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Abstract

To better define roles that astrocytes and microglia play in Alzheimer’s disease (AD), we used single-nuclei RNA-sequencing 

to comprehensively characterise transcriptomes in astrocyte and microglia nuclei selectively enriched during isolation post-

mortem from neuropathologically defined AD and control brains with a range of amyloid-beta and phospho-tau (pTau) 

pathology. Significant differences in glial gene expression (including AD risk genes expressed in both the astrocytes [CLU, 

MEF2C, IQCK] and microglia [APOE, MS4A6A, PILRA]) were correlated with tissue amyloid or pTau expression. The dif-

ferentially expressed genes were distinct between with the two cell types and pathologies, although common (but cell-type 

specific) gene sets were enriched with both pathologies in each cell type. Astrocytes showed enrichment for proteostatic, 

inflammatory and metal ion homeostasis pathways. Pathways for phagocytosis, inflammation and proteostasis were enriched 

in microglia and perivascular macrophages with greater tissue amyloid, but IL1-related pathway enrichment was found 

specifically in association with pTau. We also found distinguishable sub-clusters in the astrocytes and microglia character-

ised by transcriptional signatures related to either homeostatic functions or disease pathology. Gene co-expression analyses 

revealed potential functional associations of soluble biomarkers of AD in astrocytes (CLU) and microglia (GPNMB). Our 

work highlights responses of both astrocytes and microglia for pathological protein clearance and inflammation, as well as 

glial transcriptional diversity in AD.
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Introduction

While Alzheimer’s disease (AD) is classically characterised 

by the presence of amyloid plaques, phosphorylated tau tan-

gles in neurons, and neurodegeneration, it has become clear 

in recent years that astrocytes and microglia play important 

and potentially causal roles in the disease [3]. Activated 

astrocytes and microglia are found around amyloid plaques 

[52] and genes associated with AD risk are enriched in both 

cell types, particularly in microglia [12, 56]. However, the 

mechanisms by which microglia and astrocytes contribute 

to disease genesis, progression, and response still are poorly 

defined. Mouse transgenic models have suggested pathways 

that may drive processes central to amyloid or pTau patholo-

gies, but a recent meta-analysis suggested that the diversity 

of glial responses in late-onset sporadic Alzheimer’s disease 

is not well captured by mouse models [70].

Single-nuclei RNA-sequencing (snRNASeq) from post-

mortem brain tissue [30, 32] is transforming the potential to 

characterise the molecular neuropathology of AD at the level 

of single cells [18, 36, 76]. However, because of their lower 

cellular abundance in the brain, microglia and astrocytes 

have been poorly represented in most studies published to 

date (e.g., 449–3982 microglia, representing only 1–3% of 

the total nuclei annotated [18, 36, 41]), limiting the depth to 

which they can be characterised. Astrocytes and microglia 
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also have highly heterogeneous phenotypes [2, 11, 49]. To 

address these limitations, we employed a robust negative-

selection approach (closely related to that used in a recent 

report [16]) that enriches for them in nuclei isolated from 

post-mortem tissue. This allowed us to characterise snR-

NASeq transcriptomes from much larger numbers of these 

nuclei (52,706 astrocytes and 27,592 microglia) efficiently. 

After quantitative assessments of neuropathological features 

in each brain region, we generated transcriptional signatures 

associated with amyloid-beta or pTau pathology in non-dis-

ease control (NDC) and AD brains. These data allowed us to 

develop comprehensive descriptions of gene co-expression 

networks that provide both further insights into the differ-

ent pathology-specific transcriptional responses of astrocytes 

and microglia in AD and evidence for cell-type specific 

functions of genes associated with risks for AD. Transcrip-

tion factors potentially responsible for the differential gene 

expression with pathology were identified from these co-

expression modules. We confirmed our major observations 

by re-analyses of data from four previously reported AD 

snRNASeq studies. Our work provides new insights into 

linked glial-specific responses mediating pathological pro-

tein clearance and inflammation, highlighting evidence for 

distinct and diverse roles of astrocytes and microglia in AD.

Methods

Brain tissue

This study was carried out in accordance with the Regional 

Ethics Committee and Imperial College Use of Human Tis-

sue guidelines. Cases were selected from the London Neu-

rodegeneration (King’s College London) and Parkinson’s 

UK (Imperial College London) Brain Banks. Entorhinal 

and somatosensory cortex from 6 non-diseased control 

(NDC) cases (Braak stage 0–II) and 6 AD cases (Braak 

stage III–VI) were used (total of 24 brain samples) (Sup-

plementary Table 1, online resource). Cortical samples from 

two regions were prepared from each brain to characterise 

transcript expression with both higher (entorhinal cortex) 

and lower (somatosensory cortex) tissue densities of pTau 

in neurofibrillary tangles and amyloid-beta plaques. Brains 

used for this study excluded cases with clinical or pathologi-

cal evidence for small vessel disease, stroke, cerebral amy-

loid angiopathy, diabetes, Lewy body pathology (TDP-43), 

or other neurological diseases. Where the information was 

available, cases were selected for a brain pH greater than 6 

and all but one had a post-mortem delay of less than 24 h 

(Table 1).

Immunohistochemistry

Immunohistochemical staining was performed on formalin-

fixed paraffin-embedded sections from homologous regions 

of each brain used for snRNASeq. Standard immunohisto-

chemical procedures were followed using the ImmPRESS 

Polymer (Vector Laboratories) and SuperSensitive Polymer-

HRP (Biogenex) kits (Table 2). Briefly, endogenous peroxi-

dase activity and non-specific binding were blocked with 

0.3%  H2O2 and 10% normal horse serum, respectively. Pri-

mary antibodies were incubated overnight at 4 °C. Species-

specific ImmPRESS or SuperSensitive kits and DAB were 

used for antibody visualisation. Counter-staining for nuclei 

was performed by incubating tissue sections in haematoxylin 

(TCS Biosciences) for 2 min. AD pathology was assessed 

by amyloid plaque (4G8, BioLegend 17–24) and pTau (AT8, 

Table 1  Cohort information M:F ratio Age at death (years, 

mean ± SD)

Post-mortem delay (hr, 

mean ± SD)

RIN (mean ± SD)

Non-diseased 

controls (Braak 

0–II)

4:2 79.3 ± 6.5 18 ± 6.9 4.9 ± 2.0

Alzheimer’s 

disease (Braak 

III–VI)

4:2 81 ± 6.8 22.1 ± 15.9 7.1 ± 0.7

Table 2  List of antibodies and 

immunostaining methods
Antigen Antibody Dilution Antigen retrieval IHC staining kit

Amyloid-β 4G8

BioLegend (800702)

1:15,000 Citrate buffer, in steamer Supersensitive 

Kit

pTau AT8

Invitrogen (MN1020)

1:1600 Citrate buffer, in steamer Supersensitive 

Kit

GPNMB R&D (AF2550) 1:500 Citrate buffer, in steamer ImmPRESS Kit
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NBS Biologics) staining. GPNMB staining in microglia was 

assessed using R&D antibody AF2550.

Quantitative image analysis

Labelled tissue sections were imaged using a Leica Aperio 

AT2 Brightfield Scanner (Leica Biosystems). Images were 

analysed using HALO software (Indica Labs, Version 

2.3.2989.34). The following image analysis macros were 

used for the study: area quantification macro (amyloid), 

multiplex macro (pTau), and microglia macro (GPNMB). 

GraphPad Prism version 8 for Windows (GraphPad Soft-

ware, La Jolla, CA, USA) was used for plotting immuno-

histochemical results and performing statistical analysis. A 

Mann–Whitney test was used to test for the significance of 

differences between NDC and AD.

We found that densities of pTau staining were greater in 

brains from the higher Braak stages, and that pTau and amy-

loid pathology both were found in the regions studied even 

in brains with lower Braak stages (Extended Data Fig. 1, 

online resource). This variability of local tissue pathology 

within similar Braak stages emphasises the potential impor-

tance of matching regional neuropathology with transcript 

expression for each brain individually.

Nuclei isolation and selective glial enrichment

Fresh-frozen entorhinal and somatosensory cortical tissue 

blocks were sectioned to 80 μm on a cryostat and grey mat-

ter separated by scoring the tissue with sharp forceps to 

collect ~ 200 mg grey matter in an RNAse-free Eppendorf 

tube. Nuclei from NDC and AD samples were isolated in 

parallel using a protocol based on Krishnaswami et al. [30]. 

All steps were carried out on ice or at 4 °C. Tissue was 

homogenised in a 2 ml glass douncer containing homogeni-

zation buffer (0.1% Triton-X + 0.4 U/μl RNAseIn + 0.2 U/

μl SUPERaseIn). The tissue homogenate was centrifuged at 

1000 g for 8 min, and the majority of supernatant removed 

without disturbing the tissue pellet. Homogenised tissue was 

filtered through a 70 μm filter and centrifuged in an Optiprep 

(Sigma) density gradient at 13,000g for 40 min to remove 

myelin and cellular debris. The nuclei pellet was washed 

and filtered twice in PBS buffer (PBS + 1% BSA + 0.2 U/ml 

RNAseIn). These nuclei were used directly for 10X process-

ing (see below) for analysis of the unenriched astrocytes and 

microglia. To enrich for these glia, separate preparations of 

nuclei were labelled in suspension in 1 ml PBS buffer with 

1:500 anti-NeuN antibody (Millipore, MAB377, mouse) and 

1:250 anti-Sox10 antibody (R&D, AF2864, goat) for 1 h on 

ice. Nuclei were washed twice with PBS buffer and centri-

fuged at 500g for 5 min. Nuclei were incubated with Alexa-

fluor secondary antibodies at 1:1000 (goat-anti-mouse-647 

and donkey-anti-goat-488) and Dapi (1:1000) for 30 min 

on ice and washed twice. Nuclei were FACS-sorted on a 

BD Aria II, using BD FACSDiva software, gating first for 

Dapi + ve nuclei, then singlets, and then Sox10- and NeuN-

negative nuclei. A minimum of 150,000 double-negative 

nuclei were collected.

Single nucleus capture and snRNA sequencing

Sorted nuclei were centrifuged at 500 g, resuspended in 

50 μl PBS buffer, and counted on a LUNA-FL Dual Fluo-

rescence Cell Counter (Logos Biosystems, L20001) using 

Acridine Orange dye to stain nuclei. Sufficient nuclei were 

added for a target of 7,000 nuclei for each library prepared. 

Barcoding, cDNA synthesis, and library preparation were 

performed using 10X Genomics Single Cell 3’ Gene Expres-

sion kit v3 with 8 cycles of cDNA amplification, after which 

up to 25 ng of cDNA was taken through to the fragmen-

tation reaction and a final indexing PCR was carried out 

to 14 cycles. cDNA concentrations were measured using 

Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851), and 

cDNA and library preparations were assessed using the Bio-

analyzer High-Sensitivity DNA Kit (Agilent, 5067-4627). 

Samples were pooled to equimolar concentrations and the 

pool sequenced across 24 lanes of an Illumina HiSeq 4000 

according to the standard 10X Genomics protocol. The 

snRNAseq data will be made available for download from 

the Gene Expression Omnibus (GEO) database (https:// 

www. ncbi. nlm. nih. gov/ geo/) under accession number 

GSE160936.

Processing of FASTQ files, dimensionality reduction, 
and clustering

snRNASeq data were pre-processed and clustered using 10X 

Genomics Cell Ranger and Seurat analysis tools [17, 57, 

76]. Illumina sequencing files were aligned to the genomic 

sequence (introns and exons) using GRCh38 annotation in 

Cell Ranger v3.1. Nuclei were identified above background 

by the Cell Ranger software. Filtered gene matrices from 

CellRanger were loaded into R where Seurat v3 single-cell 

analysis package was used for analysis [61]. Genes that were 

expressed in three or more nuclei were used for further anal-

ysis. Further QC was performed to exclude nuclei with less 

than 200 genes or greater than 6000 genes or 25,000 UMIs, 

which likely represent low quality or doublet nuclei, respec-

tively. Nuclei with greater than 5% mitochondrial genes were 

also excluded. Mitochondrial gene reads were excluded. The 

24 samples had an average of 3819 nuclei per sample after 

passing QC.

Data was normalised and scaled using the Normalize-

Data function with normalisation.method = “LogNormalize” 

and scale.factor = 10,000. Variable genes then were identi-

fied using the FindVariableFeatures function with nfeatures 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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(number of variable genes) set to 2000. To integrate the data 

from all samples, FindIntegrationAnchors (dims = 1:20) 

and IntegrateData (dims = 1:20) functions were used. PCA 

analysis was run, using variable genes, for the top 30 com-

ponents. Clusters were identified using FindClusters (reso-

lution = 0.5) and UMAP was used for 2D visualisation of 

clusters (with the top 15 PCs, based on the ranking of PCs 

by the variance explained by each).

Cell-type identification of clusters was performed using 

AUCell (see below) with cell-type specific genes identi-

fied by previous human brain snRNASeq studies [51]. 

Cell-type annotation was confirmed by visual inspection of 

key marker genes (Fig. 1 and Extended Data Fig. 2, online 

resource). Glial cluster-specific genes were identified using 

the FindMarkers function. All clusters were composed of 

nuclei from all samples and did not represent a single case or 

disease group. A small number of nuclei that either did not 

express any major cell-type markers, or expressed a combi-

nation of cell-type markers, were categorised as ‘unclassi-

fied’. We used the thresholding method described above for 

identification and removal of unclassified clusters.

Integration and cell-type specific clustering 
of the unenriched samples

Gene-cell matrices for the samples without enrichment were 

processed using similar qc parameters to the samples with 

enrichment. Nuclei with less than 200 genes were excluded. 

Fig. 1  Analysis of human brain microglia and astrocytes from low 

and high AD pathology brains by single-nuclei RNASeq. a FACS 

gating method for sorting of human brain nuclei to enrich for micro-

glia and astrocyte double-negative population (pink; mean for 24 

samples = 17.9%, standard deviation = 6.2%). Dapi + ve nuclei were 

selected first, followed by separation based on NeuN and Sox10 

staining. b UMAP 2D visualisation of clustering of 91,655 single 

nuclei from the 24 brain samples (average of 3819 nuclei per sam-

ple) including 52,706 (58%) astrocytes and 27,592 (30%) microglia. 

Smaller numbers of nuclei from neurons, oligodendrocytes, and vas-

cular cells also were found (Extended Data Fig. 2, online resource), 

but these cell types formed distinct UMAP clusters that were not 

analysed further. c Heatmap showing cell type-specific marker gene 

expression in the nuclei clusters. d Heatmap of top differentially 

expressed genes in each microglial cluster. e Heatmap of top differen-

tially expressed genes in each astrocyte cluster
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Any nuclei with more than 5% mitochondrial counts were 

removed. Mitochondrial genes were removed from the final 

gene-cell count matrices. Integration was performed using 

LIGER (Linked Inference of Genomic Experimental Rela-

tionships) with k = 20 and λ = 5. The LIGER factors were 

then used for uniform manifold approximation and projec-

tion (UMAP) and a Leiden algorithm was applied to detect 

the clusters using the UMAP embeddings as the input. Clus-

ters were annotated for cell types using EWCE (weighted 

cell type enrichment) algorithm against reference datasets 

previously generated with EWCE. Astrocyte and microglial 

clusters were then separated from the rest of the cell popula-

tion to compare to that of enriched clusters.

Comparison of astrocyte and microglial nuclei gene 
expression before and after enrichment

The top 10% most variable genes were calculated separately 

from astrocytes and microglia clusters from the unenriched 

and enriched samples prepared independently from the same 

regions of the same brains. The normalised counts of these 

genes were first pseudobulked by sample in both datasets. 

A Pearson correlation was then calculated between the gene 

counts in samples from the unenriched and enriched sets.

Differential gene expression analysis

MAST was used to identify genes differentially expressed 

(associated) with histopathological features (using pTau or 

amyloid-beta as markers) [14, 59] to perform zero-inflated 

regression analysis by fitting a mixed model. The model 

specification was zlm(~ histopath_marker + (1|sam-

ple) + cngeneson + pc_mito + sex + brain_region,  sca, 

method = "glmer", ebayes = F). The fixed effect term pc_

mito accounts for the percentage of counts mapping to 

mitochondrial genes. The term cngeneson is the cellular 

detection rate. Each nuclei preparation was considered as 

a distinct sample for the mixed effect. Models were fit with 

and without the dependent variable and compared using a 

likelihood ratio test. Units for differential expression are 

defined as  log2 fold difference/% pTau-positive cells (or  log2 

fold difference/% amyloid area), i.e., a one unit change in 

immunohistochemically defined pTau (or amyloid density) 

is associated with one  log2 fold change in gene expression. 

Genes expressed in at least 10% of nuclei from each cell 

type (either total microglia or total astrocytes) were tested. 

Genes with a  log2 fold change of at least 0.25 and adjusted 

p value < 0.05 were defined as meaningfully differentially 

expressed. As an additional filter, the percentage of the inter-

individual variance in expression between the NDC subjects 

was calculated for each gene and three genes with unusually 

high (> 2 standard deviations) variance (LINGO1, SLC26A3 

and RASGEF1B) in one or two samples were excluded.

Gene ontology and pathway enrichment analysis

The gene ontology (GO) enrichment and the pathway enrich-

ments analysis were carried out using the R package enrichR 

(v 3.0), which uses Fisher's exact test (Benjamini–Hoch-

berg FDR < 0.1) [5, 9]. Gene sets with minimum and maxi-

mum genes of 10 and 500, respectively, were considered. 

To improve biological interpretation of functionally related 

gene ontology and pathway terms and to reduce the num-

ber of redundant gene sets, we first calculated a pairwise 

distance matrix using Cohen’s kappa statistics based on the 

overlapping genes between the enriched terms and then per-

formed hierarchical clustering of the enriched terms [22]. 

Pathways relating specifically to cancer pathology were 

excluded.

Gene set enrichment analyses (GSEA)

AUCell [1] (R package v1.6.1) was used to quantify the 

expression of published gene set signatures (Supplemen-

tary Table 2, online resource). Mouse genes were con-

verted to human orthologues where applicable using bio-

DBnet. Normalised data were processed in AUCell using 

the AUCell_buildRankings function. The resulting rankings, 

along with the gene lists of interest, were then put into the 

function AUCell_calcAUC  (aucMaxRank set to 1% of the 

number of input genes). Resulting AUC scores were scaled 

across clusters.

We also used AUCell to test for enrichment of the gene 

sets that we identified on previously published human sin-

gle-nuclei data (Supplementary Table 3, online resource) 

[16, 18, 36, 76]. Where possible for the AUCell tests for 

enrichment of gene sets from previously reported data, the 

cell type annotations from the published data were used. 

Filtered matrices were processed and cell types identified 

using the methods described above for the Zhou et al.’s [76] 

data set. The scFlow single-cell analysis pipeline [28] was 

employed for analysis of the Gerrits et al. data set. In brief, 

quality control was performed using the same criteria as 

described above. Sample integration was performed using 

Liger [72] and dimension reduction using PCA and UMAP, 

and finally, clustering was performed using the Leiden algo-

rithm [65]. Microglia and astrocytes were then identified 

using the same sets of marker genes used for the primary 

analysis (Fig. 1). AUCell was then run separately on micro-

glia and astrocyte populations from each study using lists 

of our significantly up-regulated and down-regulated genes 

with pTau and amyloid pathology, from microglia and astro-

cytes (thresholded as described above). The aucMaxRank 

term was set to 200 genes. LogFC values between Control 

and AD samples were estimated using the limma package 

in R [45], using the default configuration and the following 

linear model: ~ diagnosis + nFeature, where nFeature is the 
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total number of distinct features expressed in each nucleus 

(to account for the fact that nuclei that express a higher num-

ber of features may have higher AUCell scores).

Over-representation analyses of literature gene sets in 

our glial sub-clusters and differentially expressed gene lists 

were performed by Fisher's exact test using the "enrichment" 

function of the R package "bc3net" (https:// github. com/ cran/ 

bc3net). The p values associated with the Fisher's exact test 

correspond to the probability that the overlap between the 

literature gene sets and the sub-cluster markers/differentially 

regressed genes from our dataset has occurred by chance.

Cell–cell communication, gene co-expression 
(module), regulatory network (regulon), 
and enrichment analyses

Cell–cell communication analysis was performed using Cell-

Chat [26]. CellChat employs a curated database of potential 

signalling ligand–receptor pairs from the literature. Amongst 

all these potential ligand–receptor pairs, cell–cell interac-

tions are identified based on mass action models, along with 

differential expression analysis and statistical tests on cell 

groups. The CellChat algorithm with default parameters 

(unless otherwise specified) was applied to the sub-set of the 

dataset that corresponded to microglia and astrocytes, sepa-

rately on the AD and NDC samples. The human CellChat 

database was used for the ligand–receptor pairs. Communi-

cations that involved less than 100 nuclei were filtered out 

(using the min.cells argument in the filterCommunication 

function). The results of the cell–cell communication analy-

sis were integrated with the results of the differential gene 

expression analysis to prioritise interactions that are most 

likely altered with advancing pathology. The ligand–recep-

tor interactions where at least one of the interacting partners 

corresponds to genes that are significantly associated with 

amyloid-beta or pTau are thus highlighted in Supplementary 

Table 10.

Gene co-expression module and hub-gene identifica-

tion analysis were performed separately for microglial and 

astrocyte populations using the MEGENA (v1.3.7) package 

[58]. The top 15% most variably expressed genes were used 

as input [2]. We evaluated the mean expression of each of 

these genes across all the nuclei in the expression matri-

ces: all the genes in both astrocyte and microglia matrices 

were amongst the top 25% most highly expressed genes, 

confirming that the choice to filter the expression matrix 

based on variability did not bias the inclusion towards genes 

with a particularly low level of expression. In addition, we 

verified that the filtered expression matrices for both astro-

cytes and microglia included a substantial proportion of the 

differentially expressed genes: over 90% for astrocytes and 

all but two of the microglial differentially expressed genes 

were included in the respective filtered expression matrices, 

suggesting that the filtered expression matrices contained a 

biologically meaningful gene set. The MEGENA pipeline 

then was applied using default parameters, using Pearson’s 

correlations and a minimum module size of 10 genes. Par-

ent modules were produced from which a sub-set of genes 

form smaller child modules (Supplementary Tables 4 and 5, 

online resource). For downstream analysis, interpretation, 

and presentation of results, modules with > 20 genes were 

retained. Co-expression modules were represented graphi-

cally using Cytoscape software (Mac OS version 3.8.0) [53] 

with hub genes represented with a triangle and nodes with 

a circle with a diameter proportional to the node degree 

[58]. Genes previously associated with AD as defined by 

Kunkle et al. (Table 1 [31], 23 genes), Jansen et al. (Table 1 

[25], a further 17 genes) and Andrews et al. (Table 1 [3], a 

further 25 genes), for a total of 65 genes, were annotated in 

the co-expression networks.

Gene regulatory networks were built using pySCENIC 

(0.10.3) [39, 67] package default parameters. The inputs 

for the pySCENIC gene regulatory network analyses were 

the same filtered expression matrices as for the MEGENA 

gene co-expression module analyses. Correlations between 

a list of 1390 human transcription factors (TFs) curated by 

Lambert et al. [33] and the genes in the expression matrix 

were evaluated and co-expression modules with a minimum 

size of 20 genes were defined. From these, regulons (gene 

modules sharing a common association with a TF) were built 

after removing the genes without a recognition motif (based 

on the hg19-500 bp-upstream-7species.mc9nr and hg19-tss-

centred-10 kb-7species.mc9nr databases provided in the 

pySCENIC package) for the correlated TF. Only regulons 

with activator-TFs were retained [67]. Regulons including 

50 or more genes were retained for downstream analyses and 

Cytoscape software (Mac OS version 3.8.0) [53] was used 

for their graphical representation.

To evaluate module and regulon enrichment with AD 

pathology, the AUCell scores for each gene co-expression 

module or regulon in each nucleus were calculated (auc-

MaxRank set to 5% of the number of input genes). The sta-

tistical analysis was performed using the limma package in R 

[45], using the default configuration and the following linear 

model: ~ pathology + nFeature + pc_mito, where pathology 

is the average immunohistochemistry quantification value 

for Aβ or pTau, nFeatures is the total number of distinct 

features expressed in each nucleus (to account for the fact 

that nuclei that express a higher number of features may 

have higher AUCell scores), and pc_mito is the percentage 

of counts mapping to mitochondrial genes. We also cor-

rected for a potential pseudoreplication bias [77], using the 

duplicateCorrelation function of the limma package with the 

sample as the “blocking” variable. To assess if the module 

and regulon enrichment with AD pathology differed with 

respect to the brain region (EC and SSC), we repeated the 

https://github.com/cran/bc3net
https://github.com/cran/bc3net
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limma analysis separately in each brain region and compared 

the results by means of a linear regression analysis.

Sub-cluster-specificity of modules and regulons were 

estimated using the regulon_specificity_scores function 

in pySCENIC [63]. Briefly, the module/regulon specific-

ity score employs the Jensen–Shannon divergence, a met-

ric previously used to assess cell-type specificity of tran-

scripts [6] and regulons [63]. Modules and regulons with 

the highest specificity score may be considered sub-cluster-

specific. A specificity score of 1 indicates a gene set that 

is only expressed in one sub-cluster, while a specificity 

score of 0 indicates an evenly expressed gene set across all 

sub-clusters.

Results

Selective astrocyte and microglia transcriptome 
sequencing

The proportions of microglia and astrocytes defined by snR-

NASeq of nuclei isolated from the human brain post-mor-

tem are low and variable [18, 36]. To enable comprehensive 

analyses of differential transcript expression in astrocytes 

and microglia with AD pathology, we enriched for these 

glia by selectively removing neuronal (NeuN-positive [32]) 

and oligodendrocyte (Sox10-positive [73]) nuclei using 

FACS (Fig. 1 and Extended Data Fig. 2, online resource). 

For this, we isolated nuclei from each of two cortical regions 

[entorhinal (EC) and somatosensory (SSC) cortex] taken 

from six brains with low levels of AD neuropathology pro-

vided by donors without reported cognitive impairment and 

from six brains with high levels of AD pathology (Extended 

Data Fig. 1). Nuclei were well mixed with respect to disease 

(AD vs NDC), brain region (EC vs SSC), and donor sex after 

integration (Extended Data Fig. 3a–d, online resource).

We used nuclear markers that are highly specific for 

oligodendroglia and neurons to separate these nuclei 

from those isolated to enrich for astrocytes and microglia 

(Extended Data Fig. 4a, online resource). We also confirmed 

that the transcriptomes expressed in samples enriched from 

each sample were not biased through the enrichment process 

by showing that the top 10% most variable genes expressed 

in nuclei without and with enrichment obtained from paired 

sections from each subject and brain region were correlated. 

For astrocyte nuclei, correlations between variable genes 

from the same individual ranged between 0.99 and 1.00, 

with similarly strong correlations between the enriched and 

unenriched microglial nuclei (0.89–1.00) (Extended Data 

Fig. 4b, c, online resource). Individual proportions of nuclei 

clustered as astrocytes and microglia varied between sub-

jects, but the same proportions of nuclei from the two cell 

types were isolated from male and female donors (Extended 

Data Fig. 3e, f, online resource). There was a small trend 

for a relative astrogliosis with AD (Extended Data Fig. 3g, 

online resource).

Astrocyte nuclei had a mean unique molecular identifier 

(UMI) count of 8775 with an average of 3166 distinct genes 

and microglial nuclei had a mean UMI count of 4808 with 

an average of 2132 genes. Amongst the 52,706 astrocyte 

nuclei, we found expression of 90% of astrocyte transcripts 

previously reported from human brain astrocytes (500 genes) 

[75]. 16/65 AD risk genes were represented in the astro-

cyte co-expression network (Extended Data Fig. 5a, online 

resource). The 27,592 total microglial nuclei included 

expression of 96% of the recently described microglial 

“core” consensus transcriptome (249 genes) [44]. Microglia 

also were highly enriched in genes associated previously 

with genetic risk for AD (27/65) [3, 25, 31] (Extended Data 

Fig. 6a, online resource).

Increased expression of genes related to metal 
ion homeostasis, proteostasis, and inflammation 
in astrocytes with AD pathology

Gene expression associated with extracellular amyloid 

plaques or intraneuronal neurofibrillary tangles (pTau) 

(Fig. 2 and Supplementary Tables 6 and 7, online resource) 

were discovered by regressing gene expression against amy-

loid-beta (expressed as  log2 fold difference/% area stained) 

or pTau (expressed as  log2 fold difference/% pTau-positive 

cells) densities in sections prepared from homologous 

regions of the contralateral hemispheres for each of the 

brains. Half of the significantly positively associated genes 

expressed were correlated with both amyloid-beta and pTau 

pathology, but almost threefold more transcripts were asso-

ciated uniquely with amyloid-beta (313 genes) expression 

relative to pTau (106 genes) (Fig. 2). We found significant 

astroglial functional enrichment for pathways involved in the 

‘cellular response to zinc ion’, ‘cellular response to copper 

ion’, and ‘response to metal ions’ with both amyloid-beta and 

pTau expression (Fig. 3 and Supplementary Table 8, online 

resource); genes encoding proteins involved in metal ion 

homeostasis (MT1G, MT1F, MT1E, MT2A, MT3, and FTL) 

were amongst the top transcripts most highly positively asso-

ciated with pathology in astrocytes (Supplementary Table 6, 

online resource). Transcripts involved in ‘chaperone-medi-

ated protein complex assembly’ and ‘response to unfolded 

protein’ pathways, such as CRYAB, HSPB1, HSPH1, and 

HSP90AA1, also were positively differentially expressed. 

Increased expression of the AD risk gene CLU was asso-

ciated with pTau pathology in astrocytes (Extended Data 

Fig. 7a, online resource). Expression of the AD risk gene 

IQCK was positively associated with both amyloid-beta and 

pTau (Extended Data Fig. 7a, online resource). Pathways 

involved in inflammatory processes also were significantly 
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enriched (‘NLRP3 inflammasome’ and ‘NFkB is activated 

and signals survival’). By contrast, “core” or homeostatic 

astrocyte transcripts, such as those for glutamate transport-

ers SLC1A3 and SLC1A2 or for IL-33 (CSF1R ligand, which 

promotes microglial synaptic remodelling [69]), were down-

regulated. The AD risk-associated MEF2C transcription fac-

tor, as well as MAFG, JUND, CEBPB, MAF, and LHX2 were 

up-regulated, suggesting roles for these transcription factors 

in the regulation of responses to AD pathology.

We confirmed with gene set enrichment (AUCell) that 

transcripts positively differentially expressed with pathol-

ogy also were significantly enriched in nuclei with human 

AD pathology reported in previously published snRNASeq 

studies [16, 18, 36, 76], albeit with very low log fold changes 

in one [16] out of the four datasets analysed (Supplementary 

Table 3, online resource).

Expression of genes related to autophagy, 
phagocytosis, and proteostasis in microglia with AD 
pathology

Microglial transcripts most highly positively associated with 

tissue amyloid-beta and tissue pTau density included those 

for genes associated with AD risk (APOE, MS4A6A and 

PILRA, Fig. 2 and Extended Data Fig. 7c,d, online resource), 

as well as those for genes associated with risks for other 

neurodegenerative disorders (LRRK2, SNCA and GPNMB, 

associated with Parkinson’s disease [8], and GRN, associated 

with ceroid lipofuscinosis [71] and frontotemporal demen-

tia [4]). Fourfold more transcripts were associated uniquely 

with amyloid-beta (109 genes) expression relative to pTau 

(27 genes), while 60% of the significantly positively associ-

ated genes expressed were correlated with both amyloid-beta 

and pTau pathology (Fig. 2). Differentially expressed tran-

scripts were functionally enriched in ‘selective autophagy’ 

Fig. 2  Differential gene expression in astrocytes and microglia with 

amyloid-beta and pTau pathology. Volcano plot of transcripts differ-

entially expressed in astrocyte nuclei (threshold of ≤ 0.05 adjusted 

p value, abs logFC ≥ 0.25, omitting the top three most variable 

genes between samples) with immunohistochemically defined tis-

sue amyloid-beta (a) and pTau (b) density. c Venn diagram illustrat-

ing the number of genes positively correlated (top) and negatively 

correlated (bottom) with amyloid-beta (blue) and pTau pathol-

ogy (pink) in astrocytes. Volcano plot of transcripts differentially 

expressed in microglial nuclei (threshold of ≤ 0.05 adjusted p value, 

abs logFC ≥ 0.25, omitting the top three most variable genes between 

samples) with immunohistochemically defined tissue amyloid-beta 

(d) and pTau (e) density. f Venn diagram illustrating the number of 

genes positively correlated (top) and negatively correlated (bottom) 

with amyloid-beta (blue) and pTau (pink) pathology in microglia
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and ‘microglia pathogen phagocytosis’ pathways (Fig. 4 and 

Supplementary Table 9, online resource); ASAH1, ATG7, 

STARD13, and MYO1E were amongst the most strongly 

positively associated genes (Supplementary Table 7, online 

resource). Perivascular macrophages (PVM) also showed 

functional enrichment in ‘selective autophagy’, as well as 

several CCT/TriC molecular chaperone complex pathways 

involved in proteostasis and actin/tubulin folding (Extended 

Data Fig. 8, online resource and Supplementary Table 9, 

online resource). Up-regulation of the transcription factors 

MAFG, MITF, and JUND with amyloid-beta or pTau pathol-

ogy suggests their involvement in transcriptional regulation 

of these microglial and PVM responses to pathology.

We confirmed that transcripts positively differentially 

expressed in microglia were significantly enriched in nuclei 

with human AD pathology in previously published snR-

NASeq studies [16, 18, 36, 76] (Supplementary Table 3, 

online resource). Toll-like receptors (TLR2 and TLR10), 

HK2 (hexokinase 2), JAK2 (Janus kinase 2), and ITGAM 

(CD11b) were amongst the smaller number of transcripts in 

these cells that were significantly negatively associated with 

tissue amyloid-beta or pTau.

We found that astrocytes and microglia display differ-

ences in the genes whose expression is specifically differ-

entially associated with amyloid-beta and pTau pathology. 

Astrocytes show greater expression of mitochondrial oxida-

tive phosphorylation and potential neuroprotective Nrf2 acti-

vation pathways associated specifically with amyloid-beta, 

while cell junctional and catabolic pathway up-regulation is 

associated specifically with pTau pathology, with shared up-

regulation of pro-inflammatory NLRP3 inflammasome and 

metal ion response pathways (Extended Data Fig. 9a, online 

resource). By contrast, microglia show increased expression 

of carbohydrate metabolic processes, responses to unfolded 

protein, the MAPK cascade, and the TYROBP causal net-

work are amongst pathways showing greater expression with 

amyloid-beta, with a sparser response to IL1-related pathway 

up-regulation associated with pTau (Extended Data Fig. 9b, 

online resource).

Exploration of ligand–receptor interactions 
between astrocytes and microglia

We applied CellChat [26] in conjunction with the jointly 

generated astrocyte and microglial transcriptomes to explore 

correlations between inferred ligand–receptor interactions 

with greater amyloid-beta or tau pathology (Supplemen-

tary Table 10, online resource). Both amyloid-beta and 

pTau pathology were associated with increased expression 

of genes implicated in integrin interactions with laminin 

and fibrillin, the APP (astrocyte)–CD74 (microglia) ligand 

pair, which can suppress amyloid-beta production [37], and 

inferred CD99 (astrocyte)–PILRA (microglia) interactions 

that may inhibit inflammatory responses [62]. By contrast, 

adenosine signalling via microglial ENTPD1 nucleosidase 

products interacting with astrocytic ADORA2B was less 

prominent with advancing pathology (the ENTPD1 gene was 

negatively associated with amyloid-beta and pTau pathol-

ogy). Independent of this, amyloid-beta pathology alone 

was associated with higher probabilities of CXCL12 (micro-

glial)–CXCR7 (astrocytic) interactions implicated in neuro-

genesis and learning [38, 66], BMP4 (microglial)–BMP1RA 

Fig. 3  Functional enrichment 

of differential gene expression 

with amyloid-beta (left) and 

pTau (right) pathology in astro-

cytes. The plots describe the 

significant functionally enriched 

pathways in astrocytes obtained 

using enrichR (see “Methods”) 

from Gene Ontology (GO), 

Reactome, and Wikipathways 

(WP) databases
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(astrocyte) ligand–receptor pairing [74], and neuroprotec-

tive Wnt signalling with expression of WNT by microglia 

and its receptors on astrocytes [24]. This interaction was 

only present in AD samples; it was non-significant in NDC. 

Microglial integrin interactions with the astrocytic glyco-

protein GP1B and ICAM1 became less likely, as the rela-

tive expression of integrin genes was found to be negatively 

associated with amyloid-beta. Finally, greater tissue pTau 

density was singularly associated with a higher probability 

of both increased C3 and C4A complement interactions with 

C3AR1 on microglia; interaction was only identified in AD 

samples (it was non-significant in NDC).

Gene co-expression modules suggest glial 
cell-specific functional roles of AD GWAS genes

The EC and SSC show similar co-expression signatures

Co-expression network analyses were used to characterise 

gene expression modules (MEGENA) in astrocytes and 

microglia, suggesting potential functional relationships. We 

found consistent gene co-expression signatures for the EC 

and SSC; strong correlations were found between MEGENA 

modules differentially expressed with greater amyloid-beta 

or pTau in nuclei in the two regions (for astrocytes, r = 0.96 

with pTau and r = 0.86 for amyloid-beta; for microglia, 

r = 0.86 with pTau and r = 0.87 for amyloid-beta) (Supple-

mentary Data Table 11, online resource). The patterns of 

regulon expression related to increasing pTau or amyloid-

beta inferred using SCENIC for nuclei from EC and SSC 

also were similar; strong correlations were found between 

the differential activity (logFC) inferred with SCENIC for 

nuclei from the EC and SSC (for astrocytes, r = 0.89 with 

pTau and r = 0.76 for amyloid-beta; for microglia, r = 0.85 

with pTau and r = 0.71 for amyloid-beta) (Supplementary 

Data Table 11, online resource). This suggests that similar 

cell responses are associated with amyloid-beta and pTau 

pathological features in the two brain regions.

Evidence for involvement of CLU in astrocyte metal ion 

homeostasis and proteostasis pathways with AD

AD GWAS genes CLU and IQCK were co-expressed in 

an astrocyte module (module 9; Supplementary Table 4, 

online resource) which was amongst the most strongly posi-

tively correlated with both amyloid-beta and pTau density. 

Both CLU and GJA1 (Gap Junction Protein Alpha 1; Con-

nexin-43) are hub genes in this module, which was function-

ally enriched in transcripts for proteins involved in metal 

ion homeostasis (e.g., ‘metallothioneins bind metals’ and 

‘response to metal ions’) and proteostasis (‘HSF1 activa-

tion’, ‘response to unfolded protein’, and ‘chaperone-medi-

ated protein complex assembly’) (Supplementary Table 4, 

online resource). They also were hub genes in the related 

child module 30, which includes genes in pathways for 

‘ceramide transport’ and ‘gap junction assembly’ (Extended 

Data Fig. 5b, online resource). CLU was associated with 

the astrocyte regulons identified using SCENIC (for tran-

scription factors MAF, MAFG, JUND, and CEBPB) that 

had the strongest correlations with pTau and amyloid-beta 

Fig. 4  Functional enrichment 

of differential gene expression 

with amyloid-beta (left) and 

pTau (right) pathology in micro-

glia. The plots describe the 

significant functionally enriched 

pathways in microglia obtained 

using enrichR (see “Methods”) 

from Gene Ontology (GO), 

Reactome, and Wikipathways 

(WP) databases
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(Supplementary Table 12, online resource). CLU-contain-

ing modules and the associated regulons also were enriched 

in AD nuclei reported in earlier studies (Supplementary 

Tables 4 and 12, online resource).

Evidence for a cell-specific role for APOE in microglia linking 

phagocytic, complement, and inflammatory activation 

pathways in AD

APOE, the largest genetic risk factor for AD, was up-regu-

lated in microglia with both pTau and amyloid-beta pathol-

ogy. APOE was a hub gene in microglia co-expressed both 

with TREM2 and inflammatory activation and response 

genes (e.g., C1QB, C1QC, CD74, CTSB) in a module func-

tionally enriched for pathways including the ‘endosomal/

vacuolar pathway’, ‘microglia pathogen phagocytosis’, 

and ‘antigen processing—cross presentation’ (module 

19) (Extended Data Fig. 6b, online resource and Supple-

mentary Table 5, online resource). Regulons inferred to 

be responsible for microglial APOE expression included 

those for transcription factors MXD4, MITF, PBX3, and 

JUND (Supplementary Table 14, online resource). APOE 

expression in astrocytes was not significantly correlated with 

either amyloid-beta or pTau pathology and co-expression 

relationships suggested a different functional role for APOE 

in astrocytes as a hub gene in a module functionally enriched 

for ‘dermatan sulphate biosynthesis’, ‘extracellular matrix 

organisation’, and ‘ferroptosis’ (module 13) (Supplementary 

Table 4, online resource).

Microglial and PVM GPNMB are up-regulated with AD 

pathology in modules related to lipid homeostasis

Glycoprotein nonmetastatic melanoma protein B (GPNMB) 

is elevated in plasma and CSF with AD and has been pro-

posed as a biomarker of disease [23]. We found that GPNMB 

is up-regulated in microglia with amyloid-beta and pTau 

pathology and in PVMs with pTau pathology (Supplemen-

tary Table 7, online resource). Consistent with this, GPNMB 

was found in association with the MAFG, JUND, MAFB, 

CEBPD, and CEBPA transcription factor regulons which 

showed strong correlations to amyloid-beta and pTau in 

microglia (Fig. 5a and Supplementary Table 14, online 

resource). GPNMB also is a hub gene in microglial co-

expression modules 11 and 34, which are strongly associ-

ated with amyloid-beta and pTau expression (Supplementary 

Table 5, online resource). As well as GPNMB, hub genes for 

module 11 also include ASAH1, ATG7, STARD13, IQGAP2, 

CPVL, TANC2, and MITF, all of which were positively dif-

ferentially expressed with one or both of the AD pathologies 

(Fig. 5a). We found that module 11 was enriched in AD 

(relative to control) samples from three out of four previ-

ous human snRNASeq studies analysed [16, 18, 76] (Sup-

plementary Table 5, online resource). Pathways involving 

the differentially expressed genes in module 11 suggest a 

Fig. 5  GPNMB is a hub gene in microglial gene co-expression mod-

ules up-regulated with AD pathology. a Graph of microglial gene co-

expression module 11 enriched with amyloid-beta and pTau pathol-

ogy for which GPNMB is a hub gene (triangles = module hub genes). 

GPNMB is expressed in regulons identified by their transcription fac-

tors (in green). b Immunohistochemical staining of GPNMB in post-

mortem human brain tissue from representative NDC and AD brains 

with nuclear counterstain. Staining is present in both microglia and 

perivascular macrophages (insets). Scale = 100  μm. c Quantification 

of density of GPNMB-positive cells in cortical tissue by automated 

image analysis showing an increase in GPNMB-positive cells per 

μm2 for AD cases compared to NDC (p = 0.0023; Mann–Whitney 

test, two-tailed; N = 12). Each point represents a single sample and 

the horizontal bar indicates the median
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functional role in cholesterol homeostasis (‘regulation of 

cholesterol storage’). We found that the smaller module 34 

was enriched in AD samples from two out of four previ-

ous studies [16, 36]. Functional pathways enriched in the 

GPNMB hub-gene module 34 relate to phospholipid and 

lipoprotein homeostasis (‘phospholipid efflux’, ‘phospho-

lipid homeostasis’, and ‘lipoprotein metabolism’).

Consistent with the expected GPNMB expression in 

PVM, immunohistochemistry for GPNMB showed promi-

nent staining around blood vessels, as well as in a sub-set of 

parenchymal microglia (Fig. 5b). There was a mean ~ 1.8-

fold increase in GPNMB-positive cells/μm2 in AD (rela-

tive to NDC) in the cortical tissue studied here (Fig. 5c). 

GPNMB staining density in sections of samples was posi-

tively correlated both with tissue pTau (R = 0.39) and with 

expression of modules 11 and 34 (R = 0.507 and 0.576, 

respectively) defined by snRNASeq of the same region in 

the contralateral hemisphere.

Transcriptional heterogeneity associated with AD 
pathology in sub-sets of human astrocytes 
and microglia

Our snRNASeq data reduction identified six distinguishable 

clusters that expressed the core set of astrocyte genes. Each 

also expressed distinct sets of genes that suggested sub-types 

of astrocytes (Fig. 1 and Supplementary Table 13, online 

resource). Astro1 and Astro2 expressed higher levels of 

genes involved in core astrocyte functions, such as SLC1A2 

(GLT1) and glutamine synthetase (GLUL) (Supplementary 

Table 13, online resource) and Astro2 was enriched for 

pathways including ‘neurotransmitter uptake’, ‘glutamater-

gic synapses’, and ‘amino acid import’. In contrast, Astro4 

and Astro5 were characterised by relative expression of 

genes involved in extracellular matrix formation and func-

tions [40] and were enriched for pathways including ‘car-

bohydrate binding’ and ‘cell–matrix adhesion’. Astro4 was 

distinguished from Astro5 by relatively high expression of 

VEGFA, while Astro5 was enriched uniquely for immune 

response pathways, such as the Toll-like receptor cascade 

and the activated astrocyte marker GFAP. Transcripts in 

Astro6 were enriched for metallothionein genes. Astro5 

and Astro6 showed the greatest specificity for regulons 

most highly up-regulated with pTau (for transcription fac-

tors JUND, MAF, and CEBPB) (Supplementary Table 12, 

online resource).

We found consistent trends for increases in the numbers 

of nuclei in Astro5 and (although less prominently for nuclei 

from the SSC) in Astro6 sub-sets with both increased local 

amyloid-beta and pTau pathology (Extended Data Fig. 10a, 

b, online resource). This was associated with a consistent 

trend to decreased Astro1 nuclear numbers with greater 

pTau expression and a similar trend in the EC with greater 

amyloid-beta expression.

The disease associated astrocyte (DAA) expression sig-

nature defined in a mouse model [19] was represented in 

all astrocyte clusters other than Astro3 (Supplementary 

Table 16, online resource). 4.6% of DAA genes were up-reg-

ulated with amyloid-beta and 9.2% with pTau. Although the 

A1 (12/15 genes expressed) or A2 (13/13 genes expressed) 

gene sets [35] associated previously with injury-responsive 

or homeostatic astrocytes in rodent models, respectively, 

were represented in the astrocyte clusters, neither A1 nor A2 

gene sets were enriched significantly in the total astrocyte 

nuclei or in any of the clusters in agreement with several 

rodent and human studies that fail to replicate distinct ‘A1’ 

and ‘A2’ astrocyte populations [13].

Clustering parameters selected to distinguish PVM 

[identified by markers such as CD163, MRC1 (CD206), and 

MSR1 [29]] also identified three clusters of nuclei (desig-

nated Micro1, 2, and 3) expressing different sets of micro-

glial marker genes (Fig. 1 and Supplementary Table 15, 

online resource). Micro1 was most highly enriched in tran-

scripts for human ‘core’ [15] homeostatic genes, Micro2 

showed a relative functional enrichment for the ‘TYROBP 

causal network’ and ‘ferroptosis’ pathways and Micro3 

expressed lower levels of both homeostatic and activation 

genes, but had higher expression of C3 and LPAR6 (Sup-

plementary Table 15, online resource). Micro2 showed the 

greatest specificity for the MAFG, CEBPA, JUND, CEBPD, 

and MITF regulons found here to be highly correlated with 

amyloid-beta and pTau (Supplementary Table 14, online 

resource). Plaque-induced (PIG [10]), disease associated 

(DAM [27]), activated response (ARM [48]), and interferon 

response microglial (IRM [47, 48]) gene sets identified in 

rodent amyloid models were expressed in all of the clusters, 

with relative enrichment of DAM, ARM, and, to a lesser 

degree, IRM gene sets in Micro2 (Extended Data Fig. 11, 

online resource and Supplementary Tables 2 and 16, online 

resource). PVMs were also relatively enriched in these gene 

sets related to microglial activation, as well as in a gene 

set associated with human microglial ageing [43]. Trends 

towards increased numbers of nuclei in the Micro2 and 

PVM sub-clusters were found with both greater amyloid-

beta and pTau expression (Extended Data Fig. 10c, d, online 

resource).

Discussion

Our results describe neuroprotective gene up-regulation for 

proteostasis, phagocytosis, and protein clearance with amy-

loid-beta and pTau pathology in both astrocytes and micro-

glia, extending similar observations reported recently [34]. 

While 50–60% of the significantly up-regulated genes were 
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associated with both pathological proteins, a 3–4-fold greater 

number of genes were uniquely differentially expressed with 

amyloid-beta relative to pTau, mirroring observations with 

microglia in preclinical transgenic models overexpressing 

the two proteins [55]. Differentially expressed genes in astro-

cytes were associated with increased expression of genes for 

the regulation of metal ion homeostasis that may both pro-

tect cells from oxidative injury and facilitate redox-depend-

ent chaperone clearance of abnormal proteins by astrocytes 

[46]. However, astrocytes also expressed inflammasomes 

and inflammatory activation pathways commonly found in 

microglia, both of which may promote neurodegeneration. 

Our data show that this transcriptional functional diver-

sity reflects distinguishable sub-types of human astrocytes 

and microglia enriched in gene sets related to (but distinct 

from) those previously described in transgenic amyloid or 

tau mouse models or with ageing [19, 27, 43, 48]. Moreover, 

co-expression networks suggest cell-specific functional roles 

for genes associated with AD risk, most notably highlighting 

APOE as a hub gene in microglial co-expression modules 

linking gene expression subserving phagocytic, complement 

and inflammatory activation pathways.

We extended previous approaches to enrich our post-mor-

tem brain snRNASeq data for microglia and astrocytes in our 

study. Several recent publications have described approaches 

for selective glial nuclei isolation from biopsy and rapid 

post-mortem delay tissue, including the use of antibodies to 

microglial transcription factor PU.1 [42], a combination of 

NeuN and Olig2 [17], and IRF8 [68]. Our negative-selection 

approach is distinguished by relying on nuclear markers that 

we have found to be robust to post-mortem delay, reliably at 

least to 24 h. Our analytical approach for addressing hetero-

geneity in the samples also differs from most prior studies 

(although it is not without similar precedents [7, 41]). Cat-

egorical descriptions of brains by Braak stage do not directly 

reflect tissue pathology in the local regions studied, so we 

associated each glial nuclear preparation with quantitative 

measures of pTau and amyloid-beta density specific to the 

regions studied in each of the brains. This has allowed us to 

characterise both similarities and differences in the astrocyte 

and microglia transcriptomic signatures with AD pathol-

ogy. Even with use of a conservative, linear mixed regres-

sion model to account for uncontrolled sources of variance 

related to each sample [14], we found highly statistically 

significant associations between transcripts and pathological 

measures in both astrocytes and microglia (Supplementary 

Tables 6 and 7, online resource).

Our analyses relied on integration of transcriptomic data 

from the EC and SSC. The numbers of significantly differ-

entially expressed genes in the regressions against pathology 

were different for the EC and SSC. However, this reflects 

multiple factors including variance in their expression in 

each region. The strong correlations observed between 

MEGENA modules and regulons by SCENIC suggests 

similar transcriptional responses to amyloid-beta and pTau 

pathology in the two brain regions, despite their differences 

in pathology load. They also support our approach with its 

integration of data across the two brain regions, although 

future work could explore any differences in transcriptional 

signatures that related to, e.g., differences in when the 

pathology first developed relative to the time of death.

Astrocytes expressed genes suggesting functional roles 

for proteostasis with amyloid-beta and pTau-associated func-

tional enrichment for HSF1 activation and chaperone path-

ways. This was accompanied by expression of genes for pro-

inflammatory NF-kB and inflammasome pathways. Greater 

regional amyloid-beta and pTau also was associated with 

enrichment of astrocytes for metal ion homeostasis pathways 

and the expression of metallothioneins. The latter proteins 

modulate neuroprotective superoxide dismutases through 

their regulation of Cu and Zn concentrations in extra- and 

intracellular compartments [20, 21, 54]. Identification of 

CLU as a hub gene in astrocyte co-expression modules 

including genes for metal ion homeostasis and proteostasis 

may reflect dependence of clusterin chaperone functions on 

the local redox environment [46]. Consistent with clinical 

studies providing evidence that amyloid potentiates clusterin 

expression, we found increased expression of the astrocyte 

CLU module with greater amyloid or pTau.

Co-expression analysis in microglia identified APOE as a 

hub gene for a module including complement genes (C1QA, 

C1QB, and C1QC) and functionally enriched in phagocyto-

sis pathways. Microglia may contribute to astrocyte activa-

tion through C1q expression and C1q and other complement 

cascade proteins co-localise with amyloid plaques in AD 

[50]. These analyses also highlighted potential functional 

relationships of GPNMB (concentrations of the protein prod-

uct of which are increased in brain samples and cerebrospi-

nal fluid of sporadic AD patients [23]) with a diverse group 

of genes connected to transcription factors whose regulons 

were up-regulated with amyloid and pTau, suggesting that 

GPNMB is a biomarker for a human microglial neurode-

generative activation state central to pathological responses 

in AD.

Our results also highlight a diversity of astrocyte and 

microglial responses to AD pathology that, while related to 

sub-types previously defined in preclinical models, also had 

distinct features. We tested the relevance of microglial sub-

cluster expression signatures defined in mouse transgenic 

models of AD using gene set enrichment analyses (Extended 

Data Fig. 11, online resource). We found evidence for simi-

lar, moderate levels of relative enrichment for inflammatory 

activation gene sets (DAM and ARM) in Micro2 and PVM 

[27, 48]. The relatively low expression of both homeostatic 

and activation genes in Micro3 corresponded to patterns 

associated with ‘dystrophic’, immuno-senescent microglia 
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[60]. Transcripts from the disease associated astrocyte 

(DAA) gene set were up-regulated with amyloid-beta and 

pTau, but not restricted to any particular astrocyte sub-set, 

consistent with their involvement in a general transcriptional 

programme [19]. Overall, our results highlight distinct fea-

tures and a greater functional diversity amongst microglia 

and astrocytes in the human disease relative to related pre-

clinical models.

We recognise limitations of our data, as well as their con-

siderable promise for further exploration. First, our data are 

limited to post-mortem tissue. However, although restricted 

to end-stage tissue, we attempted to maximise the dynamic 

range of pathology sampled by evaluating correlations with 

quantitative pathological measures across two anatomi-

cal regions and brains of different Braak stages. There are 

limitations to the sensitivity of the 3’-sequencing method 

used. We tried to compensate for the sparse sampling of 

the transcriptome by increasing the number of glial nuclei 

of interest and provided evidence for generalisability of our 

results by demonstration that major co-expression modules, 

regulons, and gene expression analyses discovered here 

also were represented in previous human post-mortem snR-

NASeq datasets [16, 18, 36, 76]. Even so, the nuclear tran-

scriptome may be biased relative to that from a whole cell, 

potentially reducing the power to detect some genes reported 

from studies of related pathologies in mouse models [64]. 

The need to maximise detection sensitivity motivated us to 

enrich our sample for microglia and astrocytes for maximis-

ing the number of nuclei characterised and to make use of 

co-expression-based analyses, which rely less on detection 

of absolute expression levels than do single gene differential 

expression analyses.

With these caveats, we have extended previous work 

defining AD-associated molecular pathology of glial cells 

substantively by describing proteostasis, metal ion homeo-

stasis, and inflammatory mechanisms in astrocytes and 

phagocytotic, proteostatic, and autophagic pathways in 

microglia. We found that gene sets described in transgenic 

mouse models are variably represented in AD, but in the 

context of more complex glial phenotypes. Our data also 

re-emphasise that there are functionally distinct sub-types of 

astrocytes and microglia, with particular diversity amongst 

the former, in which we distinguished enrichments for gene 

sets associated with synaptic function, extracellular matrix 

formation, immune responses, and control of metal ion 

homeostasis/redox state. The relative activation of PVM 

with pathology may make this cell type of particular interest 

given potential roles of PVM both in amyloid-beta clearance 

and neurovascular dysfunction. While this diversity suggests 

multiple potential targets for therapeutic modulation, the 

complexity of human astroglial and microglial phenotypes 

simultaneously expressed in AD also needs to be taken into 

account.
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