Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)dimensional shallow water waves model

Cite as: AIP Advances 11, 015223 (2021); https://doi.org/10.1063/5.0036261 Submitted: 03 November 2020 • Accepted: 10 December 2020 • Published Online: 08 January 2021

🔟 Yuming Chu, ២ Mostafa M. A. Khater and ២ Y. S. Hamed

ARTICLES YOU MAY BE INTERESTED IN

Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method

AIP Advances 11, 025130 (2021); https://doi.org/10.1063/5.0038671

Accurate sets of solitary solutions for the quadratic-cubic fractional nonlinear Schrödinger equation

AIP Advances 11, 055105 (2021); https://doi.org/10.1063/5.0050624

Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method

AIP Advances 9, 025003 (2019); https://doi.org/10.1063/1.5087647

AIP Advances

Mathematical Physics Collection

READ NOW

AIP Advances 11, 015223 (2021); https://doi.org/10.1063/5.0036261 © 2021 Author(s). **11**, 015223

гîл

Export Citation

View Online

Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model

Cite as: AIP Advances 11, 015223 (2021); doi: 10.1063/5.0036261 Submitted: 3 November 2020 • Accepted: 10 December 2020 • Published Online: 8 January 2021

Yuming Chu,^{1,2} (D) Mostafa M. A. Khater,^{3,4,a)} (D) and Y. S. Hamed^{5,6} (D)

AFFILIATIONS

¹Department of Mathematics, Huzhou University, Huzhou 313000, China

- ²Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology, Changsha 410114, China
- ³Department of Mathematics, Faculty of Science, Jiangsu University, 212013 Zhenjiang, China
- ⁴Department of Mathematics, Obour Institutes, 11828 Cairo, Egypt
- ⁵Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
- ⁶Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Menoufia 32952, Egypt

a)Author to whom correspondence should be addressed: mostafa.khater2024@yahoo.com

ABSTRACT

This article studies the generalized (2 + 1)-dimensional shallow water equation by applying two recent analytical schemes (the extended simplest equation method and the modified Kudryashov method) for constructing abundant novel solitary wave solutions. These solutions describe the bidirectional propagating water wave surface. Some obtained solutions are sketched in two- and three-dimensional and contour plots for demonstrating the dynamical behavior of these waves along shallow water. The accuracy of the obtained solutions and employed analytical schemes is investigated using the evaluated solutions to calculate the initial condition, and then the well-known variational iterational (VI) method is applied. The VI method is one of the most accurate semi-analytical solutions, and it can be applied for high derivative order. The used schemes' performance shows their effectiveness and power and their ability to handle many nonlinear evolution equations.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0036261

I. INTRODUCTION

In recent years, the shallow water (SW) wave phenomenon has emerged as a particularly attractive candidate for studying and investigating the dynamical and physical behavior of the bidirectional propagating water wave surface and the flow below a pressure surface in a fluid.^{1–3} A set of hyperbolic nonlinear partial differential equations is formulated to demonstrate the shallow water wave attitude.^{4,5} These hyperbolic equations in the unidirectional form are derived by Adhémar Jean Claude Barré de Saint-Venant as a model of transient open-channel flow and surface runoff.^{6,7} Consequently, these equations are called Saint-Venant equations that can be seen as a contraction of the two-dimensional (2-D) shallow water equations.^{8,9} In addition, the famous Navier–Stokes equations, also considered a member of shallow water wave equations, are employed when the horizontal length scale is somewhat higher than the vertical length scale and mass conservation ensures that the vertical velocity scale of the fluid is small when compared to the horizontal speed scale.¹⁰⁻¹² Moreover, the (2 + 1)-dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation belongs to this hyperbolic set.^{13–16} The shallow water wave's applications are distinct in various fields such as electromagnetic theory, astrophysics, electrochemistry, fluid dynamics, plasma physics, acoustics, and cosmology.^{17–19} Many mathematical techniques have been formulated to evaluate analytical, semi-analytical, and numerical solutions of these equations such as B-spline schemes, Khater methods, the auxiliary equation method, the well-known $\left(\frac{\Psi'}{\Psi}\right)$ -expansion methods, the Kudryashov method, the direct algebraic equation

method, the Adomian decomposition method, the iteration method, and the sech-tanh expansion method.^{20–24} All these schemes have been employed for many nonlinear evolution equations. Many computational, semi-analytical, and numerical solutions have been constructed, but unfortunately, one solution cannot be applied for all nonlinear evolution equations; hence, the search for a unified method still continues. The great revolution in computer technology is the most helpful tool in this study; however, this technology is only used to discover new techniques, and no one has used it to check the accuracy of the schemes derived already.^{25,26}

This article studies the (2 + 1)-dimensional SW equation, which is given by $^{27-29}$

$$S_{x\,x\,x\,t} + s_1 \,S_x \,S_{x\,t} + s_2 \,S_t \,S_{x\,x} - S_{x\,t} - s_3 \,S_{x\,x} = 0, \tag{1}$$

where $s_i(i = 0, 1, 2, 3)$ are the arbitrary constants to be evaluated and S = S(x, y, t) is a function of space and time, which describes a bidirectional propagating water wave surface. Employing the wave transformation $S(x, y, t) = Q(\psi)$, $\psi = x + y + \lambda t$, where λ is the wave velocity, and integrating the result once with zero constants of the integration convert Eq. (1) into the following ordinary differential equation:

$$\mathcal{Q}^{\prime\prime\prime} + \frac{s_1 + s_2}{2} \left(\mathcal{Q}^{\prime} \right)^2 - \frac{\lambda + s_3}{\lambda} \mathcal{Q}^{\prime} = 0.$$
 (2)

Using the homogeneous balance principles and the auxiliary equations for the extended simplest equation (ESE) and modified Kudryashov (MK) methods,^{30–33} that is, $\mathcal{F}'(\psi) = l_1 + l_2 \mathcal{F}(\psi) + l_3 \mathcal{F}(\psi)^2 \otimes \mathfrak{Y}'(\psi) = \ln(k) (\mathfrak{Y}(\psi)^2 - \mathfrak{Y}(\psi))$, where l_1, l_2, l_3 , and k are the arbitrary constants to be constructed later, in Eq. (2) gives n = 1. Thus, the general solutions of Eq. (2) are formulated in the following forms:

$$Q = \begin{cases} \sum_{i=-n}^{n} a_i \,\mathfrak{F}(\psi)^i = a_1 \,\mathcal{F}(\psi) + \frac{a_{-1}}{\mathcal{F}(\psi)} + a_0, \\ \sum_{i=0}^{n} a_i \,\mathfrak{Y}(\psi)^i = a_1 \,\mathfrak{Y}(\psi) + a_0, \end{cases}$$
(3)

where a_i , (i = -2, -1, 0, 1, 2) are the arbitrary constants.

The remaining sections of this article are organized as follows: Section II applies the above-mentioned analytical and semianalytical schemes to the nonlinear (2 + 1)-dimensional SW equation for explaining the accuracy of each analytically employed scheme. Section III discusses the obtained solutions and the shown figures and tables. Section IV gives the conclusion of the whole paper.

II. ACCURACY OF COMPUTATIONAL SOLUTIONS

Applying the ESE and MK methods to Eq. (2) to construct the computational solutions of the (2 + 1)-dimensional SW equation then using these solutions to evaluate the initial and boundary conditions that allow applying the VI method are carried out as follows.

A. ESE method's solutions

Employing Eq. (3) in the ESE method's framework gets the values of the above-mentioned parameters as follows:

For family I,

$$a_{-1} \to \frac{12l_1}{s_1 + s_2}, \quad a_1 \to 0, \quad \lambda \to \frac{s_3}{l_2^2 - 4l_1l_3 - 1}$$

For family II,

$$a_{-1} \to 0, \quad a_1 \to -\frac{12l_3}{s_1 + s_2}, \quad \lambda \to \frac{s_3}{l_2^2 - 4l_1l_3 - 1}$$

Thus, the computational solutions of the (2 + 1)-dimensional SW equation are constructed as follows:

For $l_2 = 0$, $l_1 l_3 > 0$, we get

$$S_{I,1}(x,y,t) = a_0 + \frac{12\sqrt{l_1 l_3}\cot\left(\sqrt{l_1 l_3}\left(\eta + \frac{s_3 t}{-4l_1 l_3 - 1} + x + y\right)\right)}{s_1 + s_2},$$
(4)

$$S_{I,2}(x,y,t) = a_0 + \frac{12\sqrt{l_1l_3}\tan\left(\sqrt{l_1l_3}\left(\eta + \frac{s_3t}{-4l_1l_3 - 1} + x + y\right)\right)}{s_1 + s_2},$$
(5)

$$S_{\text{II},1}(x,y,t) = a_0 - \frac{12\sqrt{l_1 l_3} \tan\left(\sqrt{l_1 l_3} \left(\eta + \frac{s_3 t}{-4 l_1 l_3 - 1} + x + y\right)\right)}{s_1 + s_2},$$
(6)

$$S_{\text{II},2}(x,y,t) = a_0 - \frac{12\sqrt{l_1 l_3}\cot\left(\sqrt{l_1 l_3}\left(\eta + \frac{s_3 t}{-4l_1 l_3 - 1} + x + y\right)\right)}{s_1 + s_2}.$$
(7)

For $l_2 = 0$, $l_1 l_3 < 0$, we get

$$S_{I,3}(x,y,t) = a_0 - \frac{12\sqrt{-l_1 l_3} \operatorname{coth}\left(\sqrt{-l_1 l_3} \left(\frac{s_3 t}{-4 l_1 l_3 - 1} + x + y\right) \mp \frac{\log(\eta)}{2}\right)}{s_1 + s_2},$$
(8)

$$S_{I,4}(x,y,t) = a_0 - \frac{12\sqrt{-l_1l_3}\tanh\left(\sqrt{-l_1l_3}\left(\frac{s_3t}{-4l_1l_3-1} + x + y\right) \mp \frac{\log(\eta)}{2}\right)}{s_1 + s_2},\tag{9}$$

$$S_{\text{II},3}(x,y,t) = a_0 - \frac{12\sqrt{-l_1l_3}\tanh\left(\sqrt{-l_1l_3}\left(\frac{s_3t}{-4l_1l_3 - 1} + x + y\right) \mp \frac{\log(\eta)}{2}\right)}{s_1 + s_2},$$
(10)

AIP Advances 11, 015223 (2021); doi: 10.1063/5.0036261 © Author(s) 2021

$$S_{\text{II},4}(x,y,t) = a_0 - \frac{12\sqrt{-l_1l_3}\coth\left(\sqrt{-l_1l_3}\left(\frac{s_3t}{-4l_1l_3 - 1} + x + y\right) \mp \frac{\log(\eta)}{2}\right)}{s_1 + s_2}.$$
(11)

For $l_1 = 0, l_2 > 0$, we get

$$S_{\text{II},5}(x,y,t) = a_0 + \frac{1}{s_1 + s_2} \left(12l_2 \left(\frac{1}{l_3e^{l_2} \left(\eta + \frac{s_3t}{l_2^2 - 1} + x + y \right)_{-1}} + 1 \right) \right).$$
(12)

For $l_1 = 0, l_2 < 0$, we get

$$S_{II,6}(x,y,t) = a_0 + \frac{1}{s_1 + s_2} \left(12l_3 \left(1 - \frac{1}{l_2 \left(\eta + \frac{s_3 t}{l_2^2 - 1} + x + y \right)_{+1}} \right) \right).$$
(13)

For $4 l_1 l_3 > l_2^2$, we get

$$S_{l,5}(x,y,t) = a_0 - \frac{24l_1l_3}{(s_1 + s_2)\left(l_2 - \sqrt{4l_1l_3 - l_2^2}\tan\left(\frac{1}{2}\sqrt{4l_1l_3 - l_2^2}\left(\eta + \frac{s_3t}{l_2^2 - 4l_1l_3 - 1} + x + y\right)\right)\right)},$$
(14)

$$S_{I,6}(x,y,t) = a_0 - \frac{24l_1l_3}{(s_1 + s_2)\left(l_2 - \sqrt{4l_1l_3 - l_2^2}\cot\left(\frac{1}{2}\sqrt{4l_1l_3 - l_2^2}\left(\eta + \frac{s_3t}{l_2^2 - 4l_1l_3 - 1} + x + y\right)\right)\right)},$$
(15)

$$S_{\text{II},7}(x,y,t) = a_0 - \frac{6\sqrt{4l_1l_3 - l_2^2}\tan\left(\frac{1}{2}\sqrt{4l_1l_3 - l_2^2}\left(\eta + \frac{s_3t}{l_2^2 - 4l_1l_3 - 1} + x + y\right)\right)}{s_1 + s_2} + \frac{6l_2}{s_1 + s_2},$$
(16)

$$S_{\text{II},8}(x,y,t) = a_0 - \frac{6\sqrt{4l_1l_3 - l_2^2}\cot\left(\frac{1}{2}\sqrt{4l_1l_3 - l_2^2}\left(\eta + \frac{s_3t}{l_2^2 - 4l_1l_3 - 1} + x + y\right)\right)}{s_1 + s_2} + \frac{6l_2}{s_1 + s_2}.$$
(17)

1. Semi-analytical solutions

Applying the variational iteration method³⁴ to Eq. (1) with the initial condition $S_I(x, y, 0) = 2 - \tanh(x + y) \& S_{II}(x, y, 0)$ = $2 - \operatorname{coth}(x + y)$ according to Eqs. (9) and (11) gives the following solutions:

. .

$$S_{I,1}(x, y, t) = 2 - \tanh(x + y) (6t \operatorname{sech}^2(x + y) + 1),$$
 (18)

$$S_{I,2}(x, y, t) = 2 - \tanh(x + y) (12t \operatorname{sech}^{2}(x + y) \times (9t \operatorname{sech}^{2}(x + y) - 3t + 1) + 1), \quad (19)$$

$$S_{I,3}(x, y, t) = 2 - \tanh(x + y) (18t \operatorname{sech}^{2}(x + y)) \times (8t^{2} + 6t \operatorname{sech}^{2}(x + y)) (30t \operatorname{sech}^{2}(x + y)) - 20t + 3) - 6t + 1) + 1), \qquad (20)$$

$$S_{\text{II},1}(x, y, t) = \coth(x+y) (6t \operatorname{csch}^2(x+y) - 1) + 2, \quad (21)$$

$$S_{II,2}(x, y, t) = 2 - \coth(x + y) (12t \operatorname{csch}^{2}(x + y) \times (9t \operatorname{csch}^{2}(x + y) + 3t - 1) + 1), \quad (22)$$

$$S_{\text{II},3}(x, y, t) = \operatorname{coth}(x + y) (18t \operatorname{csch}^{2}(x + y)) \times (8t^{2} + 6t \operatorname{csch}^{2}(x + y)) (30t \operatorname{csch}^{2}(x + y)) + 20t - 3) - 6t + 1) - 1) + 2.$$
(23)

B. MK method's solutions

Employing Eq. (3) in the MK method's framework gets the values of the above-mentioned parameters as follows:

$$a_1 \rightarrow -\frac{12 \log(k)}{s_1 + s_2}, \quad \lambda \rightarrow \frac{s_3}{\log^2(k) - 1}.$$

Thus, the computational solutions of the (2 + 1)-dimensional SW equation are constructed as follows:

ARTICLE

$$S(x, y, t) = a_0 - \frac{12 \log(k)}{(s_1 + s_2) \left(1 \pm k^{\frac{s_3 t}{\log^2(k) - 1}} + x + y \right)}.$$
 (24)

1. Semi-analytical solutions

Applying the variational iteration method to Eq. (1) with the initial condition $S(x, y, 0) = 4 - \frac{12 \log(10)}{10^{x+y}+1}$ based on Eq. (24) gives the following solutions:

$$S_1(x, y, t) = \frac{4\left(\left(10^{x+y}+1\right)^2 \left(10^{x+y}+1-3\log(10)\right)-3t\log^3(10)10^{x+y} \left(10^{x+y}-1\right)\right)}{\left(10^{x+y}+1\right)^3},$$
(25)

$$S_{2}(x, y, t) = 2 \left(-\frac{3t \log^{3}(10) 10^{x+y} (10^{x+y} - 1) (t \log^{2}(10) (-10^{x+y+1} + 100^{x+y} + 1) + 4 (10^{x+y} + 1)^{2})}{(10^{x+y} + 1)^{5}} - \frac{6 \log(10)}{10^{x+y} + 1} + 2 \right),$$
(26)

$$S_{3}(x, y, t) = \frac{1}{(10^{x+y}+1)^{7}} \Big(2\Big(t \log^{3}(10) 10^{x+y} \Big(-t^{2} \log^{4}(10)\Big(57 \ 10^{x+y} - 57 \ 10^{4(x+y)} + 10^{5(x+y)} - 151 \ 2^{2x+2y+1} 25^{x+y} + 151 \ 2^{3x+3y+1} 125^{x+y} - 1\Big) - 9t \log^{2}(10)\Big(11 \ 10^{x+y} - 11 \ 100^{x+y} + 1000^{x+y} - 1\Big)\Big(10^{x+y} + 1\Big)^{2} - 18\Big(10^{x+y} - 1\Big)\Big(10^{x+y} + 1\Big)^{4}\Big) + 2\Big(10^{x+y} + 1\Big)^{6} \Big(10^{x+y} + 1 - 3 \log(10)\Big)\Big)\Big).$$
(27)

FIG. 1. Solitary wave solutions, Eq. (9), in (a) three-dimensional, (b) two-dimensional, and (c) contour plots.

TABLE I. /	Absolute value of errc	or for Eq. (1) based	on ESE [Eq. (9)] and	d VI methods.						
Value of 2	κ $t = 1$	t = 3	t = 5	t = 7	t = 9	t = 11	t = 13	t = 15	t = 17	t = 19
0 1 1 2 2 4 2 2 7 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 4.45209\times10^{-7}\\ 6.02525\times10^{-8}\\ 8.15429\times10^{-9}\\ 1.10356\times10^{-9}\\ 1.49351\times10^{-10}\\ 2.02125\times10^{-11}\\ 2.73537\times10^{-12}\\ 3.70037\times10^{-13}\\ 5.01821\times10^{-14}\\ 6.77236\times10^{-16}\\ 8.88178\times10^{-16}\\ 8.88178\times10^{-16}\\ 2.22045\times10^{-16}\\ 0\\ 0\\ 0\\ 0\\ \end{array}$	$\begin{array}{c} 2.44865\times10^{-5}\\ 3.31389\times10^{-6}\\ 4.48486\times10^{-7}\\ 6.0696\times10^{-8}\\ 8.21431\times10^{-9}\\ 1.11169\times10^{-9}\\ 1.5045\times10^{-10}\\ 2.3512\times10^{-10}\\ 2.75557\times10^{-12}\\ 3.72924\times10^{-13}\\ 5.40401\times10^{-14}\\ 5.88338\times10^{-15}\\ 6.88338\times10^{-16}\\ 8.88178\times10^{-16}\\ 8.8178\times10^{-16}\\ 2.22045\times10^{-16}\\ 0\end{array}$	$\begin{array}{c} 0.000\ 126\ 885\\ 1.717\ 2\times 10^{-5}\\ 2.323\ 97\times 10^{-6}\\ 3.145\ 16\times 10^{-7}\\ 4.2565\times 10^{-8}\\ 5.760\ 55\times 10^{-9}\\ 7.796\ 06\times 10^{-10}\\ 1.427\ 9\times 10^{-12}\\ 1.427\ 9\times 10^{-12}\\ 1.932\ 34\times 10^{-12}\\ 3.530\ 51\times 10^{-13}\\ 3.530\ 51\times 10^{-14}\\ 4.884\ 98\times 10^{-15}\\ 6.661\ 34\times 10^{-16}\\ 6.661\ 34\times 10^{-16}\\ 0\end{array}$	$\begin{array}{c} 0.000\ 364\ 626\\ 4.934\ 68\times10^{-5}\\ 6.678\ 36\times10^{-6}\\ 9.687\ 36\times10^{-7}\\ 1.223\ 19\times10^{-7}\\ 1.555\ 4\times10^{-9}\\ 3.031\ 97\times10^{-10}\\ 3.031\ 97\times10^{-10}\\ 4.103\ 32\times10^{-11}\\ 5.553\ 22\times10^{-12}\\ 7.51\ 621\times10^{-13}\\ 1.01\ 696\times10^{-13}\\ 1.01\ 696\times10^{-13}\\ 1.776\ 36\times10^{-16}\\ 1.766\ 3$	$\begin{array}{c} 0.000794698\\ 0.000107551\\ 1.45554\times10^{-5}\\ 1.96986\times10^{-6}\\ 2.66592\times10^{-7}\\ 3.60793\times10^{-8}\\ 4.828\times10^{-9}\\ 6.68814\times10^{-101}\\ 8.94316\times10^{-111}\\ 1.21031\times10^{-111}\\ 1.21031\times10^{-111}\\ 1.21031\times10^{-112}\\ 3.9968\times10^{-15}\\ 3.9968\times10^{-15}\\ 4.44089\times10^{-15}\\ 4.44089\times10^{-16}\\ \end{array}$	$\begin{array}{c} 0.001 474 087 \\ 0.000 199 496 \\ 2.699 89 \times 10^{-5} \\ 3.653 98 \times 10^{-6} \\ 4.945 01 \times 10^{-7} \\ 6.692 35 \times 10^{-8} \\ 9.057 11 \times 10^{-9} \\ 1.225 75 \times 10^{-9} \\ 1.255 75 \times 10^{-10} \\ 1.658 87 \times 10^{-10} \\ 1.255 73 28 \times 10^{-11} \\ 3.38 24 \times 10^{-12} \\ 3.38 24 \times 10^{-12} \\ 3.57 33 24 \times 10^{-11} \\ 7.54 95 \times 10^{-13} \\ 7.54 95 \times 10^{-16} \\ 7.52 95 \times 10^{-16} \\ 7.5 95 \times 10^{-16} \\ 7$	$\begin{array}{c} 0.00245978\\ 0.000332895\\ 4.50525\times10^{-5}\\ 6.09719\times10^{-6}\\ 8.2516.710^{-7}\\ 1.11674\times10^{-7}\\ 1.51134\times10^{-8}\\ 2.04538\times10^{-9}\\ 2.04538\times10^{-9}\\ 2.06994\times10^{-11}\\ 5.06994\times10^{-11}\\ 5.06994\times10^{-11}\\ 1.77636\times10^{-11}\\ 1.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.005578025\\ 0.000754904\\ 0.000102165\\ 5 & 1.38265\times10^{-5}\\ 1.87122\times10^{-6}\\ 1.87122\times10^{-6}\\ 3 & 3.42726\times10^{-8}\\ 3 & 3.42726\times10^{-9}\\ 6 & 2.5724\times10^{-10}\\ 1 & 8.4953\times10^{-11}\\ 1 & 8.4953\times10^{-11}\\ 1 & 1.55587\times10^{-12}\\ 2 & 1.55587\times10^{-12}\\ 2 & 1.55587\times10^{-12}\\ 2 & 1.55587\times10^{-12}\\ 2 & 1.55587\times10^{-12}\\ 3 & 3.77476\times10^{-14}\\ 4 & 2.84198\times10^{-16}\\ 5 & 3.77476\times10^{-16}\\ 6 & 4.44089\times10^{-16}\\ \end{array}$	$\begin{array}{c} 0.00782455\\ 0.001058938\\ 0.000143312\\ 1.93951\times10^{-5}\\ 2.62484\times10^{-6}\\ 3.55234\times10^{-7}\\ 4.80757\times10^{-8}\\ 6.50634\times10^{-9}\\ 6.50634\times10^{-10}\\ 1.19168\times10^{-10}\\ 1.19168\times10^{-11}\\ 1.61275\times10^{-11}\\ 2.95319\times10^{-11}\\ 2.95319\times10^{-12}\\ 3.3968\times10^{-12}\\ 3.3968\times10^{-14}\\ 3.3958\times10^{-14}\\ 3.3968\times10^{-14}\\ 3.3968\times1$
TABLE II.	Absolute value of em	or for Eq. (1) based	on ESE [Eq. (11)] a	nd VI methods.						
c Jo alue of 2	<i>x</i> t = 1	t = 3	t = 5	t = 7	t = 9	t = 11	t = 13	t = 15	t = 17	t = 19
0 -	4.4521×10^{-7} 6.0253 × 10^{-8}	2.4487×10^{-5} 3.3139×10^{-6}	$0.000\ 126\ 88$ $1.717\ 2 \times 10^{-5}$	$0.000\ 36463 \\ 4.934\ 7\times\ 10^{-5}$	0.000 794 7 0.000 107 55	0.00147409 0.0001995	0.002 459 78 0.000 332 9	0.00380877 0.00051546	0.005578027 0.000754904	0.007 824 552 0.001 058 938
5 7	8.1543×10^{-9}	4.4849×10^{-7}	2.324×10^{-6}	6.6784×10^{-6}	1.4555×10^{-5}	2.6999×10^{-5}	4.5052×10^{-5}	6.976×10^{-5}	0.000102165	0.000143312
<i>5</i> 4	1.1036×10^{-10} 1.4935×10^{-10}	6.0696×10^{-9} 8.2143×10^{-9}	3.1452×10^{-8} 4.2565×10^{-8}	$9.038.2 \times 10^{-7}$ 1.223.2 × 10 ⁻⁷	$1.9699 \times 10^{\circ}$ 2.6659 × 10^{-7}	$3.6539 \times 10^{\circ}$ 4.945×10^{-7}	$6.097.2 \times 10^{-7}$ $8.251.6 \times 10^{-7}$	9.441×10^{-6} 1.2777 × 10 ⁻⁶	$1.382.65 \times 10^{-6}$ $1.871.22 \times 10^{-6}$	1.93951×10^{-6} 2.62484 × 10^{-6}
6 5	2.0212×10^{-11} 2.7355×10^{-12}	$\frac{1.1117 \times 10^{-9}}{1.5045 \times 10^{-10}}$	5.7606×10^{-9} 7.7961×10^{-10}	1.6554×10^{-8} 2.2403×10^{-9}	$3.607.9 \times 10^{-8}$ $4.882.8 \times 10^{-9}$	$6.692.3 \times 10^{-8}$ $9.057.1 \times 10^{-9}$	1.1167×10^{-7} 1.5113×10^{-8}	1.7292×10^{-7} 2.3402×10^{-8}	2.53242×10^{-7} 3.42726×10^{-8}	$3.552 34 \times 10^{-7}$ $4.807 57 \times 10^{-8}$
8	$3.702.6 \times 10^{-13}$ $5.007.1 \times 10^{-14}$	$2.036 \ 1 \times 10^{-11}$ $2.755 \ 6 \times 10^{-12}$	$\frac{1.0551\times10^{-10}}{1.4279\times10^{-11}}$	3.032×10^{-10} 4.1033×10^{-11}	6.6081×10^{-10} 8.9432 × 10^{-11}	1.2257×10^{-9} 1.6589×10^{-10}	$\begin{array}{l} 2.045\ 4\times10^{-9}\\ 2.768\ 1\times10^{-10} \end{array}$	3.1671×10^{-9} 4.2862×10^{-10}	$4.638\ 29\times 10^{-9}$ $6.277\ 24\times 10^{-10}$	$6.506\ 34\times10^{-9}\\8.805\ 37\times10^{-10}$
6	$6.772.4 \times 10^{-15}$	3.7292×10^{-13}	1.9325×10^{-12}	5.5532×10^{-12}	1.2103×10^{-11}	2.245×10^{-11}	$3.746.2 \times 10^{-11}$	5.8007×10^{-11}	8.49533×10^{-11}	$1.191\ 68 \times 10^{-10}$
10	$8.881.8 \times 10^{-16}$ 1.1102 × 10 ⁻¹⁶	5.0515×10^{-15} 6.8834×10^{-15}	2.6157×10^{-14} 3.5416×10^{-14}	1.017×10^{-13}	1.638×10^{-13} 2.2171×10^{-13}	3.0383×10^{-13} 4.1123×10^{-13}	5.0699×10^{-13} 6.8612×10^{-13}	7.8505×10^{-12} 1.0625 × 10 ⁻¹²	1.14971×10^{-12} 1.55598×10^{-12}	$1.612 / 1 \times 10^{-12}$ $2.182 59 \times 10^{-12}$
12	0 0	8.8818×10^{-16}	4.774×10^{-15}	1.3767×10^{-14}	2.9976×10^{-14}	5.5622×10^{-14} $7 \pm 40 \pm 10^{-15}$	9.2815×10^{-14}	1.4377×10^{-13}	$2.106.09 \times 10^{-13}$	2.9543×10^{-13}
14 15 15		01 × 7 011.1	1.1102×10^{-16}	$1.60/4 \times 10^{-16}$ 2.2204 × 10^{-16}	4.1076×10 5.5511 × 10 ⁻¹⁶ 1 1102 × 10 ⁻¹⁶	01×6292 9.992 × 10^{-16} $1.110.2 \times 10^{-16}$	1.2340×10 1.6653×10^{-15} 22204×10^{-16}	1.9429×10 2.6645 × 10^{-15} $3 3307 \times 10^{-16}$	2.600×10^{-15} 3.88578×10^{-15} 555112×10^{-16}	$5.440.09 \times 10^{-15}$ $7.771.56 \times 10^{-16}$
10	2	0	0	>	01×70111	$01 \sim 7011.1$	01×10777			

AIP Advances 11, 015223 (2021); doi: 10.1063/5.0036261

© Author(s) 2021

scitation.org/journal/adv

 $\begin{array}{c} 2.664.5 \times 10^{-15} \\ 3.330.7 \times 10^{-16} \end{array}$

 $1.110\,2\times\,10^{-16}$

TABLE III. A	Absolute value of em	or for Eq. (1) based	l on KM [Eq. (24)] a	ind VI methods.						
Value of x	t = 1	t = 3	t = 5	t = 7	t = 9	t = 11	t = 13	t = 15	t = 17	t = 19
0	$2.290.9 imes 10^{-7}$	3.0335×10^{-6}	1.1712×10^{-5}	$2.955 8 imes 10^{-5}$	5.9867×10^{-5}	0.00010593	0.000 171 05	0.00025851	0.000 371 617	0.000 513 655
1	$2.290.9 imes 10^{-8}$	$3.0335 imes 10^{-7}$	1.1712×10^{-6}	$2.9558 imes 10^{-6}$	5.9867×10^{-6}	$1.059.3 \times 10^{-5}$	1.7105×10^{-5}	$2.5851 imes 10^{-5}$	$3.71617 imes 10^{-5}$	$5.13655 imes 10^{-5}$
2	$2.290.9 imes 10^{-9}$	$3.0335 imes 10^{-8}$	$1.171\ 2\times 10^{-7}$	$2.9558 imes 10^{-7}$	5.9867×10^{-7}	$1.059.3 \times 10^{-6}$	1.7105×10^{-6}	$2.5851 imes 10^{-6}$	$3.71617 imes 10^{-6}$	$5.13655 imes 10^{-6}$
ю	2.2909×10^{-10}	3.0335×10^{-9}	$1.1712 imes 10^{-8}$	$2.9558 imes 10^{-8}$	5.9867×10^{-8}	$1.059.3 imes 10^{-7}$	1.7105×10^{-7}	$2.5851 imes 10^{-7}$	$3.71617 imes10^{-7}$	$5.13655 imes 10^{-7}$
4	2.2909×10^{-11}	3.0335×10^{-10}	1.1712×10^{-9}	2.9558×10^{-9}	5.9867×10^{-9}	$1.059.3 imes 10^{-8}$	1.7105×10^{-8}	$2.585 \ 1 imes 10^{-8}$	$3.71617 imes10^{-8}$	$5.13655 imes 10^{-8}$
5	2.2911×10^{-12}	3.0335×10^{-11}	1.1712×10^{-10}	$2.9558 imes 10^{-10}$	5.9867×10^{-10}	$1.059.3 imes 10^{-9}$	1.7105×10^{-9}	$2.5851 imes 10^{-9}$	$3.71617 imes10^{-9}$	$5.13655 imes 10^{-9}$
9	2.2871×10^{-13}	$3.032.7 \times 10^{-12}$	1.1712×10^{-11}	2.9558×10^{-11}	5.9866×10^{-11}	$1.059.3 imes 10^{-10}$	1.7105×10^{-10}	$2.585\ 1\times 10^{-10}$	$3.71616 imes 10^{-10}$	5.13655×10^{-10}
7	2.2649×10^{-14}	3.0287×10^{-13}	1.1706×10^{-12}	2.9554×10^{-12}	5.9863×10^{-12}	$1.059.3 \times 10^{-11}$	1.7105×10^{-11}	2.5851×10^{-11}	$3.71614 imes 10^{-11}$	5.13651×10^{-11}
8	2.2204×10^{-15}	$2.9754 imes 10^{-14}$	1.1724×10^{-13}	$2.957.6 \times 10^{-13}$	5.9863×10^{-13}	$1.0592 imes 10^{-12}$	1.7102×10^{-12}	2.585×10^{-12}	$3.71614 imes 10^{-12}$	5.13634×10^{-12}
6	0	2.6645×10^{-15}	1.1102×10^{-14}	$2.931 imes 10^{-14}$	5.9508×10^{-14}	1.0569×10^{-13}	$1.705.3 \times 10^{-13}$	2.5846×10^{-13}	3.71259×10^{-13}	5.12923×10^{-13}
10	0	0	8.8818×10^{-16}	2.2204×10^{-15}	5.7732×10^{-15}	1.0658×10^{-14}	1.6875×10^{-14}	2.6201×10^{-14}	$3.685.94 \times 10^{-14}$	5.15143×10^{-14}
11	0	0	0	0	8.8818×10^{-16}	8.8818×10^{-16}	1.7764×10^{-15}	3.1086×10^{-15}	$3.55271 imes 10^{-15}$	5.32907×10^{-15}
12	0	0	0	0	0	0	0	0	$4.440.89 \times 10^{-16}$	4.44089×10^{-16}
13	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.8818×10^{-16}	-8.8818×10^{-16}
14	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0
20	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.8818×10^{-16}	-8.8818×10^{-16}
21	0	0	0	0	0	0	0	0	0	0
22	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.882×10^{-16}	-8.8818×10^{-16}	-8.8818×10^{-16}
23	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	$4.440.9 \times 10^{-16}$	$4.440.9 \times 10^{-16}$	4.44089×10^{-16}	$4.440~89\times10^{-16}$
24	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	$4.440.9 \times 10^{-16}$	$4.440.9 \times 10^{-16}$	4.44089×10^{-16}	$4.440.89 \times 10^{-16}$
25	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	$4.440.9 \times 10^{-16}$	$4.440.9 \times 10^{-16}$	$4.440.89 \times 10^{-16}$	$4.440~89 \times 10^{-16}$
26	0	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0
28	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	4.4409×10^{-16}	$4.440.9 \times 10^{-16}$	$4.440.9 \times 10^{-16}$	$4.440.9 \times 10^{-16}$	$4.440.89 \times 10^{-16}$	$4.440~89 \times 10^{-16}$
29	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0

AIP Advances 11, 015223 (2021); doi: 10.1063/5.0036261 © Author(s) 2021

FIG. 3. Variational iteration method solutions in (a) three-dimensional, (b) two-dimensional, and (c) contour plots for Eq. (23).

FIG. 4. Variational iteration method solutions in (a) three-dimensional, (b) two-dimensional, and (c) contour plots for Eq. (23).

FIG. 5. Solitary wave solutions Eq. (24) in (a) three-dimensional, (b) two-dimensional, and (c) contour plots.

FIG. 6. Variational iteration method solutions in (a) three, (b) two, and (c) contour plots for Eq. (27).

FIG. 7. Absolute error along ESM and variational iteration methods (a) for Eq. (9) and (b) for Eq. (11) while (c) shows the absolute error along MK and variational iteration methods.

III. RESULTS' INTERPRETATION

This section discusses the obtained results of this research paper. This research applied two recent computational schemes (ESE and MK methods) to the (2 + 1)-dimensional SW equation and constructed abundant novel analytical solutions that show the flow's dynamical behavior through shallow water waves. Figures 1, 2, and 5 show periodic kink, singular, and cone waves in twoand three-dimensional and contour plots of Eqs. (9), (11), and (24), respectively, when $[a_0 = 7, \eta = 1, l_1 = 3, l_3 = -3, s_1 = 18, s_2$ = -12, $s_3 = 4$ & $a_0 = 7$, $\eta = 1$, $l_1 = 3$, $l_3 = -3$, $s_1 = 18$, $s_2 = -12$, $s_3 =$ = 4 & a_0 = 4, k = 5, s_1 = 3, s_2 = 1, s_3 = 2]. However, the main goal of this paper is not just obtaining a novel solution of the shallow water wave model, but it also aims to determine the accuracy of both employed schemes by applying the AD and VI methods. Thus, these two semi-analytical schemes have been employed based on the evaluated analytical solutions. The accuracy of each of the ESE and MK methods has been explained through Tables I-III and Figs. 3, 4 and 6 while the matching between the computational and semi-analytical solutions is illustrated in Fig. 7. Thus, it has been demonstrated that the obtained solution via the MK method is more accurate than that obtained by the ESE method.

IV. CONCLUSION

This article has successfully applied three computational and semi-analytical schemes to the (2 + 1)-dimensional SW equation that is used as a shallow water wave model. Many novel computational solutions have been obtained, and some of them have been demonstrated by two- and three-dimensional and contour plots. The accuracy of the obtained results and the used computational schemes has been explained. The matching between computational and numerical solutions has been illustrated by two-dimensional plots.

ACKNOWLEDGMENTS

The research was supported by the Taif University Researchers Supporting Project (No. TURSP-2020/155), Taif University, Taif, Saudi Arabia, and the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, and 11601485). Y.C. received a grant for this work.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

¹J.-G. Liu, M. Eslami, H. Rezazadeh, and M. Mirzazadeh, "The dynamical behavior of mixed type lump solutions on the (3+1)-dimensional generalized Kadomtsev–Petviashvili-Boussinesq equation," Int. J. Nonlinear Sci. Numer. Simul. **21**, 661 (2020).

²A. Houwe, S. Abbagari, G. Betchewe, S. Y. Doka, K. T. Crépin, D. Baleanu, B. Almohsen *et al.*, "Exact optical solitons of the perturbed nonlinear Schrödinger–Hirota equation with Kerr law nonlinearity in nonlinear fiber optics," Open Phys. **18**(1), 526–534 (2020).

³M. Younis, S. Ali, S. T. R. Rizvi, M. Tantawy, K. U. Tariq, and A. Bekir, "Investigation of solitons and mixed lump wave solutions with (3+1)-dimensional potential-YTSF equation," Commun. Nonlinear Sci. Numer. Simul. **94**, 105544 (2020).

⁴W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, and G. Yel, "Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique," Opt. Quantum Electron. **52**(1), 1–13 (2020).

⁵M. Younis, T. A. Sulaiman, M. Bilal, S. U. Rehman, and U. Younas, "Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation," Commun. Theor. Phys. **72**(6), 065001 (2020).

⁶Z. Pinar, H. Rezazadeh, and M. Eslami, "Generalized logistic equation method for Kerr law and dual power law Schrödinger equations," Opt. Quantum Electron. 52(12), 1–16 (2020).

⁷S. Ali and M. Younis, "Rogue wave solutions and modulation instability with variable coefficient and harmonic potential," Front. Phys. 7, 255.

⁸ A. Madhusudanan, S. J. Illingworth, and I. Marusic, "Coherent large-scale structures from the linearized Navier–Stokes equations," J. Fluid Mech. 873, 89–109 (2019).

⁹B. Younas and M. Younis, "Chirped solitons in optical monomode fibres modelled with Chen-Lee-Liu equation," Pramana **94**(1), 3 (2020).

¹⁰A. Prakash, D. G. Prakasha, and P. Veeresha, "A reliable algorithm for time-fractional Navier-Stokes equations via Laplace transform," Nonlinear Eng. 8(1), 695–701 (2019).

¹¹F. Gazzola and G. Sperone, "Steady Navier–Stokes equations in planar domains with obstacle and explicit bounds for unique solvability," Arch. Ratio. Mech. Anal. **238**(3), 1283–1347 (2020).

¹²M. Younis, "Optical solitons in (n+ 1) dimensions with Kerr and power law nonlinearities," Mod. Phys. Lett. B **31**(15), 1750186 (2017).

¹³M. M. A. Khater, "Solitary wave solutions for the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation," Global J. Sci. Front. Res. Phys. Space Sci. 16(4) (2016).

¹⁴A.-H. Abdel-Aty, M. M. Khater, D. Baleanu, S. Abo-Dahab, J. Bouslimi, and M. Omri, "Oblique explicit wave solutions of the fractional biological population (BP) and equal width (EW) models," Adv. Differ. Equations 2020(1), 1–17.

¹⁵A.-H. Abdel-Aty, M. M. Khater, D. Baleanu, E. Khalil, J. Bouslimi, and M. Omri, "Abundant distinct types of solutions for the nervous biological fractional Fitzhugh-Nagumo equation via three different sorts of schemes," Adv. Differ. Equations 2020(1), 1–17.

¹⁶M. M. Khater and D. Baleanu, "On abundant new solutions of two fractional complex models," Adv. Differ. Equations 2020(1), 1–14.

¹⁷C. Yue, M. M. Khater, R. A. Attia, and D. Lu, "The plethora of explicit solutions of the fractional KS equation through liquid–gas bubbles mix under the thermodynamic conditions via Atangana–Baleanu derivative operator," Adv. Differ. Equations 2020(1), 1–12. ¹⁸S. Alfalqi, M. Khater, J. Alzaidi, and D. Lu, "Dynamical behaviour of the light pulses through the optical fiber: Two nonlinear atangana conformable fractional evolution equations," J. Math. **2020**, 8862484.

¹⁹M. Khater, Q. Zheng, H. Qin, and R. A. Attia, "On highly dimensional elastic and nonelastic interaction between internal waves in straight and varying crosssection channels," Math. Prob. Eng. 2020, 8862484.

²⁰ M. M. A. Khater, C. Park, and D. Lu, "Two effective computational schemes for a prototype of an excitable system," AIP Adv. **10**(10), 105120 (2020).

²¹A.-H. Abdel-Aty, M. M. A. Khater, H. Dutta, J. Bouslimi, and M. Omri, "Computational solutions of the HIV-1 infection of CD_4^+ T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy," Chaos, Solitons Fractals **139**, 110092 (2020).

²²Y.-M. Chu, D. Lu, R. A. Attia, M. M. Khater *et al.*, "On the analytical and numerical solutions in the quantum magnetoplasmas: The atangana conformable derivative (2+1)-ZK equation with power-law nonlinearity," Adv. Math. Phys. **2020**, 1–10.

²³ M. M. A. Khater, R. A. M. Attia, C. Park, and D. Lu, "On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves," Results Phys. **18**, 103317 (2020).

²⁴M. Nadeem, F. Li, and H. Ahmad, "Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients," Comput. Math. Appl. **78**(6), 2052–2062 (2019).

²⁵M. M. A. Khater, R. A. M. Attia, A.-H. Abdel-Aty, W. Alharbi, and D. Lu, "Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms," Chaos, Solitons Fractals **136**, 109824 (2020).

²⁶H. Qin, M. Khater, and R. A. Attia, "Inelastic interaction and blowup new solutions of nonlinear and dispersive long gravity waves," J. Funct. Spaces **2020**, 5362989.

²⁷J. Manafian, M. A. S. Murad, A. Alizadeh, and S. Jafarmadar, "M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional KP-BBM equation," Eur. Phys. J. Plus **135**(2), 167 (2020).

²⁸D. V. Tanwar and A. M. Wazwaz, "Lie symmetries, optimal system and dynamics of exact solutions of (2+1)-dimensional KP-BBM equation," Phys. Scr. 95(6), 065220 (2020).

²⁹K. R. Adem and C. M. Khalique, "Exact solutions and conservation laws of a (2+1)-dimensional nonlinear KP-BBM equation," in *Abstract and Applied Analysis* (Hindawi, 2013), Vol. 2013.

³⁰N. A. Kudryashov and N. B. Loguinova, "Extended simplest equation method for nonlinear differential equations," Appl. Math. Comput. **205**(1), 396–402 (2008).

³¹S. Bilige and T. Chaolu, "An extended simplest equation method and its application to several forms of the fifth-order KdV equation," Appl. Math. Comput. **216**(11), 3146–3153 (2010).

³²K. Hosseini and R. Ansari, "New exact solutions of nonlinear conformable timefractional Boussinesq equations using the modified Kudryashov method," Waves Random Complex Media **27**(4), 628–636 (2017).

³³D. Kumar, A. R. Seadawy, and A. K. Joardar, "Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology," Chin. J. Phys. **56**(1), 75–85 (2018).

³⁴N. Anjum and J.-H. He, "Laplace transform: Making the variational iteration method easier," Appl. Math. Lett. **92**, 134–138 (2019).