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Abstract. The choice of the variable to flip in the Walksat family procedures is
always random in that it is selected from a randomly chosen unsatisfied clause c.
This choice in Novelty or R-Novelty heuristics also contains some determinism
in that the variable to flip is always limited to the two best variables in c. In this
paper, we first propose a diversification parameter for Novelty (or R-Novelty)
heuristic to break the determinism in Novelty and show its performance com-
pared with the random walk parameter in Novelty+. Then we exploit promising
decreasing paths in a deterministic fashion in local search using a gradient-based
approach. In other words, when promising decreasing paths exist, the variable
to flip is no longer selected from a randomly chosen unsatisfied clause but in a
deterministic fashion to surely decrease the number of unsatisfied clauses. Exper-
imental results show that the proposed diversification and the determinism allow
to significantly improve Novelty (and Walksat).

1 Introduction

Consider a propositional formula F in Conjunctive Normal Form (CNF) on a set of
boolean variables {z1, 2,..., x,}, the satisfiability problem (SAT) consists in testing
whether all clauses in F can be satisfied by some consistent assignment of truth values
to variables.

SAT is the first known [[1] and one of the most well-studied NP-complete problems.
It has many applications like graph coloring, circuit designing or planning, since such
problems can be encoded into CNF formulas in a natural way and solved by a SAT
solver.

Given a CNF formula F and an assignment, local search procedures repeatedly re-
pair locally this assignment, i.e. flipping the value of one variable, to find an assignment
satisfying all clauses of F. Since the introduction of GSAT [14] in which the best vari-
able is picked to be flipped to decrease the number of unsatisfied clauses, there has been
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considerable research on local search methods to find satisfying assignments for CNF
formulae, see, e.g. [3,19,12}13L[7,10,[11}14].

Perhaps the most significant early improvement was to incorporate a "random walk”
component where variables were flipped from some unsatisfied clause [12]], leading to
the development of the well-known Walksat procedure [[13]] in which the variable to flip
is always picked from a randomly selected unsatisfied clause. Another contemporary
idea was to break ties in favor of least recently flipped variables [3]]. This improvement
to GSAT resulted in HSAT. McAllester, Selman and Kautz introduced Novelty and R-
Novelty heuristics into the Walksat family by combining two concerns when picking a
variable to flip from within a unsatisfied clause: favoring the best variable to maximize
the number of satisfied clauses and avoiding flipping the most recently flipped variable
in the clause to prevent the local search from repeating earlier flips [10].

Novelty and R-Novelty are among the best local search methods. However, Hoos
[S] showed that they are essentially incomplete in the sense that in some situations, they
can get stuck in a local basin of attraction and fail to get out. Hoos developed slightly
modified procedures Novelty+ and R-Novelty+ by forcing a random walk with a fixed
probability in which the variable to flip is randomly picked from a random unsatisfied
clause. Novelty+ and R-Novelty+ are probabilistically approximately complete (PAC),
meaning that by running them long enough, the probability of missing an existing sat-
isfying assignment can be made arbitrarily small [5]].

We note that on one hand, the variable to flip is always randomly picked in the
Walksat family procedures from a unsatisfied clause in the sense the unsatisfied clause
is randomly selected, and on the other hand, the choice of the variable to flip in Novelty
and R-Novelty also involves some determinism: the picked variable is necessarily one
of the two best variables in the unsatisfied clause.

In this paper, we propose new local search procedures in the Walksat family in two
ways:

(1) We weaken the determinism in Novelty in a way that all variables in the randomly
selected unsatisfied clause c can be picked to be flipped instead of limited to the two
best variables in c. Concretely, we introduce diversification moves in which THE least
recently flipped variable in c is picked to be flipped, resulting a new heuristic called
Novelty++. Novelty++ can be considered as a reinforcement of Novelty+ in the sense
that while Novelty+ makes a random walk in which all variables in ¢ can be picked with
equal probability, Novelty++ deterministically picks THE least recently flipped variable
in ¢ in a diversification step.

(i) We weaken the randomness of the Walksat family procedures by combining
GSAT with Walksat. In some precisely defined situations, the variable to flip is picked
in a deterministic way as in GSAT instead of from a randomly selected unsatisfied
clause. We call the new procedure G*W SAT for Gradient-based Greedy Walksat. In
the remaining situations, G2W S AT uses Novelty++ or other Walksat family heuristics
to pick the variable to flip.

This paper is organized as follows. Section 2 presents Novelty++ and compares its
performance with Novelty and Novelty+. Section 3 presents G2 W S AT and compares the
performance of G2 W S AT usingNovelty++with SDF [11]] and UnitWalk [4]], the two other
effective local search procedures, as well as Novelty and Walksat. Section 4 concludes.



160 C.M. Li and W.Q. Huang

2 Extending Novelty with Diversification

Originally introduced in [13]], Walksat differs from its predecessor GSAT essentially in
that the variable to be flipped is no longer (deterministically with probability 1-p and
randomly with probability p) picked among all variables but from a randomly selected
unsatisfied clause. It starts with a randomly generated truth assignment. Then it repeat-
edly changes (flips) the assignment of a variable picked according to a heuristic, until
either a satisfying assignment is found or a given maximum number of flips, Maxsteps,
is reached. This process is repeated up to a maximum number of Maxtries times.

Algorithm 1: Walksat

Input: SAT-formula F, M aztries, Maxsteps, Heuristic
Output: A satisfying truth assignment A of F, if found
begin
for try=1to Maxtries do
A«randomly generated truth assignment;
for flip=1 to Maxsteps do
if A satisfies F then return A;
c+— randomly selected clause unsatisfied under A;
v« pick a variable from c according to Heuristic;
A« A with v flipped;

return “Solution not found”;
end;

Let x be a variable, break(x) be the number of clauses in F which are satisfied
by the current assignment A but would be unsatisfied if z is flipped, make(z) be the
number of clauses in F that currently are unsatisfied but would be satisfied if x is
flipped. Let score(x) be the difference of make(x) and break(x) (score(z)=make(x) -
break(x)). Walksat provides several heuristics to pick a variable to flip from a randomly
chosen unsatisfied clause ¢, among which:

Walksat(p): If there are variables x in ¢ such that break(x)=0, randomly pick one of
them, otherwise with probability p, randomly pick a variable from ¢ and with prob-
ability 1-p, randomly pick one of variables = such that break(z) is the smallest.

Novelty(p): Sort the variables x in ¢ by score(z), breaking ties in favor of the least
recently flipped variable. Consider the best and second best variable under this sort.
If the best variable is not the most recently flipped one in ¢, then pick it. Otherwise,
with probability p, pick the second best one, and with probability 1-p, pick the best
variable.

R-Novelty(p): This is the same as Novelty, except in the case where the best variable
is the most recently flipped one in c. In this case, pick the variable to flip among the
best and second best variables according to p and the difference of score of these
two variables. For more details, see [10]].

We now concentrate on Novelty heuristic. Obviously, it always picks one of the two
best variables according to their score that would result in the smallest (or the second
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smallest) total number of unsatisfied clauses. The intuition of parameter p (called noise)
is that if the best variable is the most recently flipped one in ¢, flipping it risks to cancel
a useful earlier move. To avoid this, the second best variable is picked with probability
p [10].

Hoos studied the run time behavior of Novelty and found that while Novelty is very
effective, it may sometimes get stuck in a loop. As an example, Hoos gave a formula F
consisting of the 6 following clauses:

c1:21V Iy
022.13_2\/1‘1
c3: 21 VT2 VY
Cq 21V o
cs:21 VY

Cce: 22 VY

This formula has a unique solution x1=x2=1, y=21=29=0. Hoos showed that if the
initial assignment is x1=x9=y=21=29=1, Novelty never reaches the unique solution [5]],
because y is never flipped.

The restart mechanism in Walksat allows to remedy the situation. However in prac-
tice this mechanism critically relies on the use of good Maxsteps setting which is
difficult to obtain a priori. Hoos then extended Novelty by forcing a random walk with
probability wp (walk probability) in which a variable in c¢ is randomly selected. The
extended Novelty is called Novelty+.

Novelty+(p, wp): With probability wp, randomly pick a variable from ¢ (random
walk), with probability 1-wp, do as Novelty.

Let us look at Hoos example once again. The reason that Novelty gets stuck in a loop
is due to the fact that y is never flipped. The purpose of the random walk in Novelty+
is to make the heuristic pick y when c3 is selected. However the random walk does so
only with probability 1/3. This observation leads us to extend Novelty in the following
way:

Novelty++(p, dp): With probability dp (diversification probability), pick the least re-
cently flipped variable in ¢ (diversification), with probability 1-dp, do as Novelty.

Obviously, the difference between Novelty+ and Novelty++ is that the random walk
in Novelty+ is replaced by the diversification in Novelty++. In practice, Novelty++ is
stronger than Novelty+. For instance, Novelty++ directly picks y in c3 in the above
example in a diversification step while Novelty+ may still pick x; or z5 in a random
walk as Novelty does.

When Novelty gets stuck in a local basin of attraction, probably there is a clause
c that is unsatisfied again and again. The diversification in Novelty++ allows to flip
all variables in ¢ by turns when the search proceeds, since after the least recently
variable in c is flipped, a different variable in ¢ becomes the new least recently flipped.
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So Novelty++ presumably improves (further than Novelty+) the coverage rate of Nov-
elty as defined in [[11] to measure how systematically the search explores the entire
space.

Table [ compares the performance of Novelty(p), Novelty+(p, wp) and
Novelty++(p, dp) (respectively N(p), N+(p, wp) and N++(p, dp) in the table) for ran-
dom 3-SAT problems and several classes of structured problems, where p is the noise
parameter which is fixed to be 0.20, 0.35 and 0.50. wp and dp respectively are the
random walk probability in Novelty+ and the diversification probability in Novelty++
which are fixed to be 0.01, 0.02 and 0.05.

A total of 21 local search procedures are evaluated in table [Tl All these procedures
share the same implementation and the same data structure from Satz [8]], and simplify
the input formula by satisfying the eventual unit clauses in the formula before the local
search. Note that Novelty(p)=Novelty+(p, 0)=Novelty++(p, 0).

We generate 2000 random 500 variable and 2125 clause 3-SAT formulas and elim-
inate the 912 unsatisfiable ones using Satz. For larger hard random 3-SAT problems,
we generate 1000 random 600 variable and 2550 clause formulas and 300 random 1000
variable and 4250 clause formulas. However no solver is available to eliminate unsatis-
fiable formulas of these sizes in reasonable time. So the 1000 hard random 600 variable
formulas, as well as the 300 hard random 1000 variable formulas, probably contain
about a half of unsatisfiable problems also used in the experimentation. M axsteps is
fixed to be 10° for 500 variable problems, 2 x 10° for 600 variable problems and 5 x 10°
for 1000 variable problems. 10 is the default cutoff value of the original Walksat fam-
ily procedures, while 2 x 10° and 5 x 10°, as well as 10° and 107 used below, are cutoff
values somewhat arbitrarily fixed here.

The behavior of the local procedures for other cutoff values deserves future study.

We run Novelty, Novelty+, Novelty++ with Maxtries = 1 (one run) for each for-
mula in each class. We say a formula is solved by a procedure if the procedure finds a
solution satisfying all clauses of the formula. The number of solved formulas in a class
represents the success rate of the procedure for this class. This execution is repeated
100 times to get the final averaged success rate given in the table [Tl

Structured problems Flat200-479, QG, AIS, Logistics, Blockworld, all available in
SATLIBE], are also used to evaluate the performance of Novelty++ compared with Nov-
elty and Novelty+. In order to make the comparison clearer, we eliminate unsatisfiable
formulas in the QG class, and smaller formulas in the AIS, Logistics and Blockworld
classes in which larger a formula, harder it is. So in our experimentation, local search
procedures are run to solve the 100 satisfiable formulas in Flat200-479 class, the 10 sat-
isfiable formulas in QG (satQG in the table) and the largest (and the hardest) formula
remaining in the AIS, Logistics and Blockworld classes. Maxsteps is fixed to be 10°
to all these problems except bw_large.d for which 107 flips are used. As for random
problems, we run each procedure with Maxtries = 1 for each formula in a class to
get a success rate for this class and repeat the execution 100 times to get final averaged
success rate given in table Il

! http://www.satlib.org
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Table 1. Average success rate and successful run length (the number of flips to find a solution in a
successful run) of Novelty, Novelty+ and Novelty++ for random 3-SAT and structured problems

500vars | 600vars |1000vars| Flat200 | satQG | ais12 |logistics.d|bw_large.d
succ rate|succ rate|succ rate [succ rate|succ rate|succ rate| succ rate | succ rate
#flip #flip #flip #flip #flip #flip #flip #flip
N(.2) 0.0358 | 0.0137 | 0.0020 | 0.0772 | 0.610 0 0.94 0.81
43919 | 89461 | 263457 | 314589 | 157354 0 314949 | 3819298
N+(.2,.01) | 0.0620 | 0.0257 | 0.0073 | 0.1329 | 0.626 | 0.09 0.94 0.74
43407 | 87354 | 244555 | 342308 | 177019 | 600588 | 272877 | 4092116
N++(.2,.01) | 0.0752 | 0.0331 | 0.0096 | 0.1665 | 0.621 0.32 0.97 0.70
41308 | 83556 | 233827 | 326908 | 174334 | 517261 | 255227 | 3769416
N+(.2,.02) | 0.0717 | 0.0307 | 0.0091 | 0.1554 | 0.610 | 0.15 0.98 0.68
42755 | 84166 | 230063 | 331649 | 166960 | 394956 | 252352 | 4803834
N++(.2,.02) | 0.0922 | 0.0409 | 0.0121 | 0.2023 | 0.642 0.47 0.99 0.54
39599 | 81692 | 216712 | 314755 | 168948 | 472868 | 257194 | 4281634
N+(.2,.05) | 0.0944 | 0.0407 | 0.0138 | 0.1911 | 0.628 | 0.36 0.97 0.47
39612 | 80012 | 226484 | 307785 | 176049 | 530276 | 245133 | 4755044
N++(.2,.05) | 0.1299 | 0.0592 | 0.0225 | 0.2937 | 0.662 0.78 0.98 0.13
37599 | 75300 | 218320 | 314195 | 155574 | 370399 | 187548 | 4551418
N(.35) 0.1889 | 0.0942 | 0.0405 | 0.3778 | 0.684 0 1 0.01
39923 | 81522 | 233992 | 336305 | 101838 0 150960 | 523016
N+(.35,.01) | 0.2236 | 0.1137 | 0.0537 | 0.4887 | 0.663 0.08 1 0.01
38523 | 78222 | 225226 | 329866 | 82270 | 374812 | 139387 | 3935403
N++(.35,.01)| 0.2525 | 0.1315 | 0.0676 | 0.5601 | 0.655 | 0.16 1 0.01
36874 | 74005 | 210373 | 299901 | 78833 | 513290 | 146827 | 9034913
N+(.35,.02) | 0.2411 | 0.1250 | 0.0626 | 0.5224 | 0.660 | 0.08 1 0.01
37778 | 74336 | 214503 | 302060 | 84524 | 284610 | 154852 | 7636423
N++(.35,.02)| 0.2850 | 0.1503 | 0.0805 | 0.6283 | 0.655 | 0.28 1 0.01
35694 | 71890 | 197205 | 287165 | 84537 | 472346 | 171744 | 4258715
N+(.35,.05) | 0.2807 | 0.1498 | 0.0808 | 0.5997 | 0.650 | 0.24 1 0.01
36191 | 72502 | 197306 | 290165 | 80302 | 494390 | 169413 | 7666983
N++(.35,.05)| 0.3727 | 0.2036 | 0.1234 | 0.7947 | 0.634 | 0.49 1 0
34111 | 68382 | 184949 | 252688 | 55898 | 512219 | 212222 0
N(.5) 0.5185 | 0.3118 | 0.2375 | 0.8585 | 0.613 0 0.71 0
34169 | 67335 | 188880 | 225958 | 67213 0 434699 0
N+(.5,.01) | 0.5360 | 0.3262 | 0.2561 | 0.8877 | 0.612 | 0.09 0.57 0
33618 | 65780 | 179796 | 208462 | 69846 | 597206 | 487620 0
N++(.5,.01) | 0.5617 | 0.3449 | 0.2798 | 0.9154 | 0.604 0.1 0.50 0
32575 | 63487 | 171378 | 189963 | 67538 | 505106 | 438835 0
N+(.5,.02) | 0.5482 | 0.3354 | 0.2673 | 0.9011 | 0.602 | 0.07 0.43 0
33223 | 65321 | 177141 | 199674 | 59886 | 481570 | 453581 0
N++(.5,.02) | 0.5870 | 0.3634 | 0.3048 | 0.9223 | 0.603 0.21 0.27 0
31879 | 61308 | 162701 | 174457 | 69033 | 599057 | 382697 0
N+(.5,.05) | 0.5708 | 0.3520 | 0.2949 | 0.9142 | 0.601 0.11 0.37 0
32511 | 62915 | 167434 | 188466 | 73372 | 459436 | 529073 0
N++(.5,.05) | 0.5919 | 0.3641 | 0.3163 | 0.9397 | 0.593 0.33 0.14 0
30953 | 59633 | 153879 | 175887 | 73184 | 473227 | 437366 0
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Table [1]l shows that Novelty++ is consistently better than Novelty and Novelty+ in
case noise is important (random 3-SAT, Flat200) and in case stagnation behavior occurs
(ais12). In other words, when random walk is needed, diversification systematically
does better. Novelty++ generally has a success rate 2 or 3 times larger than Novelty+
for ais12 for the same value of wp and dp. It also solves significantly more random
3-SAT and Flat200 formulas, especially when noise parameter is low (0.2 and 0.35).

Note that the success rate in table[Ilcan be computed in an equivalent way as follows.
We consider a multi-set based on each class where every formula occurs 100 times. We
run a local search procedure with Maxtries = 1 for every formula in the multi-set.
The number of formulas solved divided by the number of elements in the multi-set is
the success rate. For example, the Flat200 class has 100 formulas. The corresponding
multi-set has 100*100=10000 formulas. Novelty++(0.35, 0.05) solves 7947 formulas
in the multi-set. Its success rate for the class Flat200 is 0.7947. It solves 1950 (over
10000) formulas more than Novelty+(0.35, 0.05) in the multi-set.

We recall that about a half of formulas in the random 600 and 1000 variable 3-SAT
classes probably might be unsatisfiable. The success rate for these two classes probably
might be multiplied by 2. Consequently, the success rate difference between Novelty++
and Novelty+ for these two classes might also be multiplied by 2.

It appears in Table[Ilthat QG problems are not sensitive to noise nor to random walk,
since the success rates for different noise parameters don’t have significant difference.
The only cases Novelty+ is better than Novelty++ are the logistics.d and bw_large.d
problems for which Novelty(0.2) is the best. In other words, Neither random walk nor
diversification is necessary for these two problems. Moreover, noise should be low to
solve them.

All evaluated procedures roughly have the same time complexity per flip. Table [II
shows that when Novelty++ has better success rate, it also generally needs fewer flips
to find a solution.

3 Exploiting Promising Decreasing Paths in Local Search

The behavior of GSAT before finding a solution might roughly be characterized as
follows:

1. Repeatedly decrease the number of unsatisfied clauses (move down along a de-
creasing path) while possible;

2. Escape from a local minimum;

3. Goto 1.

One major difference between Walksat family and GSAT is that the behavior of
Walksat can no longer be characterized as above, since the variable to flip is always
picked from a randomly selected unsatisfied clause and may increase the number of
unsatisfied clauses in non local minima. The difficulty in GSAT is how to recognize a
promising decreasing path from previous moves, since moving along a decreasing path
risks to simply repeat (or cancel) earlier flips, which might explain the performance of
Walksat over GSAT.
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However we believe that the purpose of a local search procedure always is to re-
peatedly decrease the number of unsatisfied clauses. Even when the procedure flips a
variable such that the number of unsatisfied clauses is increased, it hopes that decreasing
variables appear and can lead to a solution satisfying all clauses.

This observation suggests us that the decreasing variables resulted from a move
could be better and more promising than variables in a randomly picked unsatisfied
clause ¢, and that in this case, a local search procedure should pick one of these de-
creasing variables instead of a variable in c.

We now formally define promising decreasing variables and promising decreasing
paths.

A variable is said decreasing if flipping it would decrease the number of unsatisfied
clauses. Let = and y be variables, x # vy, y is not decreasing. If it becomes decreasing
after x is flipped, then we say that y is a promising decreasing variable after x is flipped.
There may be 0, 1, or several promising decreasing variables after x is flipped. All
promising decreasing variables are collected in a set.

Let y be a promising decreasing variable after some variable is flipped. If y is always
decreasing after one or more other moves, it is always promising and remains in the
promising decreasing variable set. Otherwise it should be removed from the set.

A promising decreasing path is a sequence of moves in which every move flips a
promising decreasing variable.

Note that if a variable x is flipped such that the number of clauses is increased,
re-flipping « would decrease the number of unsatisfied clauses, i.e., z is decreasing.
However z is not a promising decreasing variable, since re-flipping « would simply
cancel a previous move. The major originality of our approach is that such z is never
considered when exploiting promising decreasing paths.

We want a local search procedure which, whenever there are promising decreasing
variables, does as GSAT and deterministically picks the best of them to minimize the
total number of unsatisfied clauses, breaking ties in favor of the least recently flipped
variable as in HSAT [3]]. In other cases, the procedure does as Walksat and uses a heuris-
tic such as Novelty++ to pick the variable to flip.

For this purpose, we need a method to efficiently find all promising decreasing vari-
ables after a flip and remove old promising decreasing variables which are no longer
decreasing.

A variable x is decreasing iff score(z)=make(x)-break(z) > 0. The following
gradient-based approach originally introduced in [7] allows us to compute the score
of every variable after a flip.

Assume that the formula F contains m clauses on n variables. Let ¢; (1 < i < m)
be a clause in F. ¢;=x;, V ...V x;, VT, V...V T, . Note that we put all positive
literals in ¢; before the negative ones.

We consider now all variables in ¢; as integer variables taking values 0 or 1. We
define:

Ei(xil, ""xik’xilwrl? ...,J,‘ikJrr) = (1 — l‘“)(l — l‘ik)JTikJrl...J}ikJrr

Obviously &; has value 0 iff one of i, (1 <7< k) is assigned 1 or one of z;,
(k+ 1 < s <r)isassigned 0. In other words, &;=0 iff c; is satisfied. otherwise &;=1.
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‘We now define:

m

E(xl,...,xn) :ZSL (D

i=1

Given an assignment A (a point in the search space), the value of £ is the number
of unsatisfied clauses in F. If A satisfies all clauses in F, then £ = 0.

Since each variable appears at most once in a clause, £ is a linear function for any
variable « y and can be written as £(x 7). Let vy be the current value of 5. £(v¢) stands
for £ simplified after the substitution of =y by v. Taylor’s equation gives us

& (x
E(xy) = E(vy) + (zp — vy) a( /) )
Ly
So ag(a:f ) £ 0 indicates the variation of & when z # changes. If ag(a:f ) > 0, then
35(%)

E(zy) increases (decreases) when z; increases (decreases). If < O then &(z¢)
decreases (increases) when x ¢ mcreases (decreases). So we can get all decreasing vari-

ables at a given point A by computing ( ) for every variable .

For example, if at point A, £1=0, zo= 1 , £3=0, x4=1, 85(A) =2, 85(‘4) =2, 8253‘:) -2,

8;;‘3) =-2, then x; and x4 are increasing variables (£ will be 1ncreased by 2 if z1 or x4
is flipped), and z2 and x3 are decreasing variables (£ will be decreased by 2 if x5 or x3

E( )—-2 score(xg)_¥=2, score(xs)=- gf;;‘) =2,

is flipped). Note that score(z)=-

score(r4)="5,~ 85(‘4) =-2. In other words \score(xf)\ \38(‘4) | for all x;, but the sign may
be dlfferent.

We now rewrite Taylor’s equation[2] as

OE(T1, ey Ty ooy L)

E(x1, o f, o, @n) =E(x1, .. Vf, o, ) + (T — vy) oy 3)
Then for any variable x, # x ¢, we have:
OE(X1y ey T fy ey Ty OE(X1, ey Ufy ey Ty "
(@1, 2y ) _ O&(x1, ... vy ) xf—vfz @

Oz, N Oz, 890 ¥ &vg
We denote the assignment after ¢ flips by A" in local search. The value of z; is v§

(1 < j < n). After a new flip, A’ becomes A™** in which v} = vt“ except for one
N dea)

variable x ;= vt =14 7. Assuming that we know the value of for every x;

dS(aﬁ,)

at point A, equation ] suggests us a reasonable and efficient way to compute at

point A1,
In fact, we note that vy = v} at point A’. At point A"+, M is
Tg

t41 9E (2 ..., o) 6oL :
85(8A ) but (@1, avf 2n) ig equal to 8%(’4 ) since A1 differs from A! only
Tg Tg Tg
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85(11,...,1)}’,.“,9:") s O (x1, Ty Th)

in the value of x; (recall that with x y replaced by

Oz Oz
v’ so that all variables in it have value by A").
Since zy — v = v — v =1 — v} — v} at point A", equation @ becomes:

OE(A) ag(At)+(1_2 i 02¢;

Oz Oz, )

2¢.
Note that Z 3 82 = 0 for all 24 not occurring in any clause containing x ;. To
i 9Tf0%g
=1

see this, let¢; = 21 VZa Vg, & = (1 —21)z2 (1 —24). 612896 =0forany g ¢ {1,4}
(including g = 2). The following properties hold:

ag(wfzt) , if ¢4 not occurring in any clause with x ¢
gAY _ JOEAD gy > T
dr, Oz f o and o o e o Ox 0z, (6)
Tf ana rg OCCUT 1N Clause C;
JE(AY) .
8EIJf )’ if .'L'g = ‘/Ef

Equation [6] shows that when z s is flipped, w
g

only for those x4 occurring in some clause containing x ¢. These variables and corre-
sponding clauses can be stored by a preprocessing in a list associated with x ¢ to speed
up the calculus.

In summary, the local search procedure, which we call G2W SAT for Gradient-
based Greedy Walksat, uses equation [6] to maintain a set of promising decreasing vari-
ables and flips the best promising decreasing variable if any. Otherwise, it uses a heuris-
tic such as Novelty++ to pick a variable to flip.

G?W SAT is defined in algorithm 2.

Table 2lcompares the success rate of G2W S AT using Novelty++ (G?(p, dp) in the
table) with Novelty++ (N++(p, dp) in the table) on the same problems as in table [T}
Novelty++(p, 0) is just Novelty(p). Recall the only difference between G2W SAT and
Novelty++ here is that G2W SAT flips the best promising decreasing variable if any.
Otherwise it is the same as Novelty++. The success rate is also computed in the same
manner. The Mazsteps (cutoff value for the number of flips) is also the same as in
table[T(10° for random 500 variable 3-SAT, 2 x 10° for 600 variables, 5 x 10° for 1000
variables; 107 for bw_large.d and 106 for other structured problems).

Due to the lack of space, we don’t give the successful run lengths (#flips) of
G?W S AT and Novelty++ in table 2l G?W SAT generally needs fewer flips than Nov-
elty++ to find a solution. Table 3] gives some typical examples of the successful lengths
of G2W S AT which can be compared with those of Novelty++ given in table [l

Table 2] shows that G2W SAT is almost always better than Novelty++ except for
Flat200 problems. In particular, the best success rate is always obtained by G?W S AT,
even for Flat200 problems. It is remarkable that G2W SAT (0.2, dp) improves Nov-
elty++(0.2, dp) and raises its success rate to 100%.

should be re-computed
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Algorithm 2: G*W Sat

Input: SAT-formula F, M axtries,Maxsteps, Heuristic
Output: A satisfying truth assignment A of F, if found
begin
for try=1to M azxtries do
A «+ randomly generated truth assignment;
Compute ‘%(%’f"_”z") forall z; at A;
Store all decreasi]ng variables in stack DecV ar;
for flip=1to M axsteps do
if A satisfies F then return A;
if DecVar is not empty then x «— x in DecVar such that |
largest, breaking ties in favor of the least recently flipped variable;
else ¢ < randomly selected clause unsatisfied under A;
x «— pick a variable from c according to H euristic;
A — A with z flipped;
update W for all z; using equation[Gl
delete all variajbles which are no longer decreasing from DecVar;
push all new decreasing variables into DecV ar which are different from « and
were not decreasing before x is flipped;

9E(x1,..., In)| is the
ox :

return “Solution not found”;
end;

As in table 1, the success rate difference between G?W SAT and Novelty++ for
random 600 and]1000 variable 3-SAT problems might probably be multiplied by 2. It
appears in table 2 that the success rate difference for 3-SAT increases with the noise and
diversification garameters. For example, for 500 variable 3-SAT problems, the largest
success rate difference is 0.0337 when the noise parameter is 0.2, it is respectively
0.0404 and 0.0625 when the noise parameter is 0.35 and 0.5. On the other hand, when
the noise parameter is 0.5, the success rate difference between G?*W SAT and Nov-
elty++ respectively is 0.0150, 0.0177, 0.0342 and 0.0625 when the diversification pa-
rameter is 0, 0.01, 0.02 and 0.05. The same phenomenon can be observed for the 600
and 1000 variable problems.

The difference of 0.0625 here for random 500 variable 3-SAT means that
G?W SAT(0.5, 0.05) solves 6807 more formulas than Novelty++(0.5, 0.05) in our ex-
perimentation. Refer to table 1, G?W SAT(0.5, 0.05) solves 9098 more random 500
variable 3-SAT formulas than[INovelty+(0.5, 0.05), representing a success rate differ-
ence of 0.0836. Considering the hardness to improve the Walksat family procedures
which are already highly effective, we believe that G2W SAT combining with Nov-
elty++ is a significant improvement. As a comparison, the success rate difference be-
tween Novelty(0.5) and Walksat(0.5) for these formulas is 0.0704, see table 3 below.

In table 3, we compare G2W SAT combined with Novelty++(p, dp) [G(p, dp)
in the table[ ith Walksat, Novelty, UnitWalk, SDF on the same problems as in ta-
ble 1 or in table 2. In addition to the success rates computed in the same manner as
in thble 1, we al§d report the average number of flips to find a solution (i.e. average
length ofJa successful run) and the total real run time in seconds on an Athlon2000+
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Table 2. Average success rate of Novelty++ and G?W S AT using Novelty++ for random 3-SAT
and structured problems

500vars|600vars|1000vars |Flat200|satQGy|ais12|logistics.d |bw_large.d

N++(.2,0) ]0.0358|0.0137 | 0.0020 {0.0772|0.610| O 0.94 0.81
G?(.2,0) |0.0477|0.0188| 0.0034 |0.0693|0.672| 0 1 0.93
N++(.2,.01) [0.0752]0.0331 | 0.0096 |0.1665|0.6210.32| 0.97 0.70
G?(.2,.01) |0.0992|0.0416 | 0.0123 |0.1607|0.679|0.52 1 0.89
N++(.2,.02) [0.0922 | 0.0409 | 0.0121 |0.2023|0.6420.47 | 0.99 0.54
G?(.2,.02) |0.1178|0.0513| 0.0160 |0.1955|0.685|0.68 1 0.77
N++(.2,.05) [ 0.1299 | 0.0592 | 0.0225 |0.2937|0.662|0.78 | 0.98 0.13
G?(.2,.05) |0.1636|0.0754 | 0.0285 |0.2701|0.725|0.88 1 0.26
N++(.35,0) | 0.1889 | 0.0942 | 0.0405 [0.3778(0.684| 0O 1 0.01
G?(.35,0) 0.2104|0.1056 | 0.0438 |0.3207|0.732| 0 1 0.17
N++(.35,.01)| 0.2525 | 0.1315 | 0.0676 |0.5601|0.655|0.16 1 0.01
G?(.35,.01) | 0.2884 | 0.1490 | 0.0754 |0.5083|0.730|0.25 1 0.03
N++(.35,.02)| 0.2850 | 0.1503 | 0.0805 |0.6283 |0.655 | 0.28 1 0.01
G?(.35,.02) 1 0.3229(0.1710| 0.0904 |0.5778|0.747 | 0.40 1 0.01
N++(.35, .05)| 0.3727 | 0.2036 | 0.1234 |0.7947 | 0.634 | 0.49 1 0
G?(.35,.05) | 0.4131|0.2278| 0.1318 |0.7226|0.737|0.59 1 0
N++(.5,0) [0.5185]0.3118| 0.2375 |0.8585[0.613| O 0.71 0
G?(.5,0) |0.5335|0.3218| 0.2372 |0.8312|0.734| 0 0.84 0
N++(.5,.01) [ 0.5617 | 0.3449 | 0.2798 |0.9154|0.604 | 0.1 0.50 0
G?(.5,.01) |0.5894|0.3568 | 0.2832 |0.9051|0.710|0.13| 0.65 0
N++(.5,.02) | 0.5870 | 0.3634 | 0.3048 0.9223|0.603/0.21| 0.27 0
G?(.5,.02) |0.6212|0.3788| 0.3127 |0.9283|0.713|0.25| 0.53 0
N++(.5,.05) [ 0.5919 | 0.3641 | 0.3163 |0.9397|0.593|0.33| 0.27 0
G?(.5,.05) |0.6544|0.4018 | 0.3521 |0.9511|0.699|0.38| 0.34 0

under Linux of each procedure to run 100 times for each class. Note that G2W SAT
uses equation [0 to incrementally update the score of each variable, which is quite
different from the original Walksat procedures. To show that the gradient-based ap-
proach improves the time performance, we use original Walksat_v37 downloaded from
http://www.cs.washington.edu/homes/kautz in table

UnitWalk is downloaded from http://logic.pdmi.ras.ru/"arist/UnitWalk. SDF is
downloaded http://www.cs.ualberta.ca/~dale/software.html.

We run UnitWalk using the following command line

UnitWalk -f F -p Mazsteps -r 100 -sr -T 20000
where a time cutoff of 2 x 10* seconds is set to solve formula F, and run SDF using
the following command line

sdffit -mf Mazsteps -mr 1 -rep 100 -ne -f F
to solve formula F.

The M axsteps value is the same as in table [T or in table Rl for different problems.

The best success rate, #flips, total run time for each class are bold-faced in table
Bl Generally, a procedure with a better success rate is faster and has shorter success-
ful runs. However, SDF uses a float-point implementation in which search steps are
more expensive. So-called substitution operations are needed in UnitWalk in addition
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Table 3. Experimental results for UnitWalk, SDF, G>W S AT, Novelty and Walksat

500vars| 600vars | 1000vars|Flat200| satQG | ais12 |(logistics.d|bw_large.d
#flips | #flips | #flips | #flips | #flips | #flips | #flips #flips

time time time time | time | time time time

SDF 0.3674 | 0.1707 | 0.0437 [0.9859| 0.42 1 1 ?
36218 | 70702 | 215026 |134555| 93207 |145781| 65080 ?

56165s [115162s|210688s | 7057s ? 267s 2442s ?

UnitWalk | 0.4409 | 0.2731 | 0.2399 |0.8960 |[0.5280 1 1 0.02

41429 | 76443 | 205646 |325342|134808|232861| 3791 | 5362045
25132s| 53733s | 55543s |24646s5|93620s|10374s| 53s 19899s
G?(.2,0) [0.0477]0.0188 | 0.0034 [0.0693| 0.672 0 1 0.93

40950 | 86223 | 236392 |312826|167887| O 133848 | 3419339
12263s | 23166s | 20951s | 5532s | 5452s | 221s 28s 2733s
G*(.2,.05)[0.1636| 0.0754 | 0.0285 [0.2692] 0.725 | 0.88 1 0.26

35207 | 70840 | 198330 |293976|162965|278722| 98065 | 4543846
11519s|22970s | 21147s | 4813s | 5642s | 80s 26s 8867s

G*(.5,0) |0.5335] 0.3218 | 0.2372 [0.8312] 0.734 0 0.84 0
33214 | 66156 | 183047 |240477| 87954 | O 438108 0
8771s | 19963s | 19151s | 2297s | 6392s | 227s 172s 14329s

G?(.5,.05)[0.6544 | 0.4018 | 0.3521 [0.9511] 0.699 | 0.38 0.34 0
29238 | 55478 | 145030 |154994| 84898 [521013| 565058 0
7666s | 18835s | 17701s | 1264s | 7184s | 186s 318s 15047s

Novelty(.2)| 0.036 | 0.0140 | 0.0023 |0.0734 | 0.098 0 0.95 0.79

43200 | 89277 | 278784 |315588|262181| O 296197 | 3672728
14631s|29099s | 26590s | 7763s |27657s| 409s 57s 3819s

Novelty(.5)| 0.5178 | 0.3123 | 0.2371 |0.8544| 0.189 0 0.64 0
34225 | 66702 | 186607 |226115|399360, O 467981 0
10786 | 25613s | 24614s | 2940s [36628s| 427s 210s 17557s

Walksat(.2)| 0.1129 | 0.0525 | 0.0187 |0.1093 | 0.064 | 0.26 0.64 0.51

41111 | 82424 | 234638 |337845|176761(492378| 617464 | 4574077
13582s | 26269s | 21509s | 7115s |27397s| 343s 104s 3976s
Walksat(.5)| 0.4474 | 0.2844 | 0.2341 |0.8118| 0.04 | 0.05 0.60 0
40169 | 77768 | 202990 (296044 |447541|554170| 476361 0
12074s | 25334s | 20614s | 4155s |38714s| 391s 168s 15368s

to flips. Some irregularities may also happen in some problem classes. For example,
G?W SAT(0.2,0) solves more easily qg7-13 problems in QG class for which unsuc-
cessful runs are very time-consuming, which explains the better time performance of
G*W SAT(0.2,0) with a lower success rate.

Table 3l shows that G2ZW S AT generally has better performance than Novelty using
the same parameters except for Flat200 problems, for which G2W SAT (p, dp) is not
better than Novelty(p) when dp=0, but G2W SAT(p, dp) is significantly better than
Novelty(p) when dp > 0.

When noise p is 0.2, G2W SAT(0.2, 0) generally is not better than Walksat(0.2).
Again the diversification allows to remedy the situation and makes G2W SAT(0.2,
0.05) substantially better than Walksat(0.2). When noise p is 0.5, GZW SAT(0.5, 0)
generally is substantially better than Walksat except for ais12 for which diversification
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is necessary and makes G2W SAT(0.5, 0.05) significantly better than Walksat(0.5), and
except for logistics.d and bw_large.d for which noise should be low.

We observe that G2W S AT always gives the best result among all Walksat family
procedures in table B using appropriate noise and diversification parameters. Further-
more, it seems that G2ZW S AT spends less time per flip than the original Novelty and
Walksat used here, thanks to the gradient-based approach. For example, G2W S AT(0.5,
0) spends 227 seconds to make the 100 x 10° flips to solve ais12 100 times without suc-
cess, while Novelty(0.2) and Novelty(0.5) respectively spend 409 and 427 seconds to
do the same thinﬂ.

G2W SAT(0.5, 0.05) has a success rate significantly better than UnitWalk for ran-
dom 3-SAT, Flat200 and QG problems, while G2W SAT(0.2, 0.05) is better for QG and
bw_large.d problems. UnitWalk performs well for ais12 formula with a success rate 1
while the best rate of G2W SAT for this formula is 0.88. Nevertheless, GZW SAT is
substantially faster than UnitWalk for all problems in table[3l G2W SAT(0.2, 0.05) also
has the success rate 1 for ais12 formula using 3 x 10° flips in a run and is still much
faster than UnitWalk using 10 flips in a run.

The same observation can be made when comparing G*W SAT and SDF. We fail
to run SDF for some QG problems. When solving bw_large.d formula, we stopped SDF
after 30000 seconds.

Remark. QG problems contains several unit clauses. The local search procedures com-
pared in tables [I] and 2] all simplify the input formula by satisfying unit clauses before
the local search. It seems that the Walksat and Novelty procedures used in table 3don’t
contain this simplification, which might explain the success rate difference of Novelty
for QG problems. On other formulas which don’t contain any unit clause, our imple-
mentation of Novelty reproduces the same success rate of the original Novelty.

4 Conclusion

We have proposed two extensions of the Walksat family local search procedures. The
first extension is the diversification in Novelty so that in each search step, with proba-
bility dp the least recently flipped variable in a randomly selected unsatisfied clause ¢
is picked to be flipped, while in the remaining cases, normal Novelty heuristic is used
to pick the variable to flip in c. The new heuristic is called Novelty++. The diversi-
fication allows to weaken the determinism in Novelty which always picks one of the
two best variables in c. It is also stronger than the random walk in Novelty+, since it
deterministically picks the least recently flipped variable in c.

The second extension is the deterministic exploitation of so-called promising de-
creasing variables using a gradient-based approach. The new procedure is called
G?W SAT. We have combined G?W SAT with Novelty++ such that whenever there

2 After our experimentation is done, we are told that the new version (version 45) of Walksat
has been speeded up (by 30-50% for large problems) using an improvement to the Walksat
variable flip algorithm due to Alex Fukunaga (The search behavior (the assignments explored)
is totally unaffected) [2].
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are promising decreasing variables, the best (according to its score) of them is picked
to be flipped, otherwise Novelty++ is used to pick the variable to flip.

Experimental results on a large number of random 3-SAT and structured prob-
lems show the performance of Novelty++ compared with Novelty and Novelty+ under
different parameter settings, and the performance of G2W SAT combined with Nov-
elty++ compared with state-of-the-art local search procedures such as Novelty, Nov-
elty+, Walksat, UnitWalk and SDF.

Similar to other heuristics in the Walksat family, Novelty++ is sensitive to noise
and diversification parameters. An adaptive noise mechanism as presented in [6] might
be used to automatically adjust the parameters when the search proceeds, in order to
further improve the performance of Novelty++.
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