate transformations approach. Furthermore, it includes homoclinic, Ma and
Kuznetsov-Ma breather and their relating rogue waves and some interactional solutions, including
an interactional approach with the help of the double exponential function. We have elaborated the
kink cross-rational (KCR) solutions and periodic cross-rational (KCR) solutions with their graphical
slots. We have also constituted some of our solutions in distinct dimensions by means of 3D and
contours profiles to anticipate the wave propagation. Parameter domains are delineated in which
these exact localized soliton solutions exit in the proposed model.

Keywords: NLSE; lump solitons; breathers; multiwave
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1. Introduction

The analysis of the solitary wave solutions (SWs) for various nonlinear partial differ-
ential Equations (NLPDEs) play a significant role in different aspects of mathematical and
physical phenomena [1–5]. Mainly natural phenomena arising in applied science, such as
nuclear physics, chemical reactions, optical fibres [6–10], fluid mechanics, plasma, physics
and ecology, can sometimes be modeled and described by NLPDEs [11–21]. Construct-
ing the SWs of these equations has become a global interest in recent years. Hence, an
enormous number of mathematical experts have attempted to invent various approaches
by which one can obtain the exact solutions of such equations. Nowadays, some new
effective techniques have been residential and well known [22]. To learn the mechanism of
phenomena for the NLPDEs in physics and engineering, their SWs are calculated. There
are many integration architectonics, such as Lie symmetry analysis [23], Backlund trans-
formations [24], conservation laws, symmetry bifurcation [25], extended tanh-function,
spontaneous symmetry [26], Painleve and Lie symmetries [27], CESTAC Method [28],
polynomial law [29], computational architectonic, Semi inverse technique [30], HBM [31],
mapping algorithm [32], (G′/G) expansion algorithm [33], Kudryashove architectonic [34],
auxiliary equation scheme [35] and exp((−ϕ′/ϕ)η)-expansion scheme [36]. The Riccati-
Bernoulli sub-ODE method, optimal homotopy asymptotic approach, Exp-function al-
gorithm, sine-cosine process, tanh-sech mechanism, extended tanh-scheme, F-expansion
method, homogeneous balance technique, Jacobi elliptic function mechanism and several
others have been developed to obtain SWs. A massive number of NLPDEs can be purely
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solved by the abovementioned methods. However, there is no a specific approach by which
we can deal with all NLPDEs. In addition, some NLPDEs cannot be effortlessly solved by
most traditional methods. The proposed method, which allows us to execute tedious and
sophisticated algebraic calculations, is utilized to establish solitary wave solutions, peaked
wave solutions and exact wave solutions for NLPDEs.

The NLPDEs are mainly valuable zones for nonlinear optics to reveal the proliferation
distinctively short pulse in ultra-fast signal routing and telecommunication and light pulse
propagation in condensed matter [37–41]. There are lots of recognized model, such as the
modified KP-Equation [24], Fokas Equation [23], rth Dym Equation [21], Pochhammer-
Chree model [14], modified Equation [11], fractional NLSE [20], fiber Bragg gratings
model [29], Einstein’s vacuum field Equation [27], double-chain model [13], Wazwaz
Benjamin model [12], modified Veronese Web Equation [42], (KMN)-Equation [30], Sawada
Kotera Equation [31] and Fokas–Lenells model.

Recently, lump and interactional solutions (LISs) have shown significance to depict the
wave features for various NLPDEs. For instance, LISs were studied by Zhou et al. with the
Hirota Satsuma model [43], LIsS were found by Wang et al. with the Burgers model [44],
Wu et al. worked on lump, periodic lump solutions in the KP model [45] and, similarly, Li
et al. studied various lumps for BLMP model [46]. Breather soliton is a nonlinear wave in
which energy is localized in space but oscillates in time, or vice versa, and has been newly
reported in an optical fiber cavity. Cavity solitons (CSs) are localized pulses of light that can
be wound up in nonlinear optical resonators and have sparked imperative study curiosity
in the perspective of micro resonator-based frequency comb generation, and are found
in a range of subfields of natural science, for instance fluid dynamics, solid-state physics,
plasma physics, molecular biology, chemistry and nonlinear optics [47]. Recently, Rizvi
et al. investigated breathers for NLEE [15], Seadawy et al. interpreted breather solutions
for NLEE [42], Ahmed et al. studied breathers for the general (2 + 1)-rth dispersionless
Equation [21], and Ahmed et al. found kinky breathers for the nonlinear model [48], among
many other studies. Multiwave solutions (MS) for nonlinear models have its own worth.
Seadawy et al. worked on MS for the HS-Equation [15], Ahmed et al. studied MS for the
(2 + 1)-rth dispersionless Equation [21], Rizvi et al. reported MS for NLEE [42], Seadawy
et al. worked on MS for the nonlinear model [48], Wazwaz analyzed rogue wave and
breathers [49], etc.

In this template, we begin our analysis by taking the CQGL-equation with IRS term [22];

i∆z +
1
2

∆tt + γ|∆|2∆ = iδ∆ + iβ∆tt + iε|∆|2∆− ν|∆|4∆ + iµ|∆|4∆ + Tr

(
|∆|2

)
t
∆, (1)

where z is the normalized propagation distance, t is the retarded time and ∆ is the normal-
ized envelope of the pulse. For a laser system, the interpretation of distinct coefficients is as
follows: β shows spectral filtering or gain dispersion, µ expresses higher-order correction to
the nonlinear absorption or amplification, ε shows nonlinear gain, ν shows a higher-order
correction term to the nonlinear refractive index, Tr shows the IRS coefficient, γ displays
the positive Kerr effect (or negative Kerr effect if negative) and δ is a constant gain (or loss
if negative). The stated equation is a canonical model for weakly nonlinear, dissipative
systems and one of the most studied nonlinear equations in the physics community. It
can be used to describe a vast variety of nonlinear phenomena, such as Bose–Einstein
condensation, superconductivity, strings in field theory, superfluidity, lasers and liquid
crystals.

In order to solve Equation (1), we insert ∆ = p + iq, where |∆| =
√

p2 + q2. Thus,
Equation (1) may be converted into real and imaginary parts:{

p3γ + q2γp + p5ν + 2p3q2ν + q4νp + δq + p2εq + q3ε + p4µq + 2p2q3µ + q5µ + 1
2 ptt + βqtt − qz = 0,

−δp− p3ε− q2εp− µp5 − 2µp3q2 − µq4 p + γp2q + γq3 + νp4q + 2νp2q3 + νq5 − βptt +
1
2 qtt + pz = 0.

(2)
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The document for the upcoming sections will be detailed in a sequence: in Section 2,
we will evaluate the lump solutions for the proposed model form with few graphical slots.
In Section 3, there will be a concise discussion of lump one stripe solutions with some
3D and contour graphical slots. In Section 4, we will construct lump two stripe results
with some suitable profiles. Section 5 consist of a Ma-breather (MB) and its relating rogue
wave. Similarly, in Section 6, we will evaluate the Kuznetsov-Ma breather (KMB) with
some suitable 3D and contour shapes. In Section 7, we will find the generalized breathers
(GB) for proposed equation with their relating figures. Section 8 includes Akhmediev
breathers (AB) along with some profiles for the concerned model. Similarly, Section 9 will
detail the procedure to construct standard rogue waves. In Section 10, we will explain
the methodology for finding multiwave solutions. In the same way, we will compute
homoclinic breathers for the proposed equation in Section 11. There will be M-shaped
solitons in Section 12. In Section 13, there will be an interaction approach for the proposed
model. We will find kink cross-rational (KCR) solutions in Section 14. Section 15 includes
periodic cross-rational (PCR) solutions along with some 3D and contour profiles for the
concerned model. Section 16 contains the results and a discussion about our newly achieved
solutions and we will make an suitable comparison with earlier work. Finally, in Section 17,
we will provide some concluding annotations.

2. Lump Solution

For the lump solutions of Equation (2), we apply the subsequent ansatz [43,44]:

p =
6
ρ
(ln g)z , q =

6
ω
(ln h)z , (3)

and get the proceeding form:

2p2γωg2h3gz + 2q2γωg2h3gz + 2p4νωg2h3gz + 4p2q2γωg2h3gz + 2q4νωg2h3gz

+2ωh3g2
t gz −ωgh3gttgz + 2δρg3h2hz + 2p2ερg3h2hz + 2q2ερg3h2hz + 2p4µρg3h2hz (4)

+4p2q2µρg3h2hz + 2q4µρg3h2hz + 4βρg3h2
t hz + . . . + 2βρg3h2hztt − 2ρg3h2hzz = 0.

Now, the function g and h in Equation (4) can be considered as [43,44]:

g = ξ2
1 + ξ2

2 + a2, h = ξ2
1 + ξ2

2 + a3, (5)

where ξ1 = a0z + t, ξ2 = a1z + t., while ai(1 ≤ i ≤ 3) are specific real parameters. Now,
using g and h into Equation (4) and solving the coefficients of the z and t implies:

Set I. When

a0 =
(
−4 +

√
15
)

a1, a1 = a1, a2 = 0, ρ = ρ, ω = ω. (6)

These generated parameters make the lump solution:

∆1 =
−6
(
−4 +

√
15
)

R1 +
(
−4 +

√
15
)2

a2
1

(
2a1(t + a1z) + 2

(
−4 +

√
15
)

a1R2

)
a2

1

(
(t + a1z)2 +

(
t +
(
−4 +

√
15
)

a1z
)2
) + Ω1, (7)

where R1 = a2
1 +
(
−4 +

√
15
)

a2
1, Ω1 =

6i(2a1(t+a1z)+2(−4+
√

15)a1(t+(−4+
√

15)a1z))(
(−4+

√
15)2a3

1
a3
1−(−4+

√
15)a3

1+(−4+
√

15)a3
1
+(t+a1x)2+(t+(−4+

√
15)a1z)

2
)

ω

and R2 = t +
(
−4 +

√
15
)

a1z.

3. Lump One Stripe Solution

To get the lump one stripe solution, we apply the transformation shown in
Equation (4) [50]:
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g = ξ2
1 + ξ2

2 + a2 + b0ek1z+k2t , h = ξ2
1 + ξ2

2 + a3 + b0ek1z+k2t, (8)

where ξ1 = a0z + t, ξ2 = a1z + t., while ai(1 ≤ i ≤ 3), k1, k2 and b0 are any specific real
parameters. Now, using g and h in Equation (4) and solving the coefficients of the z and t:

Set I. When a2 = 0:

a0 = −a1, a3 =
−6b0ω

b0ω(νp6q2 + νq4 + γp2 + γq2)
, a5 = a5, ω = ω, ρ = ρ, k2 = 0. (9)

These parameters exhibit the required solution to Equation (2):

∆2 =
6
(

b0ek1zk1 − 2a1(t− a1z) + 2a1(t + a1z)
)

ρ
(

b0ek1z + (t− a1z)2 + (t + a1z)2
) + Ω2. (10)

where Ω2 =
6i(b0ek1zk1−2a1(t−a1z)+2a1(t+a1z))(

b0ek1z+(t−a1z)2+(t+a1z)2− 6
p2γ+q2γ+p4ν+2p2q2ν+q4ν

)
ω

.

4. Lump Two Stripe Solution

To obtain the lump two stripe solution, we assume the subsequent transformation in
Equation (4) [50]:

g = ξ2
1 + ξ2

2 + a2 + b0ek1z+k2t + b1ek3z+k4t , h = ξ2
1 + ξ2

2 + a3 + b0ek1z+k2t + b1ek3z+k4t, (11)

where ξ1 = a0z + t, ξ2 = a1z + t., while ai(1 ≤ i ≤ 3), k1, k2, k3, k4, b0 and b1 are any specific
real parameters. Now, using g and h in Equation (4) and solving the coefficients of the z
and t:

Set I. When a1 = a2 = a3 = 0:

a0 = a0, a5 = a5, b1 =
−5k3δ

7k2
3 − 5k3δ

, β =
b1ω

(
7k3

2 − 5k3δ
)

10b1k3δρ
, ρ =

−4k2
3 + 5k3

5k3
. (12)

These parameters exhibits the required solution to Equation (2):

∆3 =

6
(

b0ek2t+k1zk1 −
ek4t+k3zk3(5k3−4k2

3)
−5k3+11k2

3
+ R3

)
ρ

(
b0ek2t+k1zk1 −

ek4t+k3zk3(5k3−4k2
3)

−5k3+11k2
3

+ R4

) +

6i
(

b0ek2t+k1zk1 −
ek4t+k3zk3(5k3−4k2

3)
−5k3+11k2

3
+ R3

)
ω

(
b0ek2t+k1zk1 −

ek4t+k3zk3(5k3−4k2
3)

−5k3+11k2
3

+ R4

) , (13)

where R3 = 2a0(t + a0z) and R4 = t2 + (t + a0z)2.

5. Ma-Breather (MB) and Its Relating Rogue Wave

We assume g and h in Equation (4) as [44]:

g = 1 + α1 + ei(p1x) + e−i(p1x)eλ1t+γ1 + β1e2(λ1t+γ1) , h = 1 + α2 + ei(p2x) + e−i(p2x)eλ2t+γ2 + β2e2(λ2t+γ2), (14)

where α1, α2, p1, p2, λ1, λ2, γ1 and γ2 are any parameters. Now, using g and h in
Equation (4) and letting the coefficients of exp and cos functions be zero:

Set I. When γ1 = β2 = 0:

α1 = α1, α2 = α2, µ =
ip2 − 2δ− 2p2ε− 2q2ε− 5βλ2

2

2(p2 + q2)
2 , p1 = p1, a4 = a4. (15)

These parameters form the Ma-breather solution to Equation (1):
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∆4 =
6etλ1

(
−ie−ip1z p1 + ieip1z p1

)
α1(

1 + etλ1
(
e−ip1z + eip1z

)
α1
)
ρ

+
6ieγ2+tλ2

(
−ie−ip2z p2 + ieip2z p2

)
α2(

1 + eγ2+tλ2
(
e−ip2z + eip2z

)
α2 + e2(γ2+tλ2)β2

)
ω

. (16)

6. Kuznetsov-Ma Breather (KMB) and Its Relating Rogue Wave

We assume g and h in Equation (4) as [44]:

g = e−p1(b2z−b1t) + a1 cos(p(b2z + b1t)) + a2 cos(p(b2z− b1t)),

h = e−p2(b3z−b4t) + a3 cos(p(b3z + b4t)) + a4 cos(p(b3z− b4t)), (17)

where p1, p2, b1, b2, b3, b4, a1, a2, a3 and a4 are any parameters to be found. Now, using g
and h in Equation (4) and letting the coefficients of exp and cos functions be zero follows:

Set I. When:

p1 = p1, ν =
−p2

1
(
γ2 + µ

)
p2 , a1 = a1, γ = γ, a3 = a3, ρ = ρ. (18)

These parameters form the proposed solution to Equation (1):

∆5 =
6
(
−b2e−p1(−b1t+b2z)p1 + a2b2ep1(−b1t+b2z)p1 − a1b2 p sin(p(b1t + b2z))

)
ρ
(
e−p1(−b1t+b2z) + a2ep1(−b1t+b2z) + a1 cos(p(b1t + b2z))

) + Ω3, (19)

where Ω3 =
6i
(
−b3e−p2(−b3t+b4z)p2+a4b3e−p2(−b3t+b4z)p2−a3b3 p sin(p(b4t+b3z))

)
ω
(

e−p2(−b3t+b4z)+a4ep2(−b3t+b4z)+a3 cos(p(b4t+b3z))
) .

7. Generalized Breathers (GB)

In order to obtain generalized breathers we use ansatz [51]:

∆(z, t) = 2bc
(

6
κ

ln Ψ(z, t)
)

z
+ m, (20)

where b, c and m are any particular constants. Inserting Equation (20) into Equation (1), we
have:

m3γκ5ψ5 − imδκ5ψ5 − im3εκ5ψ5 + m5κ5νψ5 + m5κ5νψ5 + 36bcm2γκ4ψ4ψz − 12ibcδκ4ψ4ψz

−36ibcm2εκ4ψ4ψz − 60ibcm4µκ4ψ4ψz + 60bcm4νκ4ψ4ψz + 12bcmTrκ4ψ3ψtψz + 12bcκ4ψ2ψzψ2
t (21)

−24ibcβκ4ψ2ψ2
t ψz − 6bcκ4ψ3ψttψz + 12ibcβκ4ψ3ψttψz + . . . + 12ibcκ4ψ4ψzz − 12ibcβκ4ψ4ψzt = 0.

For finding the required solutions, we use the following assumption in Equation (21):

ψ =
(1− 4c) cosh(σt) +

√
2c cos(ρz) + iσ sinh(σt)√

2c cos(ρz)− cosh(σt)
eit, (22)

where σ, ρ and c are constants to be found. The coefficients of cosh, sinh and exp functions
are defined as follows:

a = a, b = b, m = 0, c =
1
2

, ρ = ρ, σ = σ. (23)

These values implies the following GB profiles of Equation (1):

∆6 =

6bie−it(cos(ρz)− cosh(σt))
(
−eitρ sin((ρz))

cos(ρz)−cosh(σt) +
eitρ sin((ρz))(cos((ρz))−cosh(σt)+iσ sinh(σt))

(cos(ρz)−cosh(σt))2

)
κ cos(ρz)− cosh(σt) + iσ sinh(σt)

. (24)
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8. Akhmediev Breathers (AB)

We use the following transformation in Equation (21) [52]:

ψ =
√

p0
(1− 4a) cosh(bz) + ib sinh(bz) +

√
2a cos(ω mod T)√

2a cos(ω mod T)− cosh(bξ)
, (25)

where ωmod interprets the perturbation frequency (PF) with p0 as the power. The coefficients
a and b depends on ωmod and are defined by 2a = 1− (ωmod

ωc
)2 and b = [8a(1− 2a)]2 with

ω2
c = 4p0γ

|β2|
. Setting the coefficients of trigonometric and hyperbolic functions be zero:

a = a, b = b, c = c, ω =

√
4− 82

2iβ
, ρ = ρ, p0 = p0. (26)

These values imply the AB of Equation (1) to be as follows:

∆7 = m +

12bc

√2a cos

 t
√
− i(4−8a)

β
√

2

− cosh(bz)

Ω4

√
p0κ

√2a cos

 t
√
− i(4−8a)

β
√

2

+ (1− 4a) cosh(bz) + ib sinh(bz)

 , (27)

where:

Ω4 =


b
√

p0 sinh(bz)

√2a cos

 t
√
− i(4−8a)

β√
2

+(1−4a) cosh(bz)+ib sinh(bz)


√2a cos

 t
√
− i(4−8a)

β√
2

−cosh(bz)

2 +
√

p0(ib2 cosh(bz)+(1−4a)b sinh(bz))

√
2a cos

 t
√
− i(4−8a)

β√
2

−cosh(bz)

.

9. Standard Rogue Wave (SRW) Solutions

For evaluating the SRW, we apply the subsequent assumption in Equation (21) [44]:

ψ = −
(

1− 4(1 + 2it)
1 + 4z2 + 4t2

)
eit, (28)

Setting the coefficients of exponential function, z and t be zero will follow:

b = b, β =
−i
2

, m =

√
−3iε + 3γ +

√
20δµ− 9ε2 − 18iγε + 20iδν + 9γ2

10(iµ− ν)
, c = c, κ = κ. (29)

These values implies the SRW to Equation (1):

∆8 = − 384bc(1 + 2it)z

(1 + 4t2 + 4z2)
(
−1 + 4(1+2it)

1+4t2+4z2

)
κ
+

√
−3iε + 3γ +

√
20δµ− 9ε2 − 18iγε + 20iδν + 9γ2

10(iµ− ν)
. (30)

10. Multiwaves Solutions (MS)

For these type of results, we use the preceding transformation in Equation (2) [48]:

∆(z, t) = ψ(ξ)eιθ , ξ = k1z− c1t, θ = k2z− c2t. (31)

Using the above transformation, we obtain the real and imaginary parts of equal
Equation (2), by considering the real part only:

γψ3 + νψ5 + c1Trψψ
′ − 1

2
c2

1ψ +
1
2

c2
1ψ
′′
+ 2βc1c2ψ

′
= 0. (32)
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Now, by way of following the assumption in Equation (32):

ψ = 2(ln f )ξ , (33)

we obtain:

−c2
2 f 4 f

′ − 4βc1c2 f 3 f
′2
+ 2c2

1 f 2 f
′3
+ 8γ f 2 f

′3 − 4c1Tr f 2 f
′3
+ 32ν f

′5
+ 4c1c2β f 4 f

′′ − 3c2
1 f 3 f

′
f
′′

+4c1 f 3Tr f
′
f
′′
+ c2

1 f 4 f
′′′
= 0 (34)

To get the MS of Equation (34), we use anstaz [48]:

f = b0 cosh(a1ξ + a2) + b1 cos(a3ξ + a4) + b2 cosh(a5ξ + a6), (35)

where a1, a2, a3, a4, a5 and a6 are any specific constants. Substituting Equation (35) into
Equation (34) with Mathematica and letting the coefficients of hyperbolic and trigonometric
functions to zero:

Set I. When:

a1 = a1, a2 = a2, a3 =
−1
2

a5, a4 = a4, a5 = a5, b0 = 0, b1 = b1, c1 = c1. (36)

Using the above values, we have:

∆9 =
2ei(−c2t+k2z)

(
1
2 a5b1 cos

(
a4 − 1

2 a5(−c1t + k1z)
)

sin
(

a4 − 1
2 a5(−c1t + k1z)

)
+ Ω5

)
b1 cos

(
a4 − 1

2 a5(−c1t + k1z)
)
+ b2 cosh(a6 + a5(−c1t + k1z))

, (37)

where Ω5 = a5b2 cosh(a6 + a5(−c1t + k1z)) sinh(a6 + a5(−c1t + k1z)).

11. Homoclinic Breather (HB)

In this approach we assume f the form [48]:

f = e−p(a2+a1ξ) + b1ep(a4+a3ξ) + b0 cos(p1(a6 + a5ξ)), (38)

where a′is denotes any particular constants. Inserting Equation (38) into Equation (34) and
collecting coefficients of exponential and trigonometric functions to be zero yields:

Set I. When:

a1 =
1
2

a5, a2 = a2, a3 = a3, c1 =
−2a2

5νp2

Tr
, b1 = b1, a5 = a5. (39)

Via the above values we obtain:

∆10 =

2

−1
2 a5b1 pe

p
(

a4− 1
2 a4

(
k1z+

2a2
5 p2tν
Tr

))
− 1

2 a5 pe
−p
(

a2− 1
2 a5

(
k1z+

2a2
5 p2tν
Tr

))ei(−c2t+k2z)

b1e
p
(

a4− 1
2 a4

(
k1z+

2a2
5 p2tν
Tr

))
+ e
−p
(

a2− 1
2 a5

(
k1z+

2a2
5 p2tν
Tr

)) . (40)

12. M-Shaped Rational Solitons

For these solutions, we consider the form [48,53]:

f = (d1ξ + d2)
2 + (d3ξ + d4)

2 + d5, (41)

where di(1 ≤ i ≤ 5), are any parameters. Put f into Equation (34) and solving coefficients
of ξ to get subsequent result on parameters:
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Set I. Whenever d5 = d2 = 0:

d1 = id3, d3 = d3, d4 =
c2

1d3

√
c4

1d2
3 + 24βc1c2γ

6βc1c2
, c1 = c1, c2 = c2. (42)

Using the above values, we obtain:

∆11 =

2ei(−c2t+k2z)
(
−2d2

3(−c1t + k1z) + 2d3

(
d3(−c1t + k1z) + c2

1d3
√

c4
1d2

3+24βc1c2γ
6βc1c2

))
−d3

2(−c1t + k1z)2 +

(
d3(−c1t + k1z) + c2

1d3
√

c4
1d2

3+24βc1c2γ
6βc1c2

)2 . (43)

13. Interactional Solutions with Double Exponential Form

We use the following hypothesis [48]:

f = b1e−a1ξ+a2 + b2ea3ξ+a4 . (44)

where a1, a2, a3 and a4 are some constants. Inserting Equation (44) into Equation (34) and
solving coefficients of exponential functions, a system of equations is obtained. By solving
it:

Set I.

a1 =
(

2−
√

3
)

a3, a2 = a2, c1 =
8a2

3ν
(

7− 4
√

3
)

Tr
, a3 = a3, a4 = a4. (45)

Using the above values we have:

∆12 =

2

a3b2e
a4+a3

(
k1z− 8(7−4

√
3)a2

3tν
Tr

)
+
(

2−
√

3
)

a3b1e
a2+(2−

√
3)a3

(
k1z− 8(7−4

√
3)a2

3tν
Tr

)ei(−c2t+k2z)

b2e
a4+a3

(
k1z−

8(7−4
√

3)a2
3tν

Tr

)
+ b1e

a2+(2−
√

3)a3

(
k1z−

8(7−4
√

3)a2
3tν

Tr

) . (46)

14. Kink Cross-Rational (KCR) Solutions

For KCR solutions, we consider f as [54,55]:

f = g0 + e−(a1ξ+a2) + k1ea1ξ+a2 + (b1ξ + b2)
2 + (b3ξ + b4)

2, (47)

where ai and bi are some constants. Inserting Equation (47) into Equation (34) and solving
coefficients of exponential functions:

Set I.

a1 =

√
−3
32µ

c1, b1 = b1, b2 = b2, k1 = 0, a2 = a2, ν =
2
5

µ, Tr =
3
√
−3
32µ c2

1 + 8βc2

4
√
−3
32µ c1

, b3 = b3, b4 = b4. (48)

Using the above values we have:

∆13 =

2ei(−c2t+k2z)
(
−2b1(b2 − b1c2t) + 2b3(b4 − b3c2t)− 1

4

√
− 3

2µ c2e−a2+
1
4

√
− 3

2µ c2
2t
)

e−a2+
1
4

√
− 3

2µ c2
2t
+ g0 + (b2 − b1c2t)2 + (b4 − b3c2t)2

. (49)

15. Periodic Cross-Rational (PCR) Solutions

We use the following hypothesis [54,55]:

f = g0 + (a1ξ + a2)
2 + (a3ξ + a4)

2 + k1 cos(b1ξ + b2) + k2 cosh(b3ξ + b4), (50)
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where ai and bi are some constants. Inserting Equation (50) into Equation (34) and solving
coefficients of exponential, trigonometric and hyperbolic functions:

Set I.
a1 = a1, b3 =

−4γ

3k2c2
1

, c2 = 0, Tr =
3
4

c1, b1 = 0, b4 = b4. (51)

Using the above values we have:

∆14 =

2ei(k2z)

2a1(a2 + a1(−c1t + k1z))2 + 2a3(a4 + a3(−c1t + k1z))2 −
4γ sinh

(
b4−

4(−c1t+k1z)γ

3c2
1k2

)
3c2

1


g0 + (a2 + a1(−c1t + k1z))2 + (a4 + a3(−c1t + k1z))2 + k2 cosh

(
b4 − 4(−c1t+k1z)γ

3c2
1k2

) . (52)

16. Result and Discussions

A lot of work has been done on the proposed model: Akhmediev et al. found sin-
gularities via a simple approach [56], Soto Crespo et al. studied pulse solutions for the
case of normal group-velocity dispersion [57], Yan et al. found stable transmission of
solitons for the concerned model via the asymmetric method [58], Biswas et al. worked on
Dromion-like structures for the variable-coefficients CQGL-equation by using the asym-
metric method [59], Gurevich et al. investigated soliton explosions for the CQGL-equation
via explosion modes [60], Uzunov et al. studied pulsating solutions for the CQGL-equation
by using the variation method and the method of moments [61], Nikolov et al. interpreted
the influence of the higher-order effects on the solutions for the concerned model [62],
Mihalache et al. analyzed the coaxial vortex solitons forthe CQGL-Equation [63], Fang
et al. worked on soliton dynamics [64], Djoko et al. investigated the effects of the septic
nonlinearity [65], Mou et al. studied discrete localized excitations [66] and Liu et al. ana-
lyzed harmonic and damped motions of dissipative solitons for the proposed model [67].
However, in this work, we have applied the appropriate transformations method to obtain
the stated solutions for the governing model.

This article contains five classes of breather solutions (i.e., MB, KBM, GB, AB and
homoclinic breather solutions), as well as lump, lump one stripe, lump two stripe and rogue
wave solutions. Furthermore, a detailed analysis of SRW solution is made. Multiwave,
M-shaped and interactional solutions are computed for ensuing model. These type of
solutions, utilized in diverse fields of sciences, i.e., optics, engineering, physics and biology
etc. [11–21]. A breather is a nonlinear localized wave and is a periodic solution of discrete
lattice equations. Our newly attained results show a discrepancy of their shapes by appro-
priate choices of parameters. Now, we can definitely understand the geometric structure
from Figure 1, which shows the lump profiles with one bright and dark soliton of the solu-
tion ∆1 in Equation (7) via distinct parameters ω = 1. The bright and dark soliton behavior
of three-dimensional profiles steadily increases the value of (i) a1 = 5, (ii) a1 = 10 and
(iii) a1 = −3. Figure 2 shows the contour shapes for Figure 1 successively. The lump one
stripe profiles of the solution ∆2 in Equation (10) are interpreted via distinct values of
ω = 5, k1 = 2, ρ = 4, γ = −1, p = 2, q = −1, ν = 1 and b0 = 3. Three-dimensional profiles
are shown in Figure 3 at (i) a1 = 5, (ii) a1 = 10 and (iii) a1 = −2. Figure 4 shows the contour
shapes for Figure 3 successively. Similarly, Figure 5 shows the lump two stripe graphs of
the solution ∆3 in Equation (13) for the distinct values of ω = 5, k1 = 2, ρ = 4, γ = −1,
k2 = 1, k3 = 1, k4 = 2 and b0 = 3, with three-dimensional profiles at (i) a0 = 5, (ii) a0 = 10
and (iii) a0 = −2. Figure 6 builds contour profiles for Figure 5 successively. The MB graphs
of the solution ∆4 in Equation (16) are interpreted via distinct values of ω = 5, p1 = 2,
p2 = 3, α1 = 1, α2 = 2.5, λ1 = 1, λ2 = 2, β2 = 3, ρ = 4 and γ2 = 1. Three-dimensional
profiles at (i) a0 = 5, (ii) a0 = 10 and (iii) a0 = −1 are shown in Figure 7. Figure 8 shows
the contour profiles for Figure 7. In the same way, Figure 9 presents the KMB graphs of
solution ∆5 in Equation (19) through values of a1 = 2, a3 = 1, a4 = 3, ω = 5, p1 = 2, p2 = 3,
b1 = 1, b2 = 2.5, b3 = 1, b4 = 2 and ρ = 4, with three-dimensional profiles at (i) a2 = 5,
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(ii) a2 = 20 and (iii) a2 = −1. Figure 10 shows the contour profiles for Figure 9. The GB
profiles of the solution ∆6 in Equation (24) are formed through values of κ = 5, b = 1 and
ρ = 4. Three-dimensional graphs at (i) σ = 0.2, (ii) σ = 0.8 and (iii) σ = −0.1 are shown in
Figure 11. Similarly, Figure 12 shows the contour profiles for Figure 11. The AB profiles of
the solution ∆7 in Equation (27) are formed through values of a = 5, b = 1, c = 3, p0 = 4
and m = 5. Three-dimensional graphs at (i) β = 5, (ii) β = 10 and (iii) β = −3 are shown in
Figure 13, while Figure 14 shows the contour graphs for Figure 13. The SRW profiles of
the solution ∆8 in Equation (30) are constructed for values of ε = 0.5, b = 1, c = 3, γ = 0.1,
ν = 10, µ = 2 and κ = 2. Three-dimensional graphs at (i) δ = −5, (ii) δ = 10 and (iii) δ = 20
are shown in Figure 14. Figure 15 shows the contour graphs for Figure 14. Similarly, MS
graphs of solution ∆9 in Equation (37) are formed with a6 = 0.2, c1 = 1, k1 = 3, a4 = 0.1,
b1 = 10, b2 = 2, c2 = 2 and k2 = 3. Three-dimensional graphs at (i) a5 = −5, (ii) a5 = 3 and
(iii) a5 = 7 are shown in Figure 15. Figure 16 shows the contour shapes for Figure 15. The
HB profiles of solution ∆11 in Equation (43) are constructed for values of c1 = 2, c2 = 1,
k1 = 3, k2 = 0.1, γ = 1 and β = 5. Three-dimensional graphs at (i) d3 = −5, (ii) d3 = 3
and (iii) d3 = 15 are shown in Figure 17. Figure 18 shows the contour shapes for Figure 17,
while the MS profiles of the solution ∆11 in Equation (40) are constructed for values of
b1 = 0.5, p = 1, a4 = 3, a2 = 2, k1 = 0.1, ν = 1 and Tr = 2. Three-dimensional graphs at (i)
a5 = −5, (ii) a5 = 3 and (iii) a5 = 10 are shown in Figure 19. Figure 20 shows the contour
shapes for Figure 19. When the value of a5 steadily increases, we can see that the waves
come closer to interact with each other. In the same manner, Figure 21 presents the soliton
profiles of the solution ∆12 in Equation (46) for values of a4 = 2, b2 = 1, b1 = 3, a2 = 0.1,
Tr = 1, c2 = 5, k2 = 2 and ν = 3, with three-dimensional graphs at (i) a3 = −5, (ii) a3 = 0.1
and (iii) a5 = 4. When the value of k2 steadily increases, we can see from the behavior of the
M-shaped wave that the waves come closer to interact with each other. Similarly, Figure 22
shows the contour shapes for Figure 21 successively. The KCR profiles of the solution
∆13 in Equation (49) are formed for values of b2 = 1, b1 = 3, a2 = 0.1, µ = 2, g0 = 3,
b3 = 2, b4 = 5, c2 = 4 and k2 = 2. Three-dimensional graphs at (i) a2 = −5, (ii) a2 = 1 and
(iii) b2 = 40 are shown in Figure 23. Figure 24 shows the contour shapes for Figure 23
successively. The PCR graphs of the solution ∆14 in Equation (52) are formed for particular
values of b2 = 1, a4 = 2, a2 = −3, µ = 2, g0 = 7, b2 = 1, c1 = 3, k1 = 0.1, c2 = 6, γ = 2 and
k2 = 1. Three-dimensional graphs at (i) a1 = −4, (ii) a1 = 0 and (iii) a1 = 30 are shown in
Figure 25. Finally, Figures 26–28 shows the contour shapes for Figure 25 successively.

Figure 1. The lump profiles of the solution ∆1 in Equation (7) are presented via distinct parameters
ω = 1. Three-dimensional profiles at (i) a1 = 5, (ii) a1 = 10 and (iii) a1 = −3.
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Figure 2. Contours graphs for Figure 1.

Figure 3. The lump one stripe profiles of the solution ∆2 in Equation (10) are interpreted via distinct
values of ω = 5, k1 = 2, ρ = 4, γ = −1, p = 2, q = −1, ν = 1, b0 = 3. Three-dimensional profiles are
shown in (i) a1 = 5, (ii) a1 = 10 and (iii) a1 = −2.

Figure 4. Contour displays for Figure 3.
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Figure 5. The lump two stripe graphs of the solution ∆3 in Equation (13) are interpreted via distinct
values of ω = 5, k1 = 2, ρ = 4, γ = −1, k2 = 1, k3 = 1, k4 = 2, b0 = 3. Three-dimensional profiles at
(i) a0 = 5, (ii) a0 = 10 and (iii) a0 = −2.

Figure 6. Contour graphs for Figure 5.

Figure 7. The MB graphs of the solution ∆4 in Equation (16) are interpreted via distinct values of
ω = 5, p1 = 2, p2 = 3, α1 = 1, α2 = 2.5, λ1 = 1, λ2 = 2, β2 = 3, ρ = 4, γ2 = 1. Three-dimensional
profiles at (i) a0 = 5, (ii) a0 = 10 and (iii) a0 = −1.
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Figure 8. Contour graphs for Figure 7.

Figure 9. The KMB graphs of the solution ∆5 in Equation (19) are interpreted through values of a1 = 2,
a3 = 1, a4 = 3, ω = 5, p1 = 2, p2 = 3, b1 = 1, b2 = 2.5, b3 = 1, b4 = 2 and ρ = 4. Three-dimensional
profiles at (i) a2 = 5, (ii) a2 = 20 and (iii) a2 = −1.

Figure 10. Contour graphs for Figure 9.
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Figure 11. The GB profiles of the solution ∆6 in Equation (24) are made through values of κ = 5,
b = 1 and ρ = 4. Three-dimensional graphs at (i) σ = 0.2, (ii) σ = 0.8 and (iii) σ = −0.1.

Figure 12. Contour graphs for Figure 11.

Figure 13. The AB profiles of the solution ∆7 in Equation (27) are made through values of a = 5,
b = 1, c = 3, p0 = 4 and m = 5. Three-dimensional graphs at (i) β = 5, (ii) β = 10 and (iii) β = −3.
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Figure 14. Contour slots for Figure 13.

Figure 15. The SRW profiles of the solution ∆8 in Equation (30) are made for values of ε = 0.5, b = 1,
c = 3, γ = 0.1, ν = 10, µ = 2 and κ = 2. Three-dimensional graphs at (i) δ = −5, (ii) δ = 10 and (iii)
δ = 20.

Figure 16. Contour slots for Figure 15.
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Figure 17. The MS graphs of the solution ∆9 in Equation (37) are made for values of a6 = 0.2, c1 = 1,
k1 = 3, a4 = 0.1, b1 = 10, b2 = 2, c2 = 2, k2 = 3. Three-dimensional graphs at (i) a5 = −5, (ii) a5 = 3
and (iii) a5 = 7.

Figure 18. Contour slots for Figure 17.

Figure 19. The HB profiles of the solution ∆11 in Equation (43) are constructed for values of c1 = 2,
c2 = 1, k1 = 3, k2 = 0.1, γ = 1 and β = 5. Three-dimensional graphs at (i) d3 = −5, (ii) d3 = 3 and
(iii) d3 = 15.
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Figure 20. Contour slots for Figure 19.

Figure 21. The MS profiles of the solution ∆11 in Equation (40) are constructed for values of b1 = 0.5,
p = 1, a4 = 3, a2 = 2, k1 = 0.1, ν = 1 and Tr = 2. Three-dimensional graphs at (i) a5 = −5, (ii) a5 = 3
and (iii) a5 = 10.

Figure 22. Contour slots for Figure 21.
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Figure 23. The soliton profiles of the solution ∆12 in Equation (46) are made for values of a4 = 2,
b2 = 1, b1 = 3, a2 = 0.1, Tr = 1, c2 = 5, k2 = 2 and ν = 3. Three-dimensional graphs at (i) a3 = −5,
(ii) a3 = 0.1 and (iii) a5 = 4.

Figure 24. Contour profiles for Figure 23.

Figure 25. The KCR profiles of the solution ∆13 in Equation (49) are formed for values of b2 = 1,
b1 = 3, a2 = 0.1, µ = 2, g0 = 3, b3 = 2, b4 = 5, c2 = 4 and k2 = 2. Three-dimensional graphs at
(i) a2 = −5, (ii) a2 = 1 and (iii) b2 = 40.
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Figure 26. Contour profiles for Figure 25.

Figure 27. The PCR graphs of the solution ∆14 in Equation (52) are formed for particular values
of b2 = 1, a4 = 2, a2 = −3, µ = 2, g0 = 7, b2 = 1, c1 = 3, k1 = 0.1, c2 = 6 and γ = 2, k2 = 1.
Three-dimensional graphs at (i) a1 = −4, (ii) a1 = 0 and (iii) a1 = 30.

Figure 28. Shows contour shapes for Figure 27.

17. Concluding Remarks

We have considered the CQGL-equation under the influence of intrapulse Raman
scattering (IRS) and constructed distinct localized wave solutions by employing test func-
tions with the aid of an appropriate transformations method. Five classes of breather
solutions (i.e., Ma, Kuznetsov-Ma, GB, AB, homoclinic breather solutions), as well as lump,
lump one stripe, lump two stripe and rogue wave solutions were successfully evaluated.
Furthermore, a detailed analysis of SRW solution was performed. Multiwave, M-shaped,
interactional solutions, KCR solutions and PCR solutions are computed for the ensuing
model. Interaction behaviors between multiple-lump waves and soliton were also dis-
cussed. Multiple-lump wave evolution with time was also observed. We graphically
presented many valuable results obtained here. The conditions imposed on the parameters
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have been explicitly demonstrated to guarantee that they were well defined and that the
solutions were localized. To our knowledge, the results are new for the governing equation.
These results may be useful for the experimental realization of undistorted transmission
of optical waves in optical fibers and further understanding of their optical transmission
properties. Finally, we hope that the exact nature of these solitary waves interpreted here
may be profitably exploited in designing the optimal Raman fiber laser experiments.
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