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Abstract—Nonnegative matrix factorization (NMF), a method
for finding parts-based representation of nonnegative data, has
shown remarkable competitiveness in data analysis. Given that
real-world datasets are often comprised of multiple features or
views which describe data from various perspectives, it is impor-
tant to exploit diversity from multiple views for comprehensive
and accurate data representations. Moreover, real-world datasets
often come with high-dimensional features, which demands the
efficiency of low-dimensional representation learning approaches.
To address these needs, we propose a Diverse Nonnegative Matrix
Factorization (DiNMF) approach. It enhances the diversity,
reduces the redundancy among multi-view representations with
a novel defined diversity term and enables the learning process in
linear execution time. We further propose a Locality Preserved
DiNMF (LP-DiNMF) for more accurate learning, which ensures
diversity from multiple views while preserving the local geometry
structure of data in each view. Efficient iterative updating
algorithms are derived for both DiNMF and LP-DiNMF, along
with proofs of convergence. Experiments on synthetic and real-
world datasets have demonstrated the efficiency and accuracy
of the proposed methods against the state-of-the-art approaches,
proving the advantages of incorporating the proposed diversity
term into NMF.

Index Terms—Diversity representation, multi-view learning,
nonnegative matrix factorization

I. INTRODUCTION

F INDING a suitable representation is a fundamental prob-

lem for many data analysis tasks [1], [2], [3], [4], [5], as

a good representation can often reveal the latent structure of

data hence facilitate processes such as clustering, classification

and recognition. Nonnegative matrix factorization (NMF) [6]

is a well-known technique for such representation of data. It is

widely studied and applied to real-world data, such as images

and texts, because it possesses parts-of-whole interpretations

and creates better practical performance.

Several variants of NMF have been proposed to seek for

more effective data representation in recent years. For exam-

ple, Kong et al.,[7] proposed a robust formulation of NMF
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(RNMF) to deal with large noises by L2,1 norm. Cai et al., [8]

proposed a graph regularized NMF (GNMF) to model the local

manifold structure by constructing an affinity graph. However,

the performance of GNMF is known to hinge heavily on the

choice of nearest neighbor graph and it is difficult and time

consuming to choose a suitable graph. To overcome this limi-

tation, Wang et. al., [9] proposed a multiple graph regularized

NMF (MultiGNMF) to approximate intrinsic manifold approx-

imation automatically. Similarly, a relational multi-manifold

co-clustering (RMC) approach [10] is proposed to maximally

approximate the true intrinsic manifolds of both the sample

and feature spaces simultaneously. Li et al., [11] proposed a

Locally Constrained A-optimal nonnegative projection method

which not only preserves the locally geometrical structure of

the data but also incorporates label information as constraints

to enhance the discriminating power. Later, Wang et al., [12]

proposed two GNMF-based methods to learn the graph that is

adaptive to the selected features and learned multiple kernels,

respectively. Under the assumption that data samples from

different domains have different distributions, but share same

feature and class label spaces, Wang et al., [13] proposed a

novel NMF-based approach for multiple-domain learning.

Recently, data collected from various sources or represented

by different feature extractors are available in many real-world

applications [14]. For example, one document may be trans-

lated into different languages; web pages can be represented

by different features based on both content and hyperlinks;

an image or video can be represented by different visual

descriptors, such as SIFT [15], HOG [16] and GIST [17];

research communities are formed according to research topics

as well as co-authorship links and so on. These heterogeneous

features that are represented by different perspectives of data

are referred as multiple views [18], [19].

With the increasing amount of multi-view data, approaches

employing NMF-based multi-view learning have attracted at-

tention. MultiNMF [20] formulated a joint multi-view NMF

learning process with the constraint that encourages repre-

sentation of each view towards a common consensus. Subse-

quently, several approaches [21], [22], [23], [24] were pro-

posed based on MultiNMF. Specifically, Zhang et al. [21]

developed a multi-manifold NMF (MMNMF) by incorporating

the locally geometrical structure of data across multiple views.

It regards each view as one manifold and the intrinsic manifold

of a dataset as a mixture of the manifolds. Kalayeh et al. [22]

proposed a weighted extension of MultiNMF [20] for image

annotation, in which two weight matrices are introduced to

alleviate the issue of dataset imbalance in real applications.

Ou et al. [23] explored the local geometric structure for
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Fig. 1: Comparison of existing NMF-based Multi-view ap-

proaches and the proposed DiNMF. A multi-view dataset X

contains two equally important views, i.e., X(1) and X(2).

H(1) and H(2) are the corresponding learned representation

matrices. H∗ is the final representation. For all matrices, the

data vectors are column-wise and the features are row-wise.

The ground-truth is shown as group-1 in purple and group-

2 in green. By enforcing H(1) and H(2) to be close to H∗,

the existing approaches learn the data representations of two

views jointly to capture the shared underlying common infor-

mation but cannot ensure their diversity. In contrast, DiNMF

is based on a diversity term (DIVE), which captures diverse

information among data representations. This ensures that H∗

not only contains common information captured by existing

approaches but also preserves some distinct information from

each view, thus more comprehensive and accurate.

each view under the patch alignment framework and adopted

correntropy-induced metric to measure the reconstruction error

of each view to improve the robustness. Wang et al. [24]

extended MultiNMF to semi-supervised setting by ensuring

that data with same label have same representations and use a

single parameter to learn the weight of each view adaptively.

However, one of the main limitations of all these approaches

is that the learned data representations from multiple views

contain mutually redundant information and lack diverse infor-

mation. This is because, to a large extent, existing approaches

are all to exploit common information shared by multiple

views but neglect the diversity among views. The diversity

means that each view of the data contain s some distinct

information that other views do not have. Taking the diversity

into account, we can capture more information of data and

achieve more comprehensive and accurate learning, because

different views usually describe data from different aspects.

Some researches [25], [26], [27] have also shown that the

diversity is of importance to multi-view learning. Therefore, it

should be beneficial to integrate diversity properties of views

into NMF learning.

To achieve this goal, we propose a novel Diverse Nonneg-

ative Matrix Factorization (DiNMF) method. With a novel

regularization term, DiNMF encourages the representations

from multiple views to be diverse enough to capture com-

prehensive information, so that a diverse and more accurate

data representation is eventually achieved. As illustrated in

Figure 1, existing approaches (the upper figure) learn the

data representations jointly to capture the underlying common

structure shared by two views. They enforce the feature

distribution of H(1) and H(2) to be similar but fail to take

advantage of distinct information of each view. This may lead

to unsatisfactory results. It can be seen from the last columns

of H(1) and H(2) that the feature distributions are nearly same

and happen to be similar to columns in the group-1 (purple).

Through linear computations, the corresponding column of

H∗ will be categorized into a wrong group, i.e., group-1,

due to the similarity of feature distribution. On the contrary,

DiNMF is based on a novel diversity constraint, i.e., DIVE,

which enforces H(1) and H(2) to be as diverse as possible. As

a result, H∗ contains diverse information for comprehensive

learning, since H(2) captures some distinct information that

H(1) lacks. Moreover, the feature distributions of the two

groups are more distinct in-between and this is in line with

the ground truth, leading to more accurate learning.

The main contributions of our work are as follows:

1. DiNMF not only ensures the diversity to exploit com-

prehensive information but also reduces mutually redundancy

across multiple representations for more accurate learning.

Furthermore, DiNMF is also computationally linear thus has

good scalability to large-scale datasets.

2. We further develop Locality Preserved DiNMF (LP-

DiNMF) to preserve the locally geometrical structure of the

manifolds for multi-view setting, by taking into account the

manifold structures in data spaces. This leads to improved

clustering accuracy compared with DiNMF.

3. We derive novel and efficient algorithms for both DiNMF

and LP-DiNMF to optimize objective functions. The conver-

gence of both algorithms are proved.

4. Experiments on both synthetic and real-world datasets

from different domains demonstrate that the proposed methods

are not only faster but also achieve more accurate clustering

than other state-of-the-art methods.

II. DIVERSE NONNEGATIVE MATRIX FACTORIZATION

(DINMF)

In this section, we first briefly review the background of

NMF and introduce a straightforward approach to extend the

single-view NMF to multi-view setting. After that, we present

DiNMF and propose an efficient optimization algorithm for

solving the objective function.
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A. Objective Function of Non-diverse NMF (NdNMF)

Suppose X = [x1,x2, ...,xn] ∈ Rm×n is the nonnegative

n data matrix where each column is a data vector and m is

the dimensionality of the feature space. NMF aims to find two

nonnegative matrix factors W and H whose product can well

approximate the original matrix:

X ≈WH. (1)

Here the H ∈ R
k×n can be considered as the new repre-

sentations of data in terms of the basis W ∈ R
m×k, where k

demotes the desired reduced dimension.

The approximation is quantified by a cost function which

can be constructed by distance measures. A popular measure

is the square of the Euclidean distance (also known as the

Frobenius norm) between two matrices [28]. Thus, NMF aims

to minimize the following objective function:

∥X−WH∥2F , s.t. W,H ≥ 0 (2)

This standard NMF can be extended to multi-view setting

straightforwardly. Let X(v) ∈ R
m(v)×n be the feature matrix

corresponding to the vth view. Similarly, W(v) and H(v)

are the corresponding basis matrix and representation matrix,

respectively. Given V heterogeneous features, we directly

integrate all these features together so the objective function

(2) becomes

V∑

v=1

∥X(v) −W(v)H(v)∥2F . s.t. W(v),H(v) ≥ 0 (3)

Obviously, this approach learns each data representation

independently and cannot ensure the diversity of different

views. To facilitate the subsequent discussion, we call this

approach Non-diverse Multi-view Nonnegative Matrix Factor-

ization (NdNMF).

B. Objective Function of DiNMF

A desirable multi-view NMF approach for data analysis

needs to satisfy two requirements. First, it should exploit

diverse information across multi-view data representations

for more comprehensive and accurate learning. Second, it is

scalable since the number of data n and dimension of features

m could be quite large. In the following, we describe how

DiNMF satisfies these two requirements.

Diversity requires that two data vectors be as orthogonal

to each other as possible, so that more comprehensive infor-

mation can be exploited. Let h
(v)
i and h

(w)
i be the ith data

representation vectors in two views, i.e, the v-th and w-th

views. To ensure the diversity between the two vectors, their

dot product should be 0, approximately. To achieve this, we

can minimize the following function [29]

∥h
(v)
i ◦ h

(w)
i ∥0, (4)

where ◦ designates the product, and ∥·∥0 is the l0 norm which

indicates the number of non-zero elements. Due to the non-

convexity and discontinuity of l0 norm, (4) can be relaxed by

using l1 norm as follows,

∥h
(v)
i ◦ h

(w)
i ∥1 =

k∑

j=1

|h
(v)
ji | · |h

(w)
ji |, (5)

where | · | is the absolute value. Since the representations

obtained by NMF are non-negative, we can further reformulate

(5) as

∥h
(v)
i ◦ h

(w)
i ∥1 =

k∑

j=1

h
(v)
ji · h

(w)
ji . (6)

By extending the calculation of single data vector in (6)

to n data vectors setting, we propose the following term to

guarantee the diversity among all n data vectors in two views,

DIVE(H(v),H(w)) =
n∑

i=1

k∑

j=1

h
(v)
ji · h

(w)
ji

= tr(H(v)H(w)T ),

(7)

where tr(·) is the trace function. Therefore, minimizing (7)

will encourage H(v) and H(w) to be orthogonal to each other.

In other words, the diversity of the representation matrices in

two views is guaranteed.

Given a dataset with more views, we incorporate the DIVE

into NdNMF to guarantee that data representations in any two

views be diverse. Then, the minimization objective function is

produced as follows:

V∑

v=1

∥X(v) −W(v)H(v)∥2F + α
∑

v ̸=w

DIVE(H(v),H(w))

s.t. 1 ≤ v, w ≤ V,W(v),H(v),H(w), α ≥ 0,

(8)

where α is a trade-off parameter which controls the weight

of DIVE. A smooth regularization term ∥H(v)∥2F is added to

avoid over-fitting of a view, which leads to the overall objective

function as follows:

V∑

v=1

∥X(v) −W(v)H(v)∥2F

︸ ︷︷ ︸

error

+ α
∑

v ̸=w

DIVE(H(v),H(w))

︸ ︷︷ ︸

diversity

+β

V∑

v=1

∥H(v)∥2F

︸ ︷︷ ︸

smoothness

s.t. 1 ≤ v, w ≤ V,W(v),H(v),H(w), α, β ≥ 0.

(9)

Here β is the weight factor of the smoothness term.

To solve the objective function (9), we develop an efficient

optimization algorithm to find the optimal solution of H(v).

After that, we calculate the average value of H(v) in all views

for the final multi-view data representation H∗, i.e., H∗ =
∑

V

v=1 H
(v)

V
. Following are the details.

C. Solving the Optimization Problem (9)

Since the objective function (9) is not convex with both

variables W(v) and H(v), it is infeasible to find the global
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minimum. Instead, we propose an algorithm to find a local

minima by iteratively updating W(v) with H(v) fixed and then

updating H(v) with W(v) fixed.

For each view, the computations of W(v) and H(v) are not

dependent on other views, so minimizing (9) gives us

∥X(v) −W(v)H(v)∥2F + α

V∑

w=1;w ̸=v

tr(H(v)H(w)T ) + β∥H(v)∥2F

= tr(X(v)X(v)T−2X(v)H(v)TW(v)T+W(v)H(v)H(v)TW(v)T)

+ α

V∑

w=1,w ̸=v

tr(H(v)H(w)T) + βtr(H(v)H(v)T ).

(10)

Let η
(v)
ij and ξ

(v)
ij be the Lagrange multipliers for the constraint

w
(v)
ij ≥ 0 and h

(v)
ij ≥ 0, respectively, and η(v) = [η

(v)
ij ], ξ(v) =

[ξ
(v)
ij ], then the Lagrange function L of (10) is

L = tr(X(v)X(v)T− 2X(v)H(v)TW(v)T

+W(v)H(v)H(v)TW(v)T) + α

V∑

w=1,w ̸=v

tr(H(v)H(w)T)

+ βtr(H(v)H(v)T ) + tr(η(v)W(v)) + tr(ξ(v)H(v)).
(11)

Setting the derivative of L to be 0 with respect to W(v) and

H(v), we have

ξ =2W(v)TX(v)− 2W(v)TW(v)H(v)−α

V∑

w=1,w ̸=v

H(w)− 2βH(v),

(12)

and

η =2W(v)TX(v) − 2W(v)TW(v)H(v). (13)

Following the Karush-Kuhn-Tucker (KKT) condition [30]

η
(v)
ij w

(v)
ij = 0 and ξ

(v)
ij h

(v)
ij = 0, we get the equations for

w
(v)
ij and h

(v)
ij :

(2W(v)TX(v)−2W(v)TW(v)H(v)−α
V∑

w=1,w ̸=v

H(w)−2βH(v))h
(v)
ij =0,

(14)

(2X(v)H(v)T − 2W(v)H(v)H(v)T )w
(v)
ij = 0. (15)

These equations lead to the following updating rules:

h
(v)
ij ←h

(v)
ij

(2W(v)TX(v))ij

(2W(v)TW(v)H(v)+α
∑V

w=1,w ̸=v H
(w)+ 2βH(v))ij

,

(16)

w
(v)
di ← w

(v)
di

(X(v)H(v)T )di

(W(v)H(v)H(v)T )di
. (17)

The procedure to solve (9) is summarized in the Algorithm

1.

D. Convergence of DiNMF

In this section, we prove the convergence of the updating

rules (16) and (17). Algorithm 1 is guaranteed to converge to

Algorithm 1 The algorithm of DiNMF

Input:

Data for V views {X(1),X(2), ...,X(V )}.
Parameter α and β.

1: for v = 1 to V do

2: Normalizing X(v)

3: Initializing W(v),H(v)

4: end for

5: for v = 1 to V do

6: while not converging do

7: Fixing W(v), updating H(v) by (16)

8: Fixing H(v), updating W(v) by (17)

9: end while

10: end for

11: Calculate the average value of all data representations of

each view by H∗ =
∑

V

v=1 H
(v)

V
.

Output: The final representation matrix H∗.

a local minima by the following theorem:

Theorem 1. The objective function (9) is non-increasing

under the update rules (16) and (17).

To prove Theorem 1, we need to show that (10) for each

view is non-increasing under (16) and (17). Since the second

term and the third term of (10) are only related to H, we

have exactly the same update formula for W in DiNMF as in

[31]. Here, we only prove (10) is non-increasing under (16).

Following [31], we will apply an auxiliary function, which is

defined as follows:

Definition 1 A function G(h, h′) is an auxiliary function

of the function J(h) if G(h, h′) ≥ J(h) and G(h, h) = J(h)
for any h, h′.

The auxiliary function helps because of the following lemma

[31],

Lemma 1. If G is an auxiliary function of the objective

function J , then J is non-increasing under the update rule

ht+1 = argmin
h

G(h, ht). (18)

Now, we will show that the update for H (16) is exactly

same as the update (18) with a proper auxiliary function. We

rewrite (10) as follows:

O1 = ∥X(v) −W(v)H(v)∥2F

+ α

V∑

w=1,w ̸=v

DIVE(H(v),H(w)) + β∥H(v)∥2F

=

m(v)
∑

i=1

n∑

j=1

(x
(v)
ij −

K∑

k=1

w
(v)
ik h

(v)
kj )

2

+ α

V∑

w=1,w ̸=v

K∑

k=1

n∑

j=1

h
(v)
kj h

(w)
jk + β

K∑

k=1

n∑

j=1

h
(v)
kj h

(v)
jk .

(19)

Given an element h
(v)
ab in H(v), we use F

(v)
ab to denote the

part of O1 which is only relevant to h
(v)
ab . It is easy to check
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that

F
′

ab = (
∂O1

∂H
)ab =(−2W(v)TX(v) + 2W(v)TW(v)H(v))ab

+ (α
V∑

w=1,w ̸=v

H(w) + 2βH(v))ab,

(20)

F
′′

ab = (2W(v)TW(v))aa + 2βIbb. (21)

Since our update is essentially element wise, it is sufficient

to show that each Fab is non-increasing under the update rule

(16). We prove this by defining the auxiliary function regarding

h
(v)
ab as follows:
Lemma 2. The function

G(h
(v)
ab , h

(v)
ab

t
) = Fab(h

(v)
ab

t
) + F

′

ab(h
(v)
ab

t
)(h(v)

− h
(v)
ab

t
)

+
2(W(v)TW(v)H(v))ab+α

∑V

w=1,w ̸=v
H

(w)
ab +2βH

(v)
ab

h
(v)
ab

t
(h(v)
−h

(v)
ab

t
)2

(22)

is an auxiliary function for Fab, which is the part of O1 and

only relevant to h
(v)
ab .

Proof . Since G(h(v), h(v)) = Fab(h
(v)) is obvious, we

need only show that G(h(v), h
(v)
ab

t

) ≥ Fab(h
(v)). To do this,

we compare the Taylor series expansion of Fab(h
(v)):

Fab(h
(v)) = Fab(h

(v)
ab

t

) + F
′

ab(h
(v) − h

(v)
ab

t

)

+ F
′′

ab(h
(v) − h

(v)
ab

t

)2.
(23)

Introducing (20) and (21) into (23) and comparing with (22),

we can see that, instead of proving that G(h(v), h
(v)
ab

t

) ≥
Fab(h

(v)), it is equivalent to prove

(W(v)TW(v)H(v))ab + βH
(v)
ab

h
(v)
ab

t
≥ (W(v)TW(v))aa + βIbb.

(24)

Since we have

(W(v)TW(v)H(v))ab =

K∑

k=1

(W(v)TW(v))alh
(v)
lb

t

≥ (W(v)TW(v))aah
(v)
ab

t

(25)

and

βH
(v)
ab = β

n∑

j=1

h
(v)
aj

t

Ijb ≥ βh
(v)
ab

t

Ibb, (26)

(24) holds and G(h(v), h
(v)
ab

t

) ≥ Fab(h
(v)).

We can now demonstrate the convergence of Theorem 1.

Proof of Theorem 1. Replacing G(h(v), h
(v)
ab

t

) in (18)
by (22) results in the update rule

h
(v)
ab

t+1
=h

(v)
ab

t
−h

(v)
ab

t F ′
ab(h

(v)
ab

t
)

(2W(v)TW(v)H(v)+α
∑V

w=1,w ̸=v
H(w)+2βH(v))ab

= h
(v)
ab

t (2W(v)TX(v))ab

(2W(v)TW(v)H(v) + α
∑V

w=1,w ̸=v
H(w) + 2βH(v))

ab

.

(27)

This is exactly the same as (16). Since (22) is an auxiliary

function for Fab, Fab is non-increasing under (16) according

to Lemma 1.

III. LOCALITY PRESERVED DINMF (LP-DINMF)

Recent research has shown that data are found to lie on

a nonlinear low dimensional manifold embedded in a high

dimensional ambient space [32], [33], [34]. However, the stan-

dard NMF fails to discover such intrinsic geometrical structure

of the data space [8]. To find a compact representation which

uncovers the hidden semantics and simultaneously respects

the intrinsic geometrical structure, we further extend DiNMF

to LP-DiNMF so that local geometrical structure could be

captured in each view.

A. Objective Function of LP-DiNMF Method

Cai et al. [8] imposed graph regularization on NMF. The

method is based on the manifold assumption which means

that, if two data points xi and xj are close in the original

feature space, the representations of these two data points

should be also close to each other. Mathematically, this can

be represented by the following form: ∥xi − xj∥ → 0 ⇒
∥hi − hj∥ → 0. With multi-view setting, a locality preserved

term corresponding to the vth view is defined as:

1

2

n∑

i,j=1

(a
(v)
ij ∥h

(v)
i − h

(v)
j ∥

2)) = tr(H(v)L(v)H(v)T ), (28)

where L(v) is the Lagrange matrix L(v) = D(v) − A(v),

A(v) = (a
(v)
ij ) is the weight matrix measuring the spatial

closeness of data points and D(v) is a diagonal matrix with

d
(v)
ii =

∑

j a
(v)
ij . One of the most commonly used approaches

to define the weight matrix A(v) on the graph is 0 − 1

weighting [8] . If x
(v)
i and x

(v)
j are one of the nearest neighbors

to each other, a
(v)
ij = 1 otherwise a

(v)
ij = 0. Same as [21], we

adopt this approach for it is simple to implement and performs

well in practice. Combining this locality preserved regularizer

with the objective function of DiNMF (9) gives rise to our LP-

DiNMF, which minimizes the objective function as follows:

V∑

v=1

∥X(v) −W(v)H(v)∥2F + α
∑

v ̸=w

DIVE(H(v),H(w))

+ β

V∑

v=1

∥H(v)∥2F + γ

V∑

v=1

tr(H(v)L(v)H(v)T )

s.t. 1 ≤ v, w ≤ V,W(v),H(v),H(w), α, β, γ ≥ 0.
(29)

Please note that if we set α = β, the objective function (29)

becomes simpler as

V∑

v=1

∥X(v) −W(v)H(v)∥2F + α

V∑

v=1

DIVE(H(v),

V∑

w=1

H(w))

+ γ

V∑

v=1

tr(H(v)L(v)H(v)T )

s.t. 1 ≤ v, w ≤ V,W(v),H(v),H(w), α, γ ≥ 0.
(30)

The DIVE term in (30) not only works on multi-view setting,

but also on the single view. In detail, given different views

(v ̸= w), DIVE enforces the diversity among them. For the

single view (v = w), DIVE plays an important role to avoid
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over-fitting. This demonstrates the full compatibility of our

objective function.

B. Solving the Optimization Problem (30)

Note that comparing with (9), the last term of (30) is related

to H(v) only, so we provide the optimization solution for

updating H(v) with W(v) fixed.

Since updating W(v) and H(v) in each view is independent,

(30) reduces to minimize the following formulation

∥X(v) −W(v)H(v)∥2F + αDIVE(H(v),

V∑

w=1

H(w))

+ γtr(H(v)L(v)H(v)T ).

(31)

Let ϕ
(v)
ij be the Lagrange multipliers for the constraint h

(v)
ij ≥

0 and ϕ(v) = [ϕ
(v)
ij ], the Lagrange function L for each view

can be written as

L = tr(X(v)
X

(v)T
− 2X(v)

H
(v)T

W
(v)T

+W
(v)

H
(v)

H
(v)T

W
(v)T) + α

V∑

w=1,w ̸=v

tr(H(v)
H

(w)T)

+ αtr(H(v)
H

(v)T ) + γtr(H(v)
L

(v)
H

(v)T ) + tr(ϕ(v)
H

(v)).
(32)

Requiring that the derivative of L with respect to H(v) equals
to 0 and using the Karush-Kuhn-Tucker (KKT) condition [30]

ϕ
(v)
ij h

(v)
ij = 0, we have

h
(v)
ij ←h

(v)
ij

(2W(v)TX(v) + 2γH(v)A(v))ij

(2W(v)TW(v)H(v) + αQ(v) + 2γH(v)D(v))ij
, (33)

where Q(v) =
∑V

w=1,w ̸=v H
(w) + 2H(v).

The whole procedure for solving (30) are summarized in

the Algorithm 2.

Algorithm 2 The algorithm of LP-DiNMF

Input:

Data for V views {X(1),X(2), ...,X(V )}.
Parameter α and β.

1: Calculate weighting matrix of each view, A(v)

2: Calculate diagonal matrix and Lagrange matrix of each

view, D(v) and L(v), respectively

3: for v = 1 to V do

4: Normalizing X(v)

5: Initializing W(v),H(v)

6: while not converging do

7: Fixing W(v), updating H(v) by (33)

8: Fixing H(v), updating W(v) by (17)

9: end while

10: end for

11: Calculate the average value of all data representations of

each view by H∗ =
∑

V

v=1 H
(v)

V
.

Output: The final representation matrix H∗.

C. Convergence of LP-DiNMF

The Algorithm 2 above is guaranteed to converge to a local

minima with the following theorem.

Theorem 2. The objective function in (30) is non-

increasing under the update rules in (33) and (17).

Same as DiNMF, we omit the proof of (17) here. To prove

(30) is non-increasing under (33), we first rewrite (31) as:

O2 = ∥X(v) −W(v)H(v)∥2F + α

V∑

w=1,w ̸=v

DIVE(H(v),H(w))

+ α∥H(v)∥2F + γtr(H(v)L(v)H(v)T )

=
m(v)
∑

i=1

n∑

j=1

(x
(v)
ij−

K∑

k=1

w
(v)
ik h

(v)
kj )

2 + α

V∑

w=1,w ̸=v

K∑

k=1

n∑

j=1

h
(v)
kj h

(w)
jk

+ α

K∑

k=1

n∑

j=1

h
(v)
kj h

(v)
jk + γ

K∑

k=1

n∑

j=1

n∑

l=1

h
(v)
kj L

(v)
jl h

(v)
lk .

(34)

It is easy to check that

F
′

ab = (
∂O2

∂H
)ab = (−2W(v)TX(v) + 2W(v)TW(v)H(v))ab

+ (α
V∑

w=1,w ̸=v

H(w) + 2αH(v) + 2γH(v)L(v))ab

(35)

F
′′

ab = (2W(v)TW(v))aa + 2αIbb + 2γL
(v)
bb . (36)

Again, we prove each Fab is non-increasing under the update

rule (33) based on an auxiliary function as following.

Lemma 3. Let Qab=H
(w)
ab +2H

(v)
ab , the function

G(h
(v)
ab , h

(v)
ab

t

)=Fab(h
(v)
ab

t

) + F
′

ab(h
(v)
ab

t

)(h(v) − h
(v)
ab

t

)

+
2(W(v)TW(v)H(v))ab+αQab+2γ(H

(v)D(v))ab

h
(v)
ab

t
(h(v)−h

(v)
ab

t

)2

(37)

is an auxiliary function for Fab which is the part of O2 and

only relevant to h
(v)
ab .

Proof . In fact, we can see that Lemma 2 is a part of Lemma

3. Similar to the proof of Lemma 2, we incorporate (35)

and (36) to the Taylor series expansion of F
(h(v))
ab (23) and

compare it with (37). Since Lemma 2 has been proved with

(25) and (26), here we only need to show

2γ(H(v)D(v))ab

h
(v)
ab

t
≥ 2γL

(v)
bb . (38)

Since we have

(H(v)D(v))ab = h
(v)
aj

t
n∑

j=1

D
(v)
jb ≥ h

(v)
ab

t

D
(v)
bb

≥ h
(v)
ab

t

(D(v) −W(v))bb = h
(v)
ab

t

L
(v)
bb ,

(39)

(37) holds and G(h(v), h
(v)
ab

t

) ≥ Fab(h
(v)).

We can now demonstrate the convergence of Theorem 2.

Proof of Theorem 2. Putting G(h(v), h
(v)
ab

t

) of (37) into
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(18), we get

h
(v)
ab

t+1
=h

(v)
ab

t
−h

(v)
ab

t F ′
ab(h

(v)
ab

t
)

(2W(v)TW(v)H(v)+αQ+2γH(v)D(v))ab

= h
(v)
ab

t (2W(v)TX(v) + 2γH(v)A(v))ab

(2W(v)TW(v)H(v)+αQ+2γH(v)D(v))ab
.

(40)

This is in line with (33). Since (37) is an auxiliary function

for Fab, Fab is non-increasing under (33).

IV. COMPLEXITY ANALYSIS FOR DINMF AND LP-DINMF

In DiNMF, for each data matrix X(v) ∈ Rm(v)×n, the

complexity of updating W(v) in (17) is O(m(v)nk). This is

same as that of NMF [31]. The cost of updating H(v) in (16)

is O(m(v)nk + knV ). Since usually V ≪ m(v), assuming

the iterative update stops after t iterations, consequently,

the overall computation of DiNMF is O(
∑V

v=1(t(m
(v)nk))).

Clearly, its complexity is linear with respect to the number

of data points (n) and it can scale well to large datasets. For

LP-DiNMF, the overall cost of updating W(v) and H(v) is

O(
∑V

v=1(tm
(v)nk + m(v)n2) because it requires additional

O(m(v)n2) to construct the nearest neighbor graph. The exper-

imental analysis for both complexity is given in the subsection

V-G.

V. EXPERIMENT

In this section, we carry out extensive experiments on

clustering to demonstrate the effectiveness of DiNMF and

LP-DiNMF in exploiting the underlying diverse information

across multiple views of data.

A. Description of Datasets

We conduct experiments on one synthetic and several real

world datasets, which are chosen from different domains,

including documents, images and networks. The descriptions

of these datasets are summarized in Table I.

TABLE I: Descriptions of the datasets

Datasets Size view Cluster

Synthetic 5000 2 2

Reuters
Reuters-1 600 3 6

Reuters-2 18578 5 6

Digit 2000 2 10

WebKB

Cornell 195 2 5

Texas 187 2 5

Washington 230 2 5

Winsconsin 265 2 5

Caltech 101 Silhouettes 8641 2 101

• Synthetic: We first randomly generate basis matrices

{W(i)}2i=1 of two views. The dimensions of two matrices

are 250 and 800, respectively. The representation matrices

{H(i)}2i=1 ∈ R
20×5000 are generated with the constraint

that the corresponding vectors of these two matrices are

orthonormal to each other. To ensure that the two data rep-

resentations not only contain respective distinct information

but also share common information, we sample 30% vectors

from one representation matrix by adding Gaussian noise with

N (0, 1) and keep these corresponding vectors exactly same in

the second view. Thus, we have a dataset that consists of two

views, i.e., X(1) and X(2), where X(i) = W(i)H(i). This

dataset is constructed to demonstrate the correctness of the

proposed diversity term and also for the computational speed

analysis.

• Reuters1: As in [20], we randomly sample 100 docu-

ments each for 6 clusters, and choose English, French and Ger-

man as three views to form a dataset. We call it Reuters-1.

Besides, to demonstrate the performance of the proposed

methods on large-scale dataset, we also use the original

dataset, called Reuters-2. It contains feature characteristics

of documents that are translated into five languages over

6 categories. In our experiments, we choose one language,

English (EN), as the original language source and take the

translated documents in the other four languages as the other

four sources.

• UCI Handwritten Digit2 : The dataset is composed

of 2000 examples from 0 to 9 ten-digit classes. Each example

is represented by two kinds of features, pixel averages in 2×3
windows and Zernike moment.

• WebKB3: It is composed of web pages collected from

computer science department websites of four universities:

Cornell, Texas, Washington and Wisconsin. The webpages are

classified into 7 categories. Here, we choose four most popu-

lous categories (course, faculty, project, student) for clustering.

A webpage is made of two views: the text on it and the anchor

text on the hyperlinks pointing to it.

• Caltech 101 Silhouettes4: This dataset is based on

the Caltech 101 image annotations [35]. It centers and scales

each polygon outline of the primary object in the Caltech 101

and render it on a 16 × 16 pixel image-plane. The outline

is rendered as a filled, black polygon on a white background.

Since this dataset contains one type of feature only, following

[36], we extracted HOG [16] as the second view.

B. Methods to Compare

We compare the proposed approaches with several repre-

sentative multi-view clustering methods and their variations.

• Best Single View-NMF (BSV): We run each view

of datasets with NMF [31] and the best single view result is

reported.

• Best Single View-GNMF (BSVG): Similar to

BSV, we run each view of datasets with GNMF [8] and report

the best single view results.

• Feature Concatenation (FeatConcate): It concate-

nates the features of all views and applies NMF to extract the

low dimensional subspace representation.

1http://multilingreuters.iit.nrc.ca
2http://archive.ics.uci.edu/ml/datasets/Multiple+Features
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
4https://people.cs.umass.edu/ marlin/data.shtml
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• ColNMF [37]: It simultaneously factors data matrices

of multiple views to different basis matrices with the shared

consensus coefficient matrix.

•MultiNMF [20]: It searches for a compatible clustering

solutions across multiple views by minimizing the differences

between data representation matrices of each view and the

consensus matrix.

• MMNMF [21]: It preserves the locally geometrical

structure of the manifolds for multi-view clustering with

regarding that the intrinsic manifold of the dataset is embedded

in a convex hull of all the views’ manifolds, and incorporates

such an intrinsic manifold and an intrinsic coefficient matrix

with a multi-manifold regularizer.

• RMKMC [38]: This multi-view k-means approach inte-

grates heterogeneous features of data and utilizes the common

cluster indicator to do clustering across multiple views. l2,1-

norm is employed to improve the robustness.

• CoRegSPC [39]: This pairwise multi-view spectral

clustering method co-regularizes the clustering hypotheses to

enforce corresponding data points in each view to have the

same cluster membership.

• RMSC [40]: This is a multi-view spectral clustering

method based on low rank and sparse decomposition of the

transition matrix.

• NdNMF: It conducts each view independently using

standard NMF [6], and then applies k-means on the combina-

tion of new representations of each view.

C. Settings

For each compared method, we set the parameters according

to original papers where the approaches were first proposed.

As BSVG, MMNMF and LP-DiNMF require construction of

the nearest neighbor graph, we set the number of nearest

neighbor equal to the number of classes of the data k, as

suggested in [21]. For DiNMF and LP-DiNMF, we normalize

the data first and then initialize both W(v) and H(v) for each

view in the range [0,1]. Similar to [41], [42], the regularization

parameters (α, β in (9) and α, γ in (30)) are chosen from

{0.0001,0.001,0.01,0.1,1,10,100,1000}. To avoid randomness,

we run each method 10 times with different initializations

and report the average results and their standard deviations.

The clustering results are evaluated by three widely adopted

evaluation metrics, including accuracy (AC) [43], normalized

mutual information (NMI) [43] and Purity [44]. Each metric

favors different properties in clustering, and hence we report

results on these measures to perform a more comprehensive

evaluation. For all these metrics, the higher value indicates

better clustering quality.

D. Clustering Results

Table II demonstrates the average results and standard devi-

ations for each method on the datasets. Note that, the results of

CoRegSPC and RMSC on Reuters-2 are not available (N/A)

since they demand huge memory. In each row of the table,

the best result is highlighted in boldface and the second best

result in italic. It is clear to see that both DiNMF and LP-

DiNMF consistently outperform the other methods, sometimes

even very significantly, which demonstrates the advantage of

our approaches in terms of clustering performance. Compared

with NdNMF, DiNMF improves performances more than 5%

on all datasets in terms of AC, NMI and Purity, which proves

the effectiveness of the proposed diversity constraints. We

also notice that directly concatenating all the features (i.e.,

FeatConcate) is not an ideal approach since it always performs

worse than the best single view (BSV). Moreover, LP-DiNMF

performs better than DiNMF on all the datasets. This indicates

that exploiting the geometric structures in data spaces indeed

can improve the cluster performance, also verifies the manifold

assumption and confirms the correctness of our approaches.

E. Analysis of Redundancy Rate

To verify that DIVE reduces the redundancy information

among multiple representations, we propose a redundancy rate

(RED) metric as follows:

RED(H(1), ...,H(V )) =

∑n

i=1

∑V

v=1,v ̸=w cos2(h
(v)
i ,h

(w)
i )

V (V − 1)n
.

(41)

It assesses the average sum of similarity of all n data vectors

in all pairs of views and ranges from 0 to 1, where 0 means

a completely complementary result, and 1 vice versa.

We compare the redundancy rate of the proposed approaches

against MultiNMF, MMNMF and NdNMF, which are all under

the framework of NMF and then take the same approach

to obtain the final multi-view representation matrix H∗(=
∑

V

v=1 H
(v)

V
). The results of comparison are reported in Table

III.

It can be seen that MultiNMF always gets the highest rate

followed by MMNMF and NdNMF, while it is less than 20%

for DiNMF in all cases. This demonstrates the effectiveness of

the proposed DIVE that enforces the complementarity across

multiple views. However, LP-DiNMF does not always achieve

stable and low redundancy rate. For example, it gets the

lowest redundancy rate in Texas with 0.1222 compared with

other approaches, but a higher rate (0.1852) than DiNMF in

Winsconsin. This is because the representations of multiple

views in LP-DiNMF are co-regularized by both the manifold

structure and the diversity term. There is a tradeoff between the

two regularization terms. Thus, different from DiNMF which

is only regularized by the diversity term, LP-DiNMF is less

likely to get the lowest rate.

To have a visual perception of redundancy, we take the

Digit (2 views) and Reuters-1 (3 views) as examples and

demonstrate the redundancy rate of each data vector in details,

as shown in Figure 2. The horizontal axis represents the

number of data points and the vertical axis means the scaled

redundancy rate. For each approach, the scaled redundancy

rate is the percentage of its true redundancy rates over that of

all five approaches. Each method is represented by one color.

The wider area a color occupies, the more redundant informa-

tion an approach has. Figure 2 shows that DiNMF (marked in

purple) occupies the narrowest area, while MultiNMF occupies

the widest area in both Digit and Reuters datasets. The results

of Figure 2 is inline with Table III, which proves that DiNMF
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TABLE III: Comparison of redundancy rate

Methods Synthetic Reuters-1 Digit Cornell Texas Washington Winsconsin

MultiNMF 0.9986 0.9970 0.5826 0.8503 0.8472 0.8229 0.8521

MMNMF 0.5998 0.4800 0.4437 0.3440 0.4318 0.3598 0.3698

NdNMF 0.4637 0.2658 0. 2755 0.2395 0.2077 0.2683 0.1122

DiNMF 0.1838 0.1087 0.1931 0.0651 0.1873 0.0609 0.0783

LP-DiNMF 0.3509 0.1266 0.2663 0.0894 0.1222 0.1013 0.1852

Fig. 2: Comparison of redundancy rate on Reuters-1 and Digit dataset

effectively exploits the diverse information across multiple

views.
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Fig. 3: The effect of parameter α and β in DiNMF and α and

γ in LP-DiNMF. Different colors means different accuracies

and the color close to red indicates high accuracy.

F. Parameter Study

We tested the effect of the parameters α and β of DiNMF, as

well as α and γ of LP-DiNMF. In DiNMF α and β affect the

diversity and smoothness, while in LP-DiNMF, α and γ adjust

the effects of the diversity and graph regularization term. For

both methods, we picked the value of each parameter from

{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}. Taking the Digit

and Washington as examples, we can find that DiNMF in Fig-

ure 3(a) achieves more than 70% accuracy in Digit and 60% in

Washington for α and β in most cases, demonstrating that the

the performance of DiNMF is relatively robust to parameter

tuning. Figure 3(b) shows that LP-DiNMF is relatively stable

with varying α, but significantly affected by γ. This further

verified the importance of preserving manifold structure.

G. Study of Computational Speed

We have proven the convergence of our update rules and

analyzed the computational complexity of DiNMF and LP-

DiNMF against MMNMF in previous sections. Here our

experiments demonstrate their convergence curves in Figure

4 and computational time in Figure 5. All our experiments

are conducted on a PC with two octa-core Intel Xeon CPU

processors at 2.5 GHz and 256G bytes memory.

Because the results of different networks datasets (Cornell,

Texas, Washington and Winsconsin) have similar convergency,

here we just took one network (Cornell) as an example.

Figure 4 shows the convergence curve of the three methods

on Synthetic, Reuters, Digit and Cornell. For each figure, the
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Fig. 4: Comparison of convergence speed (Note that different scales of axes are used for clearer illustration)
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Fig. 5: Running time of DiNMF v.s. MMNMF on Synthetic dataset.
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horizontal axis is the number of iterations and the vertical axis

is the value of objective function. We can see that MMNMF

(Figure 4(a)) needs around 100 iterations for each dataset,

while DiNMF (Figure 4(b)) is the most efficient, since the

objective function values are non-increasing and drop sharply

within a small number of iterations (10 iterations) in all

cases. Although LP-DiNMF (Figure 4(c)) requires nearly 100

iterations for the Synthetic and Digit database, its objective

values drop faster than that of MMNMF. This empirically

proves our convergence theory.

As discussed in section IV, DiNMF has linear time com-

plexity with the number of data points. Here, we verify

this claim on the Synthetic dataset. Figure 5 reports the

average running time of each iteration of three methods on

the Synthetic dataset. The default setting is 5000 data points,

2 clusters, and 2 views. During the experiment, we fix the

number of clusters and views but change the number of data.

Figure 5 (a) shows the running time of three methods in terms

of varying data points within {0.05, 0.25, 0.5, 1, 1.5, 2}× 104.

Clearly, DiNMF is linear in execution time, and MMNMF

costs significantly more time than DiNMF and LP-DiNMF. To

better demonstrate DiNMF’s linearity and good scalability to

large datasets, we increase the amount of data to a large scale,

i.e., {0.2, 0.5, 1, 2, 3, 4, 5} × 105 and report corresponding

running time each in Figure 5 (b). Clearly, the results are in

line with the analysis in subsection IV.

VI. CONCLUSION

In this paper, we have advanced the frontier of NMF

by proposing a novel idea that explores diverse informa-

tion among multi-view representations. To achieve this, we

have proposed a Diverse Nonnegative Matrix Factorization

(DiNMF) approach for more comprehensive and accurate

multi-view learning. With a novel diversity regularization term,

DiNMF explicitly enforces the orthogonality of different data

representations. Importantly, DiNMF converges linearly and

scales well with large-scale data. Taking a step further, we

have extended DiNMF by incorporating manifold informa-

tion and proposed Locality Preserved DiNMF (LP-DiNMF)

method. Extensive experiments conducted on both synthetic

and benchmark datasets have demonstrated promising results

of our methods, which conform to our theoretical analysis.

For future work, we aim to study diversity in Nonnegative

Tensor Factorization, the nature generalization of NMF to

higher dimensions, with which a wider range of applications

can be expected.
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