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Abstract. Recently, the core vector machine (CVM) has shown signif-
icant speedups on classification and regression problems with massive
data sets. Its performance is also almost as accurate as other state-of-
the-art SVM implementations. By incorporating the orthogonality con-
straints to diversify the CVM ensembles, this turns out to speed up the
maximum margin discriminant analysis (MMDA) algorithm. Extensive
comparisons with the MMDA ensemble along with bagging on a number
of large data sets show that the proposed diversified CVM ensemble can
improve classification performance, and is also faster than the original
MMDA algorithm by more than an order of magnitude.

1 Introduction

Support vector machines (SVMs) have been highly successful in many machine
learning problems. Recently, the core vector machines (CVM) [1] is proposed for
scaling up SVM. The main idea is to formulate the learning problem as a min-
imum enclosing ball (MEB) problem, and then apply an (1 + ε)-approximation
algorithm. It has a provably asymptotic time complexity that is linear in m and
a space complexity that is independent of m. Experiments on large classification
[1] and regression [2] data sets demonstrate that the CVM is much faster and
can handle much larger data sets than existing scale-up methods.

However, while a single SVM is often good in most cases, it is not always
perfect. In particular, when there are many noisy patterns, they may corrupt
the optimal decision boundary of a single SVM hyperplane. To address this
problem, several ensemble methods, such as bagging, boosting and nonlinear
ensemble approaches [3,4], have been proposed to improve SVM performance
by combining multiple SVMs. However, these SVM ensemble methods require
having many SVMs as base classifiers [4].

On the other hand, AdaBoost [5] has achieved good generalization perfor-
mance by constructing weak classifier ensembles. The key idea is to update
the probability distribution di’s over the training set subject to the corrective
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constraint that the new distribution is orthogonal to the vector of the mar-
gin errors −yift(xi). Consider the following weak classifier that is a variant
of the Parzen window classifier, with the patterns weighted by di’s: ft(x) =∑m

i=1 dt
iyik(xi,x) = w′

tϕ(x), where ϕ is the feature map associated with the
kernel k, and wt is the current weight vector. Then, the constraint for the new
dt+1

i distribution is
∑m

i=1 dt+1
i yift(xi) = 0 or w′

t+1wt = 0. This implies that the
weight vector of the two consecutive weak classifiers are orthogonal. Moreover,
Kivinen et al. [5] suggested finding the new distribution subject to the totally
corrective constraints, i.e., the new distribution is orthogonal to the vectors of
margin errors of all existing classifiers (w′

t+1wr = 0 for r = 1, . . . , t). Thus,
usually only a few weak classifiers are required in constructing an ensemble with
good classification performance.

The diversity of the base classifiers can improve the performance of the en-
sembles [4,6]. Intuitively, the orthogonality constraints can also be exploited to
diversify the base SVM classifiers. By adding orthogonality constraints to the
CVM ensemble, we will show in this paper that this can be seen as integrating
maximum margin discriminant analysis MMDA [7] with the CVM. However, in
order to apply the CVM algorithm, the QP problem corresponding to the ker-
nel method of interest has to take a particular form. This, however, is not met
by the MMDA, as the original CVM does not allow orthogonality constraints
on the weight vectors. Thus, we propose an extension of the MEB problem by
placing orthogonality constraints on the center of the MEB. We can then obtain
orthogonal CVM ensembles on large data sets efficiently.

The rest of this paper is organized as follows. Section 2 first reviews MMDA.
Section 3 then describes the proposed extension of the MEB problem, the mod-
ified CVM algorithm, and other variants of MMDA. Experimental results are
presented in Section 4, followed by some concluding remarks in the last section.

2 Maximum Margin Discriminant Analysis (MMDA)

Given a training set S = {(xi, yi)}m
i=1, with xi ∈ R

d and yi ∈ ±1. Consider the
following variant of the Lagrangian SVM [8], where the weight w is orthogonal
to uq = wq/‖wq‖ for q = 1, . . . , s:

min ‖w‖2 + b2 + C

m∑

i=1

ξ2
i : yi(w′ϕ(xi) + b) ≥ 1 − ξi, u′

qw = 0. (1)

Here, ϕ is the nonlinear feature map associated with kernel k, ξi’s are slack
variables and C is a regularization parameter. Introducing Lagrangian multi-
pliers α = [α1, . . . , αm]′ and γ = [γ1, . . . , γs]′ for the inequality and equality
constraints, we obtain the dual:

max 2α′1 − α′K̂α − 2α′YΦ′Uγ − γ ′U′Uγ : α ≥ 0, (2)

where 0,1 ∈ R
m are vectors of zeros and ones, U = [u1, . . . ,us], K = Φ′Φ

(where Φ = [ϕ(x1), . . . , ϕ(xm)]) is the kernel matrix, Y = diag(y1, . . . , ym), and
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K̂ = Y (K + 11′ + I/C)Y, (3)

is the transformed “kernel” matrix. By using the Karush-Kuhn-Tucker (KKT)
conditions, the primal variables w, b can be recovered from the optimal α, γ,
and uq. Using (1), MMDA then extracts the weights (w’s) one by one, and each
of these can be expressed as a linear combination of ϕ(xi)’s. Note, however, that
this MMDA formulation does not fit the existing MEB models in [1,2].

3 Core Vector Machine Ensembles

3.1 MEB with Multiple Projection Constraints on the Center

The center-constrained MEB problem in [2] constrains the center c to lie on the
hyperplane [0′ 1]c = 0. Here, we instead confine c to lie on multiple hyperplanes
defined by ũ1, ũ2, . . . , ũs:

min R2 : ‖c − ϕ̃(xi)‖2 ≤ R2, ũ′
qc = vq. (4)

Introducing Lagrangian multipliers α̃ = [α̃1, . . . , α̃m]′ and γ̃ = [γ̃1, . . . , γ̃s]′ for
the inequality and equality constraints, we obtain the dual:

max α̃′diag(K̃) + γ̃′v − α̃′K̃α̃ − 2α̃′Φ̃
′
Ũγ̃−γ̃′Ũ′Ũγ̃ : α̃ ≥ 0, α̃′1 = 1, (5)

where v = [v1,. . .,vs]′, Ũ = [ũ1,. . . ,ũs], K̃ = Φ̃
′
Φ̃ and Φ̃ = [ϕ̃(x1),. . .,ϕ̃(xm)].

Assume that for any pattern x, k̃ satisfies
k̃(x,x) = κ̃, (6)

a constant. Using the constraint α̃′1 = 1, we obtain α̃′diag(K̃) = κ̃. Dropping
this constant from the objective in (5), we obtain a simpler QP:

max γ̃ ′v − α̃′K̃α̃ − 2α̃′Φ̃
′
Ũγ̃ − γ̃ ′Ũ′Ũγ̃ : α̃ ≥ 0, α̃′1 = 1. (7)

The radius R =
�

α̃′diag(K̃) + γ̃ ′v − α̃′K̃α̃ − 2α̃′Φ̃
′
Ũγ̃− γ̃ ′Ũ′Ũγ̃ and the center

c =
∑m

i=1 α̃iϕ̃(xi) +
∑s

q=1 γ̃qũq are recovered from the optimal α̃ and γ̃. Con-
versely, any QP in the form of (7) can be regarded as a MEB problem.

Once we have a MEB problem, one can apply the core-set approximation and
probabilistic speedup techniques in CVM [1,2] to obtain an approximate solution
of the MEB problem efficiently. The CVM procedure can be easily adapted to
cater for this center c. Each iteration then becomes the solving of the subproblem
MEB(St) defined on the core-set St.

Notice that finding MEB(St) still involves a QP. Instead of solving a QP with
the equality constraint in (7), we follow the trick in [9] and remove the constraints
by introducing Lagrangian multipliers μ̃i’s (where μ̃i ≥ 0) for the nonnegative
constraints α̃i ≥ 0 and β for the equality constraint α̃′1 = 1 in (7). Then
the Lagrangian becomes L̃(α̃, γ̃, μ̃, β) = γ̃ ′v − α̃′K̃α̃ − 2α̃′Φ′Ũγ̃ − γ̃′Ũ′Ũγ̃ +
2α̃′μ̃ + 2β(α̃′1 − 1), where μ̃ = [μ̃1, . . . , μ̃m]′. We set its derivatives w.r.t. α̃
and γ̃ to zero. Since K̃ � 0 is pd and ũq’s are independent, Ũ′Ũ � 0, and so

G̃ =
[

K̃ Φ̃
′
Ũ

Ũ′Φ̃ Ũ′Ũ

]

� 0. Hence, the optimal solution is:
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[α̃′ γ̃′]′ = G̃−1[(β1 + μ̃)′ v′]′, (8)

where μ̃ and β are such that α̃ ≥ 0, α̃′1 = 1, α̃� μ̃ = 0 and μ̃ ≥ 0 (here, α̃� μ̃
is the elementwise product of α̃ and μ̃).

3.2 Connection to MMDA

We now return to the QP problem associated with MMDA in (2). Introduce
Lagrangian multipliers μi ≥ 0’s for the nonnegative constraints αi ≥ 0 in (2),
then the Lagrangian is L(α, γ, μ) = 2α′1 − α′K̂α − 2α′YΦ′Uγ − γ ′U′Uγ +
2α′μ, where μ = [μ1, . . . , μm]′. Since K � 0, K̂ in (3) is pd and uq’s are

independent, U′U � 0, and so G =
[

K̂ YΦ′U
U′ΦY U′U

]

� 0. Analogous to (8), an

optimal solution is obtained as:

[α′ γ ′]′ = G−1[(1 + μ)′ 0′]′, (9)

where μ ≥ 0, α ≥ 0 and α � μ = 0. Alternatively, the optimal values for α
and γ can be solved by using the trick in [8]: 0 ≤ a⊥b ≥ 0 ⇔ a = (a − τb)+
for τ > 0, then μ = ((K̂α + YΦ′Uγ − 1) − τα)+ by choosing a learning rate
τ = 1.9/C as suggested in [8] (here, a⊥b means a and b are perpendicular).

When the kernel k satisfies (6), k̂ for the kernel matrix in (3) also satisfies (6),
as k̂(x,x) = k(x,x)+1+1/C is a constant for any x. We set vq = 0, Ũ = [U′ 0′]′

(where 0 is the s × (m + 1) zero matrix), and ϕ̃(zi) = [yiϕ(xi)′, yi, yi/
√

Ce′i]
′

(where ei is the m-dimensional vector which has all zeros except that the ith en-
try is equal to one). Then K̃ = Φ̃

′
Φ̃ = [k̃(zi, zj)] with k̃(zi, zj) = yiyjk(xi,xj)+

yiyj + δijyiyj/C, Φ̃
′
Ũ = YΦ′U and Ũ′Ũ = U′U. Multiplying [1′ 0′] on both

sides of (8) and (9): α̃′1 − 1′Hμ̃ = β1′H1 = β(α′1 − 1′Hμ), where H is the
left top m × m submatrix of G̃−1. Using α̃′1 = 1, and assuming that α′1 > 0,
we have

β =
1 − 1′Hμ̃

α′1 − 1′Hμ
=

1
α′1

α′1 − 1′Hμ̃α′1
α′1 − 1′Hμ

=
1

α′1
, (10)

where μ̃ = μ
α′1 ≥ 0. Furthermore, from (8), (9) and (10), we obtain

[α̃′ γ̃′]′ = βG̃−1[(1 + μ)′ 0′]′ = [α′ γ ′]′/α′1 (11)

such that α̃′1 = α′1
α′1 = 1, α̃�μ̃ = α

α′1 � μ
α′1 = 0, and α̃ ≥ 0. Hence, using (11),

the solutions of α̃ and γ̃ in (5) can be recovered from the optimal values for α
and γ in (2). In other words, the optimization problem associated with MMDA
in (1) can now be viewed as a constrained MEB problem in (4), with ϕ̃ being
replaced by the new feature map ϕ̂ and the associated kernel k̂ satisfying (6).

3.3 Other Variants of MMDA

Other variants of MMDA that generate a non-orthogonal basis where the data is
uncorrelated (but do not use the orthogonality constraints) can also use this new
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MEB model. As discussed in [10], the uncorrelated constraints consider the rela-
tionship between patterns, and minimize redundancy among the weight vectors
in the reduced space. We can replace the orthogonality constraints on w in (1) by
uncorrelated constraints, and the primal becomes: min ‖w‖2 + b2 + C

∑m
i=1 ξ2

i :
yi(w′ϕ(xi) + b) ≥ 1 − ξi, û′

qw = u′
qΦΦ′w = 0. The corresponding dual is

max 2α′1 − α′K̂α − 2α′YΦ′Ûγ − γ ′Û′Ûγ : α ≥ 0, where Û = [û1, . . . , ûs].
Using the same construction as in Section 3.2, this is also a MEB problem with
multiple projection constraints on the center.

4 Experiments

4.1 Experimental Setup

Experiments are performed on a number of real-world data sets1 (Table 1).
All the different base classifier variants are run Nc times using the one-vs-all
scheme (where Nc is the number of classes). The following base classifiers are
compared: 1) Orthogonal SVM: SVM with orthogonality constraints with all
previous SVM classifiers. This is the same as MMDA; 2) Orthogonal CVM: the
proposed ensemble; 3) Bagged SVM (the base SVMs are trained by LIBSVM2).

As suggested in [3], a double-layer hierarchical combination scheme using non-
linear classifiers can have improved performance. In this experiment, we combine
the base SVMs by the following classifiers: 1) SVM; 2) artificial neural network
(ANN), with a single layer of 10 hidden units; 3) CVM; 4) Majority voting [3]. To
demonstrate the usefulness of the extra orthogonal SVMs, we also compare with
the standard SVM and ANN classifiers. The C parameter in (1) is always fixed at
1. We use the Gaussian kernel exp(−‖x−z‖2/β), where β = 1

m2

∑m
i,j=1 ‖xi−xj‖2

is the average squared distance between patterns. Experiments are implemented
in MATLAB (except for the bagged SVM which is in C++) and are performed
on an AMD Athlon 4400+ PC with 4GB of RAM.

Table 1. Data sets used in the experiments

optdigits satimage pendigits letters mnist usps face
# classes 10 6 10 26 10 2 2
# attributes 64 36 16 16 780 676 361
# training patterns 3,823 4,435 7,494 16,000 60,000 266,079 346,260
# testing patterns 1,797 2,000 3,498 4,000 10,000 75,383 24,045

The performance of ensemble methods depend critically on the number of
base SVMs used, so we first perform some preliminary experiments on this.
Figure 1 shows the results on the smaller data sets using the ANN as the final
1 The first five data sets are from the UCI machine learning repository, while the last

two are from http://www.cs.ust.hk/∼ivor/cvm.html.
2 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Fig. 1. Testing error of the different SVM ensembles vs #SVMs
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Fig. 2. Testing error of the different SVM ensembles at different noise levels

classifier. We observe that the performance of the bagged SVM first improves
as more base SVMs are used, and then becomes more stable or even degraded.
The performance using both the orthogonal CVM and SVM ensemble are better
than the others when there are around 3Nc to 5Nc base SVMs. So, in the sequel,
Nc/3Nc/5Nc base SVMs are used.

4.2 Experimental Results

First, we show the proposed orthogonal CVM ensemble is more robust than the
single SVM classifier and bagged SVMs. We run the orthogonal CVM ensemble
and bagged SVM on the first three small data sets in Table 1. The input features
are corrupted by zero-mean Gaussian noise at different noise levels (σ). For
simplicity, we fix the number of base SVMs at 5Nc, and the final classifier is a
SVM. From Figure 2, we observe that the orthogonal CVM ensemble is more
resistant to noise than the single SVM classifier and bagged SVMs.

As can be seen from Table 2, SVM ensembles can improve classification per-
formance. In particular, nonlinear ensemble schemes using orthogonal SVMs
outperform a single SVM. Moreover, the orthogonality constraints used in both
the SVM and CVM base classifiers lead to lower testing errors than the bagged
SVMs when using a few (3Nc − 5Nc) base SVMs.

As mentioned in Section 2, each base SVM can be expressed as a linear com-
bination of kernel evaluations. Figure 3 shows the number of kernel evaluations
involved in each base SVM. As can be seen, the CVM implementation produces
SVMs that are sparser than the original one. As kernel evaluations are relatively
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Table 2. Testing errors on the various data sets

base final
classifier classifier optdigits satimage pendigits letters mnist usps face
no base SVM 3.34 10.4 3.26 9.05 4.88 – –
classifier ANN 5.63 12.6 4.81 29.05 9.61 0.88 2.6

orthogonal #base=Nc SVM 3.07 10.55 2.18 7.15 – – –
SVM 3Nc 3.07 11.45 2.15 6.05 – – –

5Nc 3.07 10.35 2.09 5.98 – – –
#base=Nc ANN 4.35 11.05 2.81 19.8 – – –

3Nc 2.91 10.35 2.2 17.98 – – –
5Nc 3.52 11.3 2.26 17.35 – – –

#base=Nc CVM 3.07 10.55 2.18 7.1 – – –
3Nc 3.07 10.45 2.12 6.05 – – –
5Nc 3.07 10.35 2.09 5.78 – – –

orthogonal #base=Nc SVM 2.84 10.25 2.29 5.15 5.46 – –
CVM 3Nc 2.9 10.5 2.26 5.4 4.27 – –

5Nc 2.95 10.7 2.21 5.65 4.08 – –
#base=Nc ANN 3.73 10.25 2.78 19.03 7.01 0.7 1.72

3Nc 2.23 10.7 2.15 17.55 6.72 0.67 1.61
5Nc 2.64 10.05 1.92 17.33 6.66 0.66 1.66

#base=Nc CVM 2.84 10.25 2.29 5.18 5.46 0.69 1.9
3Nc 2.84 10.5 2.26 5.43 4.28 0.67 1.66
5Nc 2.95 10.7 2.21 5.7 4.09 0.7 1.65

bagged #base=Nc SVM 6.35 16.0 3.98 29.6 – – –
SVM 3Nc 6.07 14.8 3.61 25.8 – – –

5Nc 5.63 14.85 3.72 24.83 – – –
#base=Nc ANN 6.57 16.04 3.34 30.22 – – –

3Nc 5.75 15.22 3.51 26.36 – – –
5Nc 4.8 15.19 3.19 25.21 – – –

#base=Nc CVM 6.4 15.75 3.66 29.7 – – –
3Nc 5.79 14.6 3.44 25.95 – – –
5Nc 5.51 14.65 4.61 25.25 – – –

#base=Nc voting 7.8 20.5 4.18 32.2 – – –
3Nc 6.52 19.3 3.75 28.15 – – –
5Nc 5.29 18.45 3.35 26.8 – – –
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Table 3. CPU time (in seconds) required in the ensemble learning of base SVMs

base classifier optdigits satimage pendigits letters mnist usps face
orthogonal SVM #base=Nc 84 121 127 1,911 – – –

3Nc 476 421 570 9,646 – – –
5Nc 1,495 900 1,674 20,860 – – –

orthogonal CVM #base=Nc 41 23 20 92 1,610 2,359 105
3Nc 181 78 95 301 4,928 6,585 337
5Nc 332 136 174 512 8,179 10,630 556

expensive, the orthogonal CVM is generally faster than the original implemen-
tation during testing.

Table 3 lists the CPU time needed in the ensemble learning of base SVMs. As
can be seen, the proposed method is often faster than the original MMDA by
one to two orders of magnitude. In particular, note that the bagged SVM and
orthogonal SVM ensembles cannot finish training on the three largest data sets
in 24 hours (indicated by “-” in the tables), while the proposed method obtain
ensembles for the final classifier in usually less than several thousand seconds.

5 Conclusions

In this paper, we investigate ensemble learning in large scale classification tasks.
The use of orthogonality constraints in the SVM ensemble leads to more robust
performance than bagging. Moreover, the training time complexity depends only
linearly on the training set size. In practice, it is 10-100 times faster than the
original SVM ensemble. The proposed method produces sparser base SVMs and
with better performance. It also involves fewer kernel evaluations. This in turn
allows the combined classifier to be computed much faster during testing. In the
future, we will investigate other different constraints on the SVM ensemble.
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