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Diversification practices reduce organic
to conventional yield gap

Lauren C. Ponisio1, Leithen K. M’Gonigle1,2, Kevi C. Mace1, Jenny Palomino1,
Perry de Valpine1 and Claire Kremen1

1Department of Environmental Science, Policy, and Management, University of California, Berkeley, 130 Mulford
Hall, Berkeley, CA 94720, USA
2Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA

Agriculture today places great strains on biodiversity, soils, water and the

atmosphere, and these strains will be exacerbated if current trends in popu-

lation growth, meat and energy consumption, and food waste continue.

Thus, farming systems that are both highly productive and minimize environ-

mental harms are critically needed. How organic agriculture may contribute to

world food production has been subject to vigorous debate over the past

decade. Here, we revisit this topic comparing organic and conventional

yields with a new meta-dataset three times larger than previously used (115

studies containing more than 1000 observations) and a new hierarchical

analytical framework that can better account for the heterogeneity and struc-

ture in the data. We find organic yields are only 19.2% (+3.7%) lower than

conventional yields, a smaller yield gap than previous estimates. More impor-

tantly, we find entirely different effects of crop types and management

practices on the yield gap compared with previous studies. For example, we

found no significant differences in yields for leguminous versus non-legumi-

nous crops, perennials versus annuals or developed versus developing

countries. Instead, we found the novel result that two agricultural diversifica-

tion practices, multi-cropping and crop rotations, substantially reduce the

yield gap (to 9+4% and 8+5%, respectively) when the methods were

applied in only organic systems. These promising results, based on robust

analysis of a larger meta-dataset, suggest that appropriate investment in agroe-

cological research to improve organic management systems could greatly

reduce or eliminate the yield gap for some crops or regions.
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1. Introduction
While tremendously productive, our current agricultural food system causes

many environmental problems, often trading off long-term maintenance of eco-

system services for short-term agricultural production [1,2]. Resultant problems

include biodiversity loss, massive soil erosion and degradation, eutrophication

and oceanic dead zones, pesticide effects on humans and wildlife, greenhouse

gas emissions, and regime shifts in hydrological cycling [3–12]. Furthermore,

although agriculture produces a food surplus at the global scale, over 1 billion

people are chronically hungry. These problems of hunger, food insecurity and

environmental harms will only be exacerbated if current trends in population

growth, food and energy consumption, and food waste continue [13–15]. To

maintain the Earth’s capacity to produce food, it is imperative that we adopt

sustainable and resilient agricultural practices as soon as possible [16,17].

Yet it is also broadly perceived that such practices will produce lower yields

[17–19], leading to a conundrum—how do we maintain or increase food pro-

duction without sacrificing sustainability and resilience? Previous analyses

have concluded that improving the distribution of food while also reducing

waste and meat consumption will greatly contribute to sustainably meeting

future global demands [9,15], although how these goals are to be achieved is

not yet clear.
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Advocates of ‘sustainable intensification’ have focused on

increasing production efficiency while minimizing economic

and environmental costs. An emphasis on efficiency, however,

may not necessarily lead to development of sustainable, resili-

ent production systems that can buffer unexpected changes

resulting from the complex socio-ecological interactions that

influence agriculture [17,19,20]. To achieve environmental sus-

tainability, we must grow food in a manner that protects, uses

and regenerates ecosystem services (e.g. favours natural pest

control over the use of synthetic pesticides), rather than repla-

cing them [19,21,22]. Replacing ecosystem services often has

unintended, negative consequences (e.g. lethal or sub-lethal

effects of pesticides on humans, beneficial insects and wild-

life [7,10,12,23]). Broad adoption of sustainable agricultural

methods is unlikely, however, unless such methods are

similarly productive and/or cost-effective, such that they

improve livelihoods. Hence, there is much incentive to deter-

mine whether a yield gap exists between ‘conventional’

agriculture (i.e. chemically intensive and biologically simpli-

fied) and alternative, more sustainable forms of agriculture,

and if so, how it can be reduced or eliminated.

Such systems (e.g. agroecological, ecologically intensive,

biologically diversified or regenerative farming systems) use

cultivation techniques that, through plot- to landscape-scale

diversification, specifically encourage ecological interactions

that generate soil fertility, nutrient cycling and retention,

water storage, pest/disease control, pollination, and other

essential agricultural inputs/ecosystem services [22]. The

most widely practised and studied alternative to conventional

agriculture is organic, which now takes place on 0.9% of agri-

cultural lands [24]. Organic agriculture is defined as having

no synthetic inputs, but organic farms may or may not practise

the full suite of cultivation techniques characterizing sustain-

able agriculture [21,25]. Although the terms ‘organic’ and

‘sustainable’ agriculture are not equivalent, studies of organic

agriculture have revealed better performance than conven-

tional systems on some (but not all) sustainability metrics,

including species richness and abundance, soil fertility, nitro-

gen uptake by crops, water infiltration and holding capacity,

and energy use and efficiency [26–32]. Here, we provide the

most comprehensive calculation of the yield gap between

organic and conventional agriculture, building on the work

of others [33–36].

Early reviews comparing organic to conventional agri-

culture found yield gaps of 8–9% in developed countries

[33,34], but yield gains of as much as 180% in developing

countries. Two recent meta-analyses, however, found organic

yields to be 20–25% lower than conventional yields [35,36].

That these studies differed so much in their conclusions can

probably be attributed to two factors. First, each study used

different criteria for selecting the data to be included in

its review or meta-analysis. For example, for developing

countries, Badgley et al. [34] focused primarily on compar-

ing sites using techniques of sustainable agriculture with

‘resource-poor’ sites, rather than strict organic versus conven-

tional comparisons, accounting for the yield gains they found

for ‘organic management’ in developing countries [18,21,37].

Second, each of the above studies used different analytical

methods to combine the data across the different sub-

studies. For example, the reviews of de Ponti et al. [35],

Stanhill [33] and Badgley et al. [34] did not account for the

sampling variance within studies, which is the recommended

practice to deal with heteroscedasticity in the sample of
studies [38]. Seufert et al.’s [36] meta-analysis, while accounting

for sampling variance, combined nested data (e.g. several

experiments reported within the same study) without account-

ing for the hierarchy (electronic supplementary material, §S1).

This introduced pseudo-replication that effectively understated

the Type I error rate of their analysis by an order of magnitude

(electronic supplementary material, figure S1), and biased esti-

mates of the yield gap and its statistical uncertainty (electronic

supplementary material, figure S2). Given these methodo-

logical and data-related critiques, a new study is needed to

produce a more robust estimate of the gap between organic

and conventional yields.

Here, we develop a hierarchical meta-analytic framework

that overcomes the methodological pitfalls of previous

studies by accounting for both the multi-level nature of the

data and the yield variation within studies. Furthermore,

via a literature search we compiled a more extensive and

up-to-date meta-dataset, comprising 1071 organic versus con-

ventional yield comparisons from 115 studies—over three

times the number of observations of any of the previous ana-

lyses. Our meta-dataset includes studies from 38 countries

and 52 crop species over a span of 35 years.
2. Material and methods
(a) Search details
In our search, we used similar terms to those employed by

Seufert et al. [36] and de Ponti et al. [35]. The search term used

was a complex Boolean search containing (i) the term ‘organic’

or ‘ecological’ and (ii) the term ‘agriculture’, ‘farming’, ‘pro-

duction’ or ‘cropping’ in combination with (iii) terms equal or

similar to the terms ‘yield’ and ‘compare’. We used the search

engines Academic Compete Search, Google Scholar and Web of

Science. The last search was conducted in January 2013. The com-

plete list of studies and yield data are provided in the electronic

supplementary material, table S5.

(b) Inclusion criteria
We adopted Seufert et al.’s [36] rigorous inclusion criteria, except

we excluded (i) comparisons of subsistence yields (unimproved

agriculture) against improved agricultural methods (e.g. [34,39])

and (ii) comparisons of yields taken from different years. Addition-

ally, in cases where the means of organic and conventional yields

were reported but the variance of those means were not (a necess-

ary component for inclusion in meta-analysis), we obtained an

estimate of the variance directly from the original authors, when-

ever possible. Of the 99 studies lacking variance estimates, we

obtained variance estimates or original data from the authors of

28 of them. In cases where the authors did not reply and there

were multiple years of data reported, we took the mean and var-

iance across years (59 studies, 232 organic to conventional

comparisons), as did Seufert et al. [36]. Because the variance

across years is not a perfect estimate of the within-year variation,

however, we also conducted analyses excluding these studies (elec-

tronic supplementary material, §S2.5 and figure S2). Together, the

search and data request yielded 115 studies from which we

extracted 1071 organic versus conventional comparisons.

(c) Meta-analytic model
We built a hierarchical meta-analytic model to generate an estimate

of the yield gap (see the electronic supplementary material, §S2, for

details). Following standard practice, we compared the natural log

of the ratios between organic and conventional yields (the

http://rspb.royalsocietypublishing.org/
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‘response ratio’) across studies [36,40]. The response ratio is more

normally distributed than the raw ratio and independent of the

units of measurement used within a study, and thus is

comparable across studies [40].

To analyse the yield data, which contained several levels of

hierarchy, we employed two methods. First, for studies that com-

pare multiple treatments (usually organic) with one control

treatment (usually conventional), and are thus not independent

[41,42], we calculated a combined response ratio and correspond-

ing standard error for the entire study using the method presented

in eqn 3 and 8 in [41], and then used these combined response

ratios in the nested analysis.

Next, we constructed a hierarchical regression model in a Baye-

sian framework to account for the dependencies in the yield data.

We expanded on the traditional random effects model [43] by con-

sidering three additional sources of random variation (i.e. random

effects): (1) between studies, (2) within a study between years and

(3) within a year between response ratios (e.g. across replicated

trials of a crop planted at different times in the season). We also

considered whether the variances of the random effect distri-

butions for (2) and (3) were shared across studies, or study-specific.

The traditional random effects meta-analytic model includes a

random effect of study (electronic supplementary material,

equation S1), but individual response ratios must be nested

within study so that studies, rather than individual organic to con-

ventional yield comparisons, are treated as replicates. This avoids

the pseudo-replication and resulting Type I error inflation of pre-

vious studies (electronic supplementary material, figure S1). We

then added the additional random effects sequentially and deter-

mined whether the posterior distribution of the added parameter

was clearly differentiated from zero (electronic supplemen-

tary material, Section S2). If it was, we concluded that the data

supported adding that layer of hierarchy. We confirmed our

model selection using the deviance information criterion, which

can be problematic but agreed in this case [44,45]. The full possi-

ble model, prior to model selection, with all sources of random

variation is

yijk ¼ mþ ai þ bij þ hijk þ eijk,

ai � N(0, s2
a),

bij � N(0, s2
b[i]),

hijk � N(0, s2
h[i]),

eijk � N(0, Sijk),

s2
b[i] � G(CVb, scaleb)

and s2
h[i] � G(CVh, scaleh),

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(2:1)

where yijk is the observed magnitude of the kth response ratio from

the jth year of the ith study, m is the mean response ratio across

studies, ai is the effect of ith study, bij is the effect of jth year

of the ith study, hijk is the effect of the kth response ratio of the

jth year of ith study and e ijk is the residual. s2
a is the between-

study variance, s2
b[i] is the between-year variance of study i,

s2
h[i] is the within-year, between-response ratio variance of study

i, and Sijk is the variance of response ratio yijk as reported by its

study. CVb and CVh and scaleb and scaleh are the coefficient

of variation and scale parameters of the gamma distributions of

the study-specific between- and within-year variances. When

response ratios that shared a common control were combined,

yijk corresponds to the aggregate within-study response ratio

(eqn 3 in [41]) and Sijk is its pooled variance (eqn 8 in [41]).

We also extended this model in order to accommodate ana-

lyses of study characteristics such as crop type and management

practices. We analyse these additional explanatory variables one

at a time because not all studies reported all explanatory variables.

In these analyses, for cases where multiple organic treatments rep-

resented different categories for a specific explanatory variable,
they could not be combined using Lajeunesse’s method [41]. The

potential bias resulting from non-independence of the response

ratios in these cases, however, would be minimized by the fact

that they are not pooled together in the analysis [41].

Letting h index the categories for a particular explanatory

variable (e.g. crop species), we then have

yhijk ¼ mþ gh þ ai þ bij þ hijk þ eijk, (2:2)

where gh is the effect of the hth category, and the rest of the

model parallels that given in equation (2.1).

In order to facilitate comparison between our results and those

of previous analyses, we used the same categories as those defined

by Seufert et al. [36]. We also examined the sensitivity of our results

to explanatory variables related to study quality, again using

the study quality categories defined by Seufert et al. [36]. The coef-

ficients of explanatory variables were considered to be different

from each other if the posterior of the difference between

the 95% credibility intervals around the group means did not

overlap zero.

We used JAGS through the R packagerjags interface [46,47] to

implement Markov chain Monte Carlo (MCMC) sampling.

Inference was made from three chains each with 103 samples of

the posterior distribution after a burn-in of 104 and with a thin

rate of 103. We used Gaussians with large variances to define

priors, except for variance terms, where we used a uniform (0,

100) prior on the standard deviation. Initial values were chosen ran-

domly. Convergence was assessed by visual assessment of MCMC

chains and using the Gelman–Rubin statistic (‘Rhat’ in R package

R2JAGS, with values less than 1.1 indicating convergence [48]).

Credible intervals around parameter estimates were calculated as

the 2.5% and 97.5% quantiles of the posterior. We also checked for

bias in our meta-dataset using a funnel plot and QQ-plot (electronic

supplementary material, §S3 [49]).
3. Results
We found the data supported including random variation

between studies and study-specific variation with a year, but

not random variation between years of a study (electronic

supplementary material, table S1 and figure S6). Using the

selected hierarchical model, we found a smaller yield gap

between conventional and organic cropping systems than that

reported in recent meta-analyses [35,36]. We found that organic

yields were 19.2% lower than conventional yields, with a 95%

credible interval ranging from 15.5% to 22.9% (figure 1). Con-

ventional yields were significantly higher than organic for all

crop types and the yield ratios of most crop types did not

vary significantly from one another (figure 1). At the finer

scale of crop species, however, yield ratios differed significantly

between some pairs of species (electronic supplementary

material, figure S3).

The most dramatic difference between our findings

and earlier work is an almost complete lack of significant

differences between groups for all of the explanatory varia-

bles investigated. Unlike Seufert et al. [36], we did not find

significant differences in yields for leguminous and non-

leguminous crops nor for perennials and annuals (figure 1).

Nor did we find a difference between the yield gaps for studies

conducted in developed versus developing countries (elec-

tronic supplementary material, table S2; see also [34]). Our

results were robust to including a between-year random

effect (though including this parameter was not supported

by the data; electronic supplementary material, table S1 and

figure S6).

http://rspb.royalsocietypublishing.org/


0.5 0.6 0.7 0.8 0.9 1.0 1.1

vegetables (19, 166)
roots and tubers (10, 28)
oilseed crops (24, 126)
fruits and nuts (35, 158)
cereals (56, 559)

non-legume (113, 970)
legume (19, 83)

perennial (21, 58)
annual (95, 995)

overall (115, 1071)

organic yield/conventional yield

(b)

(a)

(c)

(d )

Figure 1. The organic-to-conventional yield ratio of (a) all crops, (b,c) plant
types and (d ) different crop types. Values are mean effect sizes with 95%
credible intervals (i.e. 95% of the posterior distribution). The number of
studies and observations in each category are shown in parentheses. Only
categories with at least 10 yield comparisons from greater than five studies
are shown. Organic and conventional yields were deemed significantly differ-
ent from each other if the 95% credible interval of the yield ratio did not
overlap one. Different levels of explanatory variables were considered to be
significantly different if the posterior of the difference between the group
means did not overlap zero.

0.5 0.6 0.7 0.8 0.9 1.0 1.1

similar (37, 300)
more organic (15, 167)
more conventional (33, 379)
similar rotations (54, 670)
no rotations (36, 178)
more rotations in organic (14, 113)
organic polyculture only (17, 173)
polyculture (18, 367)
monoculture (77, 449)

organic yield/conventional yield

(b)

(a)

(c)

Figure 2. The influence of (a) cropping system, (b) rotation and (c) nitrogen
input on the organic-to-conventional yield ratio. Values are mean effect sizes
with 95% credible intervals. The number of studies and observations in each
category are shown in parentheses.
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A likely explanation for the completely different outcomes

for the majority of the explanatory variables between our

study and that of Seufert et al. [36] (see electronic supplemen-

tary material, tables S2–S4, for a summary of the differences)

is that Seufert et al. [36] did not account for all sources of

shared variation in their analyses, which resulted in an inflated

Type 1 error (electronic supplementary material, figure S1). This

would increase the probability of accepting non-significant

relationships as significant.

Our analysis also differs from that of Seufert et al. [36] in

that the latter concluded that a number of management prac-

tices might minimize the differences between organic and

conventional yields. For example, Seufert et al. [36] found sig-

nificant differences in yield gaps related to irrigation

practices, time since conversion from conventional to organic,

and whether best management practices were used in the

organic system. We found, however, no such differences

between treatments within any of these categories (electronic

supplementary material, table S3). We also included a new

explanatory variable, phosphorus input, but again found no

significant differences in yield when phosphorus input in the

organic treatment was higher or lower than in the conventional

treatment (electronic supplementary material, figure S4).

Seufert et al. [36] also found significantly larger yield gaps

when levels of nitrogen input were similar in the organic and

conventional treatments or greater in the conventional treat-

ment, compared with cases where nitrogen input was higher

in the organic treatment (electronic supplementary material,

table S3). Our findings differed: we found a significantly smal-

ler yield gap when N inputs were similar between treatments

(9+4%), compared with when N inputs were greater in con-

ventional treatments (30+4%). When N inputs were higher

in organic treatments, the yield gap was intermediate and

more variable (17+6%), and marginally significantly different

from the yield ratio with similar N input (figure 2). Similarly,

low-input conventional systems have a smaller yield gap

than high-input (electronic supplementary material, figure

S4), a result also found by Seufert et al. [36].

We found that two management practices that diversify

crop fields in space or over time, multi-cropping and crop
rotations, can improve yields in organic systems. The yield

gap between organic polycultures and conventional mono-

cultures (9+ 4%) was significantly smaller than when both

treatments were monocultures (17+ 3%) or both polycultures

(21+6%). We found a similar result with crop rotations. The

yield gap was smaller when the organic system had more

rotations (8+ 5%) compared with when both treatments

had a similar number of rotations (20+2%) or did not

have crop rotations at all (16+ 5%). These results also suggest

that polyculture and crop rotations increase yields in both

organic and conventional cropping systems (figure 2). Seufert

et al. [36] found no such differences between cropping or

rotation systems. There is some overlap between studies

that reported the yields of organic polycultures with more

rotations, so these practices could work synergistically to

close the yield gap, or one of the practices could be producing

the majority of the effect.

We found evidence of bias in the meta-dataset towards

studies reporting higher conventional yields relative to organic

(electronic supplementary material, Section S3). We also

detected a trend towards larger yield gaps in more recent

studies, though it is difficult to determine the causal mechan-

ism for this trend (electronic supplementary material, Section

S3). Our results should therefore be interpreted as presenting

an estimate of the yield gap from the available literature that

is likely favouring studies reporting higher conventional

yields than organic.
4. Discussion
Our extensive dataset including over three times more yield

comparisons than previous studies [35,36] and our hierarchi-

cal analytical framework, provides the most up-to-date

estimate of the yield gap between organic and conventional

agriculture, and how this yield gap is influenced, or not, by

management practices and crop types. The lower bound of

our credible interval around the yield ratio overlaps the

upper bounds of the two previous meta-analyses [35,36],

but because these analyses did not account for the hierarchy

of their data and/or the sampling variance within studies,

these prior estimates are subject to high levels of Type 1

error (underestimated uncertainty), which likely results in

inaccuracy in estimating the yield gap and its statistical

uncertainty. Further, we found entirely different effects of

crop types and management practices on the yield gap then

previous studies [36].

The results of our analysis are limited by modelling consi-

derations and the studies available for inclusion. We modelled

http://rspb.royalsocietypublishing.org/
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as many layers of non-independence in our meta-dataset as the

data supported, but others may exist. In addition, we found a

bias towards reporting of higher conventional to organic yield

ratios in the literature; therefore, even though our estimate of

the yield gap is more robust and smaller than previous analyses,

it may still be an overestimate.

The estimate of the organic-to-conventional yield ratio is

an average over many disparate systems and crop types.

The over-representation of specific practices or crops in the

dataset may therefore excessively influence the estimate of

the yield gap. For example, cereal crops, which exhibit the

greatest difference in yield of the crop types between organic

and conventional systems, were greatly over-represented

(53% of comparisons). The finding that cereal productivity

(including wheat, barley, rice and maize) is lower in organic

systems is of interest because of its central importance in the

human diet and predominance in cultivated land area. This

larger difference, however, is not surprising, given the exten-

sive efforts since the Green Revolution to increase cereal

yields by breeding high-yielding cereal varieties adapted to

work well with conventional inputs [50,51].

Given that there is such a diversity of management practices

used in both organic and conventional farming, a broad-scale

comparison of organic and conventional production may not

provide the most useful insights for improving management

of organic systems. Instead, it might be more productive to

investigate explicitly and systematically how specific manage-

ment practices (e.g. intercrop combinations, crop rotation

sequences, composting, biological control, etc.) could be altered

in different cropping systems to mitigate yield gaps between

organic and conventional production. Historically, research

and development of organic cropping systems has been exten-

sively underfunded relative to conventional systems [16,52,53];

thus, research priorities would need to shift to provide for

this needed work. Our meta-analyses found relatively small,

and potentially overestimated, differences in yield between

organic and conventional agriculture (i.e. between 15.5 and

22.9%), despite historically low rates of investment in organic

cropping systems. These yield differences dropped to 9+4%

and 8+5% when diversification techniques (multi-cropping

and crop rotations, respectively) were used. We therefore

suggest that further investment in agroecological research has

the potential to improve productivity of sustainable agricultu-

ral methods to equal or better conventional yields in various

cropping systems, as has indeed been demonstrated through

long-term studies (e.g. [54,55]).

Further, many comparisons between organic and conven-

tional agriculture use modern crop varieties selected for their

ability to produce under high-input (conventional) systems.

Such varieties are known to lack important traits needed

for productivity in low-input systems, potentially biasing

towards finding lower yields in organic versus conventional
comparisons. By contrast, few modern varieties have yet been

developed to produce high yields under organic conditions

[50,56]; generating such breeds would be an important first

step towards reducing yield gaps when they occur. Finally, redu-

cing the yield gap between organic and conventional agriculture

(or, more accurately, between biologically diversified versus

chemically intensive farming systems) has the potential benefit

of reducing the loss of biodiversity and ecosystem services

often associated with conventional agricultural methods [1,2],

and thus promoting a high-yielding agriculture that is relatively

environmentally beneficial and wildlife-friendly compared with

conventional systems [21,28,57,58]. There is some evidence that

biodiversity decreases with increased yields on organic farms

[59], but this might not apply to yield increases on biologically

diversified farming systems.

As others have pointed out, agricultural yields, in and of

themselves, are not sufficient to address the twin crises of

hunger and obesity, both associated with poverty, that are

seen in the world today. Current global caloric production

greatly exceeds that needed to supply the world’s population,

yet social, political and economic factors prevent many people

from accessing sufficient food for a healthy life [15,16,60,61].

A focus solely on increased yields will not solve the problem

of world hunger. Increased production is, however, critical

for meeting the economic needs of poor farmers who make

up the largest portion of the world’s chronically hungry

people [21,39,60], and agroecological methods provide low-

cost methods for doing so (e.g. [54]). Further, environmentally

sustainable, resilient production systems will become an

increasingly urgent necessity in a world where many plane-

tary boundaries have already been reached or exceeded

[19,62,63]. We believe it is time to invest in analytically rigor-

ous, agroecological and socio-economic research oriented at

eliminating yield gaps between sustainable and conventional

agriculture (when they occur), identifying barriers to adoption

of sustainable techniques and improving livelihoods of the

rural poor.
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Supplementary Information1

S1 Critique of previous analyses and rationale for new anal-2

ysis3

S1.1 Pseudo-replication4

The two most recent analyses of the organic to conventional yield gap utilized the yield5

ratios without always taking into account the underlying data structure, leading to po-6

tential pseudo-replication and an understated Type 1 error rate [1, 2].7

The random effect meta-analysis employed by Seufert et al. [1] assumes that effect sizes8

are independent and drawn from a common distribution [3]. However, multiple response9

ratios were extracted from studies without nesting these observations. Doing so may10

violate the assumption of independence, since multiple response ratios from the same11

study may be non-independent. In addition, treating response ratios from the same study12

as independent gives the studies with the most response ratios disproportionate weight13

while also inflating the replication and hence artificially reduces the confidence region of14

the analysis. Further, in approximately 60% of studies, one set of yield data was used as15

the baseline for multiple comparisons and these were then treated as independent data16

points. Treating response ratios that incorporate the same baseline as independent data17

points also violates assumptions of independence for meta-analysis [4, 5].18

The de Ponti et al. [2] study had similar issues with pseudo-replication. Additionally19

they did not account for the sampling variance within studies, which is the recommended20

practice to deal with unequal variances in the sample of studies [6].21

1



Because we constructed a random effects model (Eq. S1) and conducted the same categor-22

ical comparisons as Seufert et al. [1], we first investigated the effects of not accounting for23

the hierarchical data structure on the Type 1 error rate for the Seufert et al. model. We also24

investigated how much of the difference in our results was due to the hierarchical model-25

ing approach, versus the additional data in our study. We did not investigate the de Ponti26

et al. [2] analysis in detail because its structure was entirely different from ours.27

S1.2 Re-analysis of Seufert et al. data28

In order to estimate the Type I error rate of the Seufert et al. analysis, we used a ran-29

domization test. We forced the null hypothesis to be true by randomly re-assigning the30

’organic’ and ’conventional’ labels for each study and then using the R package Metafor31

[7] to implement a random effects meta-analysis on each randomized dataset. Repeating32

this procedure 105 times enabled us to determine the Type I error rate (false rejection)33

resulting from not accounting for the hierarchical structure of the data. In over 50% of34

simulations, the null hypothesis was rejected using a nominal Type I error rate of 0.0535

(Fig. S1). In other words, even if organic and conventional yields are known not to be36

different, applying the model used by [1] for these data would lead to the conclusion that37

they are significantly different in over 50% of cases. This means that the actual Type I error38

rate is inflated relative to what was reported, leading to the following related statements:39

the significance levels were overstated; the confidence intervals were underestimated;40

the uncertainty was not fully accounted for. This is a likely explanation for why these au-41

thors found many significant differences between explanatory variables for management,42

study quality, and crop type, whereas we did not.43

2



S1.3 How much are differences in results due to the model or the data?44

We conducted a series of tests to evaluate the extent to which differences between our45

results and those of Seufert et al. [1] depended on the model we use or the differences46

among the datasets (the Seufert et al. data was a subset of the data we used).47

First, we re-analyzed Seufert et al.’s [1] data (316 comparisons from 66 studies) with their48

non-nested model in a Bayesian framework in order to verify that any differences in pa-49

rameter estimates were not attributable to a change in statistical paradigms. The non-50

nested, random effects meta-analytic model is:51

yi = µ + αi + εi

αi ∼ N(0, σ2
α)

εijk ∼ N(0, Sijk)

(S1)

where yi is the observed effect of the ith response ratio, µ is the average true effect, αi is52

the random effect of study i, εi is the residual, σ2
α is the between-study variance in true53

effect sizes [3]. The value of Sijk is estimated by the reported standard error of the effect54

in study i.55

We implemented the non-nested model using a Bayesian framework using JAGS inter-56

faced via the package rjags [8, 9]. The yield gap estimate of the Bayesian and frequentist57

non-nested models using Seufert et al.’s data did not differ quantitatively (compare a and58

b, Fig. S2).59

Next, we re-analyzed Seufert et al.’s [1] data with our nested model, accounting for the60

hierarchy in the meta-dataset. Our re-analysis shrunk the yield gap by 4 percentage points61

and increased the uncertainty around these estimates (Fig. S2c).62

3



Next, using our larger data-set we implemented their non-nested model in a Bayesian63

and frequentist framework. The frequentist analysis was implemented in the R package64

metafor. The non-nested analysis on our more comprehensive dataset gave an estimate65

of the organic to conventional ratio almost identical to Seufert et al. [1]’s original results66

using both frequentist (Fig. S2d) and Bayesian approaches (Fig. S2e).67

Finally, our model with our expanded dataset (1071 comparisons from 115 studies) shrinks68

the estimate of the yield gap an additional 2% in comparison to the estimate using Seufert69

et al.’s data and our model (Fig. S2f). The variance around the estimate also shrinks70

slightly (compared to c), as expected with a larger data-set. Thus, difference in methods71

is twice as important as the difference in data in determining the reduction in the estimate72

of the organic to conventional yield gap between Seufert et al.’s analysis and ours.73

S2 Building our meta-analytic model74

S2.1 Modeling framework75

We chose to use a Bayesian modeling framework because the existing Markov chain76

Monte Carlo sampling methods [8] enabled us handle the complexity of the hierarchical77

model we constructed. Such methods did not exist for frequentist analyses at the time the78

analyses were conducted. Because the posterior is the product of the likelihood and the79

prior, when using uninformative (flat) priors as we have done here, the posterior should80

be approximately calibrated to frequentist results.81

4



S2.2 Effect size82

We chose to use the response ratio (the ratio of the mean outcome of the treatments of83

interest) because it quantifies the proportional difference between the treatments (in this84

case, the organic and conventional yields). In our analyses we used the natural logarithm85

of the response ratio because (1) it has an approximately normal sampling distribution,86

whereas the sampling distribution of the raw response ratio is skewed, and (2) deviations87

in the numerator and the denominator hold equal weight [10]. We then back transformed88

the model output to facilitate interpretation.89

S2.3 Random/mixed model90

In a random and mixed effects meta-analytic models, the true study effects are assumed91

to come from a common distribution and, thus, such models provide inferences about the92

larger population of possible studies from which those included in the actual analysis are93

a random sample [11].94

In contrast to random and mixed effects models, fixed effect models assumes there is little95

heterogeneity of effect size estimates between studies. The study effects are therefore not96

modeled as being drawn from a common distribution. We did not conduct any fixed97

effect analyses because, when using fixed-effects models, the goal is to make a conditional98

inference only about the studies included in the meta-analysis [11].99

S2.4 Parameter inclusion100

To determine the levels of hierarchy supported by the data, we sequentially added ran-101

dom effects and examined the posteriors of the parameters to determine the support for102

5



their inclusion. We also confirmed our selection with Deviance Information Criterion103

(DIC). The DIC can be problematic for hierarchical models because the effective number104

of parameters is not clearly defined [12, 13]. The DIC was therefore used in combination105

with a visual examination of the posterior distributions of the parameters to select the106

best supported model.107

For the variance within and between year random effect distributions, we considered two108

parameterizations: 1) the variance terms, denoted σ2
η and σ2

β, respectively, were shared109

across all studies each with a Uniform(0,100) prior, and 2) the variance terms were study-110

specific (i.e., σ2
η [i] and σ2

β[i]). In the latter case, the study-specific precision terms (1/vari-111

ance) were assumed to be distributed according to a gamma distribution whose param-112

eters were estimated. Uniform(0,100) priors were used for the coefficient of variation113

(1/
√

shape) and the square root of the scale.114

We first added a random effect of study and examined the posterior for σα (the stan-115

dard deviation of the common distribution from which the study effects are drawn). The116

posterior was clearly differentiated from zero (Fig. S6a). We next added random variation117

within a year and examined ση. We found it was also clearly different from zero (Fig. S6b).118

The DIC was also smaller than when only a random effect of study was included (Tab. S1).119

Next we allowed the within-year precisions to be study-specific and follow a gamma dis-120

tribution. We examined the coefficient of variation of the gamma distribution and found121

it was clearly differentiated from zero (Fig. S6c). The DIC was also smaller than when a122

single within year effect was shared across studies (Tab. S1). Lastly, we added a between123

year random effect and examined σβ. The posterior was concentrated at zero (Fig. S6d) so124

we concluded there was insufficient support for including it in the model. The estimate125

of the yield gap and its uncertainty did not differ substantially from when no between126

year effect was included (Fig. S7), the DIC, however, was marginally smaller then when127
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no between year random effect was included (Tab. S1).128

S2.5 Weighting129

The estimates of effect size from different studies will differ in their precision, or standard130

error. To handle these differences in precision, the sampling variance from each study are131

used as an estimate of the precision of the response ratio [3, 6, 10, 11, 14]. The variance of132

a response ratio is equal to133

SD2
org

NorgX2
org

+
SD2

conv

NconvX2
conv

(S2)

Where SD is the standard deviation, X is the mean and N is the sample size of the organic134

and conventional treatments [10]. This weighting increases the power of the test and the135

precision of the combined estimate [6]. We therefore use the estimated variance of log136

response ratios [10] to weight our effect sizes.137

We tested the sensitivity of the analysis to weighting by implementing a non-nested, un-138

weighted model using a frequentist framework [7] (our nested model does accommodate139

unweighted variances). The mean estimate of the unweighted, non-nested model was140

the same as the weighted, non-nested model, but the confidence intervals around the141

parameter estimate were slightly smaller (Fig. S2g).142

In many multi-year studies, we could not obtain the within-year variance among obser-

vations. In these cases, the variance of the means across years was used as an estimate of

the observation-level sampling variance (which was also how [1] combined such data).

Because this variance estimate lumps the between-year variation and the sampling vari-
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ation together, it is an overestimate of the sampling variance. For example, for a single

study with multiple years,

yi = µ + βi + εi, i = 1, . . . , n (S3)

εi ∼ N(0, σ2
ε,i) (S4)

βi ∼ N(0, σ2
β) (S5)

where yi is the log response ratio of the ith year of a study, µ is the average, εi is the residual143

due to sampling variation, σ2
ε,i is the sampling variance in year i, βi is the random effect144

of the ith year, and σ2
β is the variance of the distribution from which the year effects are145

drawn. The sample variance of the yi is an estimate of the between-year variance (σ2
β) plus146

the average of the sampling variances (σ2
ε,i). In a mixed or random effects meta-analysis,147

this becomes the estimate of the within-study variance (σ2
i ).148

We conducted the hierarchical meta-analysis with and without the studies that reported149

only a between-year variance to examine the potential bias that under-weighting some150

studies might introduce. Excluding the studies that only provided the between-year vari-151

ance decreased our meta-dataset to 56 studies and 839 observations. The yield gap esti-152

mated from the subset of the data was only 2 percentage point larger than the estimate153

from the full dataset with a 1.6 percentage point increase in the estimate of the variance154

(S2, compare f and h), as expected with less data. Including the studies without a true155

observation-level sampling variance estimate, therefore, does not substantially change156

our estimate of the yield gap.157
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S2.6 Sampling dependence158

Studies included in meta analyses often employ ANOVA-style designs where multiple159

treatments are compared against a single control. In these cases, a response ratio can be160

calculated for each control-treatment pair. These response ratios, however, are not in-161

dependent, because they share a common control and therefore should not be included162

separately in an analysis [4, 5]. When response ratios shared a common control, we cal-163

culated a combined response ratio (yijk) and corresponding standard error (σijk) for the164

entire study using the method presented in [Eq. 3 & 8, 4]. In the analysis with no explana-165

tory variables, 63% of the data were combined using the Lajeunesse method.166

If the response ratios are grouped separately among categories in a mixed effects model167

the bias introduced by non-independence is minimized because the response ratios are168

not pooled together [4]. Therefore we did not aggregate response ratios in the analyses169

including explanatory variables when the response ratios were in different levels of the170

explanatory variable.171

S3 Meta-datasets and publication bias172

The inclusion criteria and the timing of literature searches differed between our study173

and that of de Ponti et al. [2] and Seufert et al. [1] and thus the meta-data sets vary in their174

coverage (Fig. S8). We used similar inclusion criteria to Seufert et al. but excluded (1)175

comparisons of organic yields with subsistence yields because the latter do not represent176

conventional agriculture, and (2) comparisons of yields not from the same year. Our meta-177

dataset encompasses 115 studies published between 1977 and 2012, of which Seufert et178

al.’s meta-data set is a subset (66 studies from 1980 to 2010). Unlike our study and that of179
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Seufert et al., de Ponti et al. included studies that did not report an estimate of sampling180

variance. de Ponti’s less strict exclusion criteria enabled them to include 156 studies from181

1989 to 2010.182

For all three studies, we found that study publication year is correlated with the yield183

ratio (Fig. S9). Specifically, there is a trend towards larger yield gaps with conventional184

out-performing organic in more recent studies. This effect is most pronounced in the data185

used by Seufert et al., but is also present in de Ponti et al.’s and our own meta-dataset. This186

trend could result from conventional yields increasing relative to organic yields through187

time. Historically, research and development of organic cropping systems has been ex-188

tensively underfunded relative to conventional systems [15–17], so it is not inconceivable189

that continued investment in conventional techniques has widened the yield gap through190

time.191

The same trend could also result if a publication bias favoring studies that report higher192

conventional yields has increased through time. Not all studies are submitted for pub-193

lication and, of those that are, not all are accepted. Publication bias will result if stud-194

ies that show significant results are preferentially submitted and published, or if studies195

are suppressed because the findings do not align with the interests of the researchers or196

funding sources [18]. A bias would also result if researchers are choosing study systems197

which they expect to show larger differences, and thus there is a bias in what studies are198

conducted. Conversely, a bias would occur if the crop species of greatest interest to re-199

searchers is one that exhibits a large yield gap (e.g., cereals). Interesting, the proportion of200

studies on cereals in the literature has increased through time (Fig. S10), which could ex-201

plain both the bias toward studies that report higher conventional yields and the increase202

in the gap through time.203

We visually assessed bias in our dataset and in the subset of data comprising the Seufert204
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et al. data using a funnel plot and QQ-plot [6]. Asymmetrical funnel plots may indicate205

a systematic difference between smaller and larger studies (“small study effects”) which206

may be due to publication bias [6, 18]. Our funnel plot revealed a slight asymmetry fa-207

voring small studies that report conventional yields are higher relative to organic, Fig.208

S11a). The QQ-plot confirmed this observation: the observed quantiles are first below209

then above the expected line, suggesting the observed data is gaining quantiles faster than210

expected under a Gaussian model (Fig. S11b). This is because in the observed quantiles,211

there is more mass in the tail compared to normally distributed data (i.e., the distribution212

of response ratios is fat-tailed). That the lower quantiles are further from the line and even213

steeper suggests that there is more mass in the lower tail (i.e., where conventional yields214

are higher than organic). A fat-tailed distribution of response ratios could be due to bias.215

Funnel and QQ-plots of the subset of data used by Seufert et al. were similar.216

All of these assessments suggest that there is bias in the literature favoring studies that re-217

port conventional yields out-performing organic. Our results should therefore be viewed218

as a potential overestimate of the yield gap. It is unclear, however, whether this bias is219

due to publication bias or another type of bias such as a bias in what studies were con-220

ducted.221

S4 Explanatory variable inclusion222

To examine the support for including different explanatory variables in a model, various223

forms of model selection can be employed to compare models that contain different com-224

binations of explanatory variables (e.g., [19]). Because the studies in our analysis did not225

consistently report many characteristics we wished to include in our model (e.g., nitro-226

gen input, rotation type, tillage), we were unable to use such an approach, as it requires227
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that the data are consistent across models. We instead analyzed each explanatory vari-228

able separately. Although not ideal, it is not possible to include all explanatory variables229

investigated here in one model and still use a traditional model selection framework. Or-230

ganic and conventional yields were deemed significantly different from each other if the231

95% credible interval of the yield ratio did not overlap one. Different levels of explanatory232

variables were considered to be significantly different if the posterior of the 95% credible233

interval of the difference between the group means did not overlap zero.234
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Table S1: Parameter posteriors for models without explanatory variables. µ is the true mean
response ratio across years and studies, σα is the standard deviation of the distribution from which
the study random effects are drawn; ση is the standard deviation of the distribution from which
the within year random effects are drawn; CVση is the coefficient of variation of the gamma from
which the study-specific within-year variance are drawn; and σβ is the standard deviation of the
distribution of random between year effects. Values of Rhat < 1.1 indicate convergence. Lower
Deviance Information Criterion (DIC) indicates better model fit to the data.

Parameter Posterior mean Posterior standard deviation 95% CI Rhat

Study random effect, DIC=1684.8
µ 0.795 0.027 0.742 − 0.848 1.001
σα 0.341 0.026 0.294 − 0.396 1.001

Study and within year random effects, DIC= -565.9
µ 0.788 0.021 0.749 − 0.829 1.001
σα 0.188 0.024 0.144 − 0.239 1.001
ση 0.312 0.011 0.291 − 0.333 1.001

Study and study-specific within year random effects, DIC= -618.0
µ 0.808 0.019 0.771 − 0.845 1.001
σα 0.189 0.023 0.145 − 0.237 1.001

CVση 1.155 0.135 0.907 − 1.436 1.001

Study, study-specific within year, and between year random effects, DIC= -621.2
µ 0.808 0.019 0.770 − 0.846 1.001
σα 0.186 0.024 0.142 − 0.234 1.001

CVση 1.157 0.136 0.907 − 1.440 1.001
σβ 0.041 0.027 0.002 − 0.098 1.001
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Table S2: Yield estimates compared with previous studies. Categories of explanatory variables
are arranged from the smallest to the largest difference between organic and conventional yields.
Bold categories indicate conventional yields are significantly larger than organic yields. Unbolded
categories indicate organic and conventional yields are not significantly different. � between two
categories indicates the two categories are significantly different from each other. ∗ includes both
plant and animal products. ∗∗ de Ponti et al. [2] did not report significance. ∗ ∗ ∗ Confidence inter-
vals were calculated from the standard deviation and the number of yield comparisons reported
by de Ponti et al. [2].

Variable Ponisio et al. Seufert et al.
[1]

de Ponti et
al. [2]

Badgley et
al. [20]

Overall 80.8% ± 3.7% 75% ± 4% 80% ± 1% ∗ ∗∗ 132% ± 1%∗
Development developing

developed
developed �
developing

developing ∗∗
developed

developing �
developed

Crop type fruits and nuts
oilseed crops
cereals
vegetables
roots & tubers

fruits and nuts
oilseed crops �
cereals
vegetables

vegetables ∗∗
cereals
roots & tubers
oilseed crops
fruits

NA

Crop species apple
oat
tomato
soybean
maize �
wheat
barley
potato

soybean
maize
tomato
barley
wheat

soybean ∗∗
maize
oat
tomato
wheat
barley
apple

NA

Legume legume
non-legume

legume �
non-legume

NA NA

Plant-type perennial
annual

perennial �
annual

NA NA
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Table S3: The impact of management practices on the yield gap compared with previous stud-
ies. Categories of explanatory variables are arranged from the smallest to the largest difference
between organic and conventional yields. Bold categories indicate conventional yields are signif-
icantly larger than organic yields. Unbolded categories indicate organic and conventional yields
are not significantly different.� between two categories indicates the two categories are signifi-
cantly different from each other.

Variable Ponisio et al. Seufert et al. [1]
Nitrogen input similar N input �

more N organic �
more N conventional

more organic �
more conventional
similar N input

Poly/monoculture organic polyculture �
both monoculture
both polyculture

organic polyculture
both monocultures
both polyculture

Rotations more organic �
similar
no rotations

more organic
similar �
no rotations

Organic fertilizer type organic fertilizer
animal
mix
plant

organic fertilizer
mix
animal
plant

Conventional system type low input �
high input

low input �
high input

Organic system type certified
transitional
biodynamic
organic standards

certified
biodynamic �
organic standards
transition

Best management practices no
yes

yes �
no

Irrigation rain-fed
irrigated

rain-fed �
irrigated

Soil pH acidic
neutral �
strongly acidic
strongly alkaline

weak acidic to alkaline �
strongly acidic �
strongly alkaline

Time since conversion 0-3 years
> 7 years
4-7 years

> 7 years
4-7 years �
0-3 years
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Table S4: The impact of study quality indicators on the yield gap compared with previous stud-
ies. Categories of explanatory variables are arranged from the smallest to the largest difference
between organic and conventional yields. Bold categories indicated they are significantly less
than one. � between two categories indicates the two categories are significantly different from
each other.

Variable Ponisio et al. Seufert et al. [1]
Duration of study > 10 seasons

3-5 season
6-10 seasons
1-2 seasons

> 10 seasons
6-10 seasons
3-5 seasons
1-2 seasons

Literature type journal
grey

grey �
journal

Comparability of system comparable
not comparable

comparable
not comparable

Study type on-farm trial
experimental
survey

on-farm trial
survey
experimental
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Table S5: A list of the studies included in the meta-analysis including the crops with yield com-
parisons, the country the study was conducted in, whether the study was included in Badgley et
al. [20], Seufert et al. [1] or de Ponti et al. [2], and the number of organic to conventional yield
comparisons extracted from each study.

Study Crop Country Comparisons In Badgley In Seufert In de Ponti

[21] apple Brazil 2 no no yes

[22] pepper India 5 no yes no

[23] spring

wheat,

maize, soy-

bean

United States 40 no no yes

[24] wheat Switzerland 2 no no yes

[25] endive Croatia 2 no no yes

[26] rice, pigeon

pea

India 2 no no no

[27] apple Switzerland 4 no yes yes

[28] barley Switzerland 4 no yes no

[29] cabbage Switzerland 4 no yes no

[30] sugar beet Switzerland 4 no yes no

[31] tomato Brazil 2 no no yes

[32] wheat Czech Republic 6 no no yes

[33] cotton India 1 no yes no

35



[34] bean,

cauliflower,

fennel, let-

tuce, melon,

tomato

Italy 41 no no no

[35] maize, soy-

bean, wheat

United States 32 no yes no

[36] spinach Turkey 34 no yes no

[37] maize,

tomato

United States 6 no yes yes

[38] maize, soy-

bean

United States 4 no no no

[39] melon, wa-

termelon

Turkey 6 no no yes

[40] tomato,

wheat

Italy 2 no no no

[41] maize, soy-

bean

United States 2 yes yes no

[42] maize, soy-

bean

United States 4 no no no

[43] rice France 9 no no no

[44] hazelnut Turkey 1 no yes no

[45] tomato,

maize

United States 45 no yes yes

[46] maize, soy-

bean

United States 2 yes yes no
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[47] barley, wheat Denmark 78 no yes yes

[48] tomato United States 1 yes yes no

[49] maize United States 3 no yes no

[50] safflower United States 1 no no no

[51] maize Greece 9 no no yes

[52] flax Canada 1 no yes yes

[53] cotton,

chili, wheat,

soybean,

sorghum,

maize

India 12 no yes yes

[54] soybean,

wheat, maize

United States 38 no yes yes

[55] pea grain Bulgaria 1 no no

[56] strawberry United States 3 no yes yes

[57] maize United States 3 no yes no

[58] wheat India 12 no yes no

[59] soybean,

wheat

India 8 no no no

[60] kiwi New Zealand 2 no no no

[61] apricot Turkey 3 no no yes

[62] fig Turkey 3 no no no

[63] raisins Turkey 3 no no yes

[64] strawberry Canada 8 no yes no

[65] maize, soy-

bean, oat

United States 6 no no no
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[66] chard,

pumpkin,

tomato, bean

Spain 4 no yes no

[67] rye Germany 2 no yes no

[68] sweet potato United States 2 no no yes

[69] wheat, oat,

barely

Estonia 3 no no yes

[70] potato Estonia 2 no yes no

[71] banana Ecuador 1 no yes no

[72] tomato Taiwan 3 no yes yes

[73] buckwheat Czech Republic 9 no no no

[74] wheat Canada 1 no yes yes

[75] barley, wheat Sweden 2 no yes yes

[76] wheat Australia 2 no yes yes

[77] wheat, oat,

soybean,

maize

United States 4 no no no

[78] soybean China 1 no yes no

[79] maize Iran 12 no no no

[80] oat, wheat,

barley

Norway 86 no no no

[81] maize, soy-

bean

United States 4 no yes no

[82] cauliflower Italy 20 no no yes

[83] maize United States 26 no yes no
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[84] maize, soy-

bean

United States 3 no yes no

[85] maize,

tomato,

wheat

United States 28 no yes no

[86] coffee Costa Rica 3 no yes yes

[87] strawberry Turkey 5 no no yes

[88] potato,

wheat

Switzerland 18 yes yes yes

[89] potato Italy 1 no no yes

[90] soybean,

maize, oat

United States 10 no no no

[91] grapes Italy 3 no no yes

[92] coffee Nicaragua 3 no yes

[93] maize,

tomato

United States 5 no yes no

[94] sunflower Italy 3 no yes yes

[95] wheat Italy 2 no yes no

[96] potato Portugal 2 no no yes

[97] leek Croatia 4 no no yes

[98] apple United States 4 no no yes

[99] apple United States 4 no no no

[100] maize Italy 3 no yes no

[101] tomato United States 6 no yes no

[102] lettuce Turkey 5 no yes yes

[103] tomato Turkey 5 no no no
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[104] maize, oat,

soybean,

alfalfa

United States 24 no yes yes

[105] maize, soy-

bean

United States 8 no yes no

[106] peach United States 2 no no no

[107] carrot, beet-

root, rye,

potato

Germany 8 yes yes no

[108] rye Germany 2 no yes no

[109] wheat United States 1 no yes no

[110] apple United States 2 yes yes yes

[111] tomato Tunisia 12 no yes yes

[112] sweet corn,

cucumber,

pepper

United States 3 no yes no

[113] wheat Australia 1 no yes no

[114] maize, soy-

bean

United States 82 no no yes

[115] cabbage,

onion, sweet

corn, bean,

tomato

Canada 5 no yes no

[116] potato Latvia 2 no no no

[117] muskmelon China 4 no no no

[118] wheat Canada 2 no yes yes
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[119] elephant foot

yam

India 5 no no no

[120] apple United States 1 no yes no

[121] cotton United States 2 no yes no

[122] pepper Poland 3 no no yes

[123] wheat, oat,

barley

Estonia 9 no no yes

[124] maize, wheat United States 13 no yes yes

[125] tomato,

maize, saf-

flower, bean

United States 8 no no no

[126] rye, oat,

onion, carrot,

cabbage,

lettuce

Denmark 72 no no no

[127] oat, barley Sweden 3 no yes no

[128] sweet potato United States 3 no no yes

[129] coffee Nicaragua 1 no yes no

[130] lettuce United States 2 no yes yes

[131] cabbage, car-

rot

Canada 6 yes yes yes

[132] sweet corn,

potato

Canada 6 yes yes yes

[133] flax, wheat Canada 13 no yes yes

[134] grapes Australia 1 no no no
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[135] soybean,

wheat, maize

United States 3 no yes no

42



0.0 0.2 0.4 0.6 0.8 1.0

p − value

Figure S1: The distribution of p-values when the null hypothesis was forced to be true using the
data and analysis type present in Seufert et al. [1]. If the analysis procedure was valid for these
data, the distribution of P-values should be uniform between 0 and 1. Instead it is sharply shifted
toward low P-values. In over 50% of simulations, the null hypothesis was rejected using a nominal
Type I error rate of 0.05 (red region above).

43



0.70 0.75 0.80 0.85 0.90 0.95 1.00

●

●

●

Non−nested, Frequentist
Non−nested, Bayesian
Nested, Bayesian

Ponisio et al. data excluding between year SD (56, 839)

Ponisio et al. data (115, 1071)

Ponisio et al. data (115, 1071)

Ponisio et al. data (115, 1071)

Ponisio et al. data (115, 1071)

Seufert et al. data (66, 316)

Seufert et al. data (66, 316)

Seufert et al. data (66, 316)

Organic yield / Conventional yield

h

g
f
e
d
c
b
a

Figure S2: The effect of different models, data, and statistical paradigms on the organic to con-
ventional yield ratio (from top to bottom): (a) Seufert et al.’s [1] non-nested analysis and data
not accounting for pseudo-replication (organic to conventional ratio 75% ± 4%), (b) Seufert et
al.’s [1] non-nested analysis and data conducted in a Bayesian framework to show the compa-
rability in results between the two paradigms (75% ± 4%), (c) our nested analysis accounting
for the hierarchy of the meta-dataset on the data published by Seufert et al. [1] in a Bayesian
framework (79% ± 4.5%), (d) Seufert et al.’s [1] non-nested analysis on our larger dataset in a fre-
quentist framework (74% ± 2%), (e) Seufert et al.’s [1] non-nested analysis on our larger dataset
in a Bayesian framework (74% ± 2%), (f) our analysis and full meta-dataset (80.8% ± 3.7%), (g)
an unweighted, non-nested analysis on our meta-dataset (74% ± 2%), and (h) our nested analysis
on our meta-dataset excluding studies where the between year variation was used as an estimate
of the observation-level sampling variance (78% ± 5.8%). The number of studies and organic to
conventional comparisons are indicated in parentheses. We could not re-analyze de Ponti et al.’s
[2] data because they did not extract the response ratio variances necessary for our model.
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Figure S3: The influence of (a) crop species and (b) country development on the organic-to-
conventional yield ratio. Values are mean effect sizes with 95% credible intervals. The number
of studies and observations in each category are shown in parentheses. Only categories with at
least 10 yield comparisons from greater than 5 studies are shown.
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Organic fertilizer (7,21)
Animal (45,322)

Organic yield / Conventional yield

Figure S4: The influence of management practices on the organic-to-conventional yield ratio in-
cluding (a) organic fertilizer type, (b) phosphorus input, (c) conventional system type, (d) organic
system type, (e) the use of best management practices, (f) irrigation, (g) soil pH, and (h) years
since conversion to organic agriculture. With respect to the low input conventional system type,
the papers self-identified their system as “low input”, but the crops generally received substantial
external inputs. The inputs were generally only applied if needed (i.e., if a soil test suggested
the soil was nitrogen deficient, fertilizer was applied), and not on a set schedule as is common in
high-input conventional systems. Values are mean effect sizes with 95% credible intervals. The
number of studies and observations in each category are shown in parentheses. Only categories
with at least 10 yield comparisons from greater than 5 studies are shown.
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Figure S5: The sensitivity of the organic-to-conventional yield ratio to study quality factors includ-
ing (a) publisher type, (b) duration of the study, (c) comparability of the organic and conventional
treatments, and (d) the type of study. Values are mean effect sizes with 95% credible intervals. The
number of studies and observations in each category are shown in parentheses. Only categories
with at least 10 yield comparisons from greater than 5 studies are shown.
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Figure S6: The posterior distributions for the random effect of a) study (σα); b) response ratios
within a year (ση); c) response ratios within a year where the within year variance is study-specific,
CVση is the coefficient of variation (1/

√
shape) of the gamma distribution (this model is most

supported by the data); and d) between year (σβ). Including a between-year variance term was
not supported by the data (the posterior for (σβ is not differentiated from zero ).
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Figure S7: The sensitivity of the yield gap to including different levels of hierarchy in the model.
The random effects included in the model are: a) study (σα); b) study and response ratios within
a year (ση); c) study and response ratios within a year where the within year variance is study-
specific (ση [i]) (this model is most supported by the data); and d) study, study-specific within-year
variance, and between year (σβ). Including a between-year variance term was not supported by
the data (the posterior for (σβ is not differentiated from zero ). Values are the posterior mean with
95% credible intervals.
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Figure S8: A comparison of the frequency of organic to conventional yield comparisons published
in different years from our study, de Ponti et al. [2] and Seufert et al. [1].

50



●

●

●

●
●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

1980 1990 2000 2010

−1.0

−0.5

0.0

0.5

jitter(year)

jit
te

r(
m

ea
ns

)

Year of publication

O
rg

an
ic

 y
ie

ld
/c

on
ve

nt
io

na
l y

ie
ld

 (
lo

g)

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

● ●
●●

●
● ●

●

●

●

●●

●

●

●

Ponisio et al.
Seufert et al.
de Ponti et al.

Figure S9: The mean organic to conventional yield ratio (log) for each year studies were published
from our study, de Ponti et al. [2] and Seufert et al. [1]
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Figure S11: A funnel plot and QQ-plot of the response ratios in our study’s meta-dataset.
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