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Diversity analysis of 80,000 wheat accessions
reveals consequences and opportunities
of selection footprints
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Undomesticated wild species, crop wild relatives, and landraces represent sources of varia-

tion for wheat improvement to address challenges from climate change and the growing

human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated

tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis.

Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and Sili-

coDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome

assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On

average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes.

The analysis reveals landraces with unexplored diversity and genetic footprints defined by

regions under selection. This provides fertile ground to develop wheat varieties of the future

by exploring specific gene or chromosome regions and identifying germplasm conserving

allelic diversity missing in current breeding programs.
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W
heat is the world’s most widely grown crop, with
annual production in excess of 600 million tons across
the Americas, Europe, Asia, Australia, and Africa.

Wheat provides 20% of the total protein and calories in human
nutrition1, and supplies ~40% of the dietary intake of essential
micronutrients, including zinc, iron, manganese, magnesium, and
vitamins B and E for millions of people, who rely on wheat-based
diets2. It is also an important energy source for farm animals3 and
is processed for various other uses including fuel4,5. Approxi-
mately 95% of the global crop is hexaploid bread wheat (Triticum
aestivum L. aestivum, genomic constitution AABBDD), whereas
the remaining includes tetraploid durum wheat (Triticum turgi-
dum L. durum, AABB) and other wheat types of smaller eco-
nomic importance6.

Since its domestication >10,000 years ago, wheat cultivars have
increased yields and adapted to a number of different climates
and growing conditions7–10. This success, however, has resulted
in a reduction of the genetic diversity in the elite gene pool11–14,
This limits the development of new wheat varieties required to
sustainably address the demands of the growing world population
in a backdrop of climate changes, and abiotic and biotic stres-
ses15,16. Wheat germplasm banks conserve ex situ ca. 560,000
accessions, including crop wild relatives (CWR) and landraces (as
well as modern cultivars), which harbor untapped genetic
diversity that will prove crucial for overcoming these chal-
lenges17–20. CWR and landraces have evolved mechanisms to
survive or thrive in challenging environments through con-
tinuous cycles of natural and human selection. However, their
resilience and adaptive mechanisms are poorly understood, which
limits their use in breeding efforts12,15. Among the main chal-
lenges limiting the use of this germplasm in breeding is the need
to efficiently identify accessions harboring advantageous genetic
variants, and linkage drag associated with introgressing these
desired genetic variants into elite germplasm20. Recent advances
in genomics and molecular technologies, however, facilitate the
characterization of the genetic diversity in large collections of
accessions17,21,22, and increasingly provide strategies, e.g., gene
editing, that avoid linkage drag23. For example, high-throughput
genotyping can support the characterization of core subsets of
accessions in a germplasm bank that capture most of the genetic
diversity of larger germplasm groups24, and are a valuable starting
point for phenotyping in search of diversity for use in breed-
ing17,25–28.

The International Maize and Wheat Improvement Center’s
(CIMMYT) germplasm bank is one of the largest wheat (and
maize) germplasm providers worldwide, distributing ca. 20,000
packages of wheat seeds per year to ~100 countries. The Seeds of
Discovery initiative (SeeD; http://seedsofdiscovery.org/), which
aims to facilitate the effective use of genetic diversity of wheat and
maize29, has characterized nearly 80,000 accessions from two of
the world’s largest wheat germplasm banks: (i) CIMMYT, which
hosts 140,812 wheat accessions, and (ii) the International Center
for Agricultural Research in the Dry Areas (ICARDA), with
43,924 wheat accessions (https://www.genesys-pgr.org/welcome).
Genotypic data from these germplasm banks have been used for a
wide range of applications25,28,30–32.

The main objective of this work is to characterize the global
genetic diversity of nearly 80,000 accessions from CIMMYT and
ICARDA’s wheat collections, divided in three biological cate-
gories: (i) CWR, (ii) domesticated tetraploid taxa (AABB), and
(iii) domesticated hexaploid (AABBDD) accessions. Secondly, we
aim to understand this diversity and its possible use in breeding
by mapping genetic variants (DArTseq-based SNP and Silico-
DArT)33 to the IWGSC v1.0 reference genome34, to the Svevo
(durum) tetraploid reference genome10, and against the DArT
genetic map. Finally, we validate our approach by analyzing
previously identified genomic regions associated with key agro-
nomic traits, and we uncover regions or QTL associated with
footprints of modern wheat breeding. This provides clues and
targets for the wheat research and breeding community.

Results
Diversity analysis of nearly 80,000 wheat accessions. We
characterized the genetic diversity of 79,191 accessions from the
CIMMYT and ICARDA germplasm banks: 56,342 domesticated
wheat hexaploids, 18,946 domesticated wheat tetraploids, and
3903 CWR. These wheat accessions originated from 109 countries
(passport data in Supplementary Data 1). For this analysis, we
used high-quality SNPs and SilicoDArT (PAV (presence/absence
variation)) markers generated independently for each of these
three collections. As expected, there was a larger proportion
(~50%) of common markers between the hexaploid and tetra-
ploid accessions than shared between these and the CWRs (1–6%;
Supplementary Fig. 1). After discarding markers with missing
rate > 50% and minor allele frequency (MAF) ≤ 0.1%, markers
with MAF between 0.1 and 1% constituted 41, 14, and 7% in the
hexaploid, tetraploid, and CWRs, respectively (Table 1).

We aligned the SNPs and SilicoDArT markers to the
hexaploidy wheat RefSeq v1.0 reference genome34, and to the
durum wheat (Svevo) reference genome10 (Supplementary
Table 1, Supplementary Fig. 2 for hexaploid, Supplementary
Fig. 3 for tetraploid, and Supplementary Fig. 4 for CWR): 70%
(66,067) of the markers mapped uniquely for the hexaploids on
the RefSeq v1.0, 68% (30,806) and 69% (31,181) for the
tetraploids, with the RefSeq v1.0 and Svevo genomes, respectively,
and 50% (28,054) for the CWR on the RefSeq v1.0. As expected,
most of the SNP markers were in intergenic regions, outside
repeats (Supplementary Data 2 and detailed statistics in
Supplementary Fig. 5).

The DArT genetic map (v4) (Supplementary Data 3, see
“Methods” section) includes 105,122 markers distributed across
the 21 hexaploid bread wheat chromosomes, with a mean of 5006
markers per chromosome. Positioning of SNPs and SilicoDArT
markers on the DArT genetic map v4 resulted in a homogeneous
distribution across all chromosomes (Supplementary Table 2).
Totals of 44,501, 24,185, and 18,738 SNP markers have map
positions, representing 52.03%, 53.29%, and 33.61% of all SNP
markers for the hexaploid, tetraploid, and CWR data sets,
respectively. Similarly, 23,571 (89.0%), 18,711 (70.5%), and
19,022 (30.9%) SilicoDArT markers aligned to the genetic map
for the hexaploid, tetraploid, and CWR accessions, respectively.

Table 1 Number of segregating SNPs and distribution of minor allele frequencies (MAF) across data sets after filtering for

missing rate > 50% and MAF≤ 0.1%.

Accessions # of SNPs SNPs with MAF≥ 1% SNPs with MAF≥ 5% SilicoDArT presence/absence

Hexaploid 56,342 85,531 50,068 28,078 26,507

Tetraploid 18,946 45,376 38,935 25,084 26,526

CWRs 3903 55,739 51,626 39,907 61,505
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Supplementary Fig. 6 shows the complete distribution of the
DArT genetic map markers for the hexaploid, tetraploid, and
CWR, and the markers in common among pairs and all three
groups of accessions.

We used this genotypic data to analyze each group indepen-
dently. Accessions were classified as either hexaploid, tetraploid,
or CWR based on their passport data. An iterative hierarchical
clustering approach, based on modified Roger’s distance matrix
(MRD), performed a stepwise branching of each group of
accessions into subgroups or clusters of germplasm with
maximum genetic diversity among and minimum genetic
diversity within groups (see “Methods” section). In addition, we
performed admixture analysis on a reduced number of markers
(MAF > 5%, and linkage disequilibrium thinned), and admixture
populations were compared to the MRD cluster approach. Below,
we present the results of these analyses for each group.

Hexaploid analysis reveals unexplored genetic diversity. The
56,342 hexaploid accessions (81% from CIMMYT and 19% from
ICARDA germplasm banks) encompass eight domesticated taxa
(Supplementary Table 3), in which 99% are T. aestivum L. aesti-
vum. We assigned these accessions to seven subgroups based on
passport data: (1) landraces (40.3%), (2) cultivars, i.e., genotypes
that are distinct, uniform, and stable, have been selected for
desirable traits, and are widely cultivated (5.9%), (3) elite breeding
lines (20.9%), (4) nursery lines, i.e., groups of distinct lines,
assembled for comparative description, or evaluation (2.1%), (5)
genetic stocks, i.e., typically lines resulting from the intercrossing of
distinct species, with described whole chromosome or partial
chromatin addition or deletion (1.9%), (6) primary synthetics
(stable wheat genetic stocks, botanically named Aegilotriticum spp.)
resulting from the crossing and chromosome doubling of tetraploid
Triticum species (usually AABB genome durum wheat) with Tri-
ticum tauschii (DD genome; 0.25%), and (7) synthetic derivatives
lines and their descendants resulting from crosses between a pri-
mary synthetic hexaploid and bread wheat (T. aestivum L. aesti-
vum; 13.8%). We could not classify 8275 (14.7%) of the samples
due to the lack of information in their passport data. The acces-
sions originated from 105 countries, with greatest representation
from Mexico (31.1%), Iran (8.1%), Turkey (4.4%), China (4.2%),
Morocco (2.5%), Pakistan (2.1%), and Afghanistan (2.1%).

The multidimensional scaling (MDS) plots (Fig. 1a) illustrate
distinct biological groupings within the hexaploid wheats and
suggest that a large portion of the genetic diversity in the
landraces has not been sampled in modern breeding (for more
details see Supplementary Data 4 and Supplementary Movie 1):
70.1% of landraces are at >0.24 MRD distance from the average
elite lines (Supplementary Fig. 7).

Admixture analysis at k= 8 (Fig. 1b and Supplementary
Figs. 8–11) revealed a good fit of the hexaploid diversity into eight
groups: (1) traditional landraces from Mexico (Mxn); (2)
traditional landraces from Iran (Irn) and Turkey (Tur); (3)
traditional landraces from Iran, Turkey, and Pakistan (Pak); (4)
and (5) two groups of modern landraces from Mexico; (6) and (7)
two groups of synthetic materials, one mainly from primary
synthetics (Syn A) and the second with synthetic derivatives
crossed with two and up to six elites lines (Syn B); and (8) a group
of elite wheat germplasm. Within the large group of elite
materials, we found 2260 elite lines, 4400 admixtures of elite with
modern landraces, and a few traditional landraces from Iran and
Turkey, and synthetics populations. The 2260 elite lines in this
group contain in their pedigrees the varieties Kauz, Pastor, or
Baviacora, which are progenies of Veery, a high-yielding
CIMMYT line from the late 1970s, produced from a spring ×
winter wheat cross. Other studies have reported genetic

separation of these varieties35,36, indicating that the 1B/1R
translocated segment from rye, present in Veery and derived
from Russian cultivar Kavkaz, markedly increases yield37.

Analysis of molecular variance (AMOVA) between clusters
identified by the diversity analysis (FST values) indicated that
grouping into 6 and 12 clusters were the most informative
(Supplementary Fig. 12 and Supplementary Movie 2). At the level
of 12 clusters, the traditional landraces are divided in four
subgroups: traditional Mexican landraces (subgroup 5 in Fig. 1c),
landraces from Iran and Pakistan (Lr Irn/Pak, 11), landraces from
Iran (Lr Irn, 4), and landraces from Iran and Turkey (Lr Irn/Tur,
3). Two small subgroups (2 and 8), comprising 2.6% of the
accessions, were separated from the Syn A group (10); based on
their lack of markers on chromosome D, these two small
subgroups are likely tetraploids that were originally miss-
classified as hexaploids in their passport data and were identified
by the analysis as outliers. The modern Mexican landraces were
further subdivided, reflecting a greater contribution of elite
germplasm to subgroup 7 compared with 1; subgroup 9 is too
small to allow interpretation of its uniqueness. Supplementary
Figs. 13–15 contains the FST distributions across all chromosomes
and Supplementary Figs. 16–21 shows the distribution inside each
chromosome. These results are consistent with the MRD analysis
and support the idea that a large fraction of genetic variation
present in landraces has not been incorporated into elite breeding
programs.

Tetraploid analysis reveals breadth of diversity in durum elites.
The 18,946 domesticated tetraploid accessions (20% from CIM-
MYT and 80% from ICARDA germplasm banks) encompass
eight taxa Supplementary Table 4, in which 77.6% are T. durum.
Based on passport information, we divided the accessions into
four groups: landraces (55.8%), elite breeding lines (21.4%), cul-
tivars (3.2%), and genetics stock (0.06%). We could not classify
19.6% of the accessions due to incomplete passport data, but we
included those samples in the analysis. The accessions originated
from 75 countries, with >50% coming from Ethiopia (18.1%),
Turkey (16.7%), Mexico (7.7%), Iran (3.4%), Tunisia (2.8%),
Morocco (2.7%), and Syria (2.5%). Analysis of the similarity
matrix using MRD with an MDS plot (Fig. 2a) showed that the
elite lines are distributed across almost the entire genetic diversity
space of the landraces, with the notable exception of a genetically
distinct group of several hundred Ethiopian landraces (Supple-
mentary Data 5 and Supplementary Movie 3). Four distinct
groups of landraces were identified based on MRD from the
allelic frequencies of the group of 4048 elite breeding lines: 817
landraces (7.8%) were genetically close (MRD < 0.2) to the elite
lines; 5918 landraces (55.9%) with MRD between 0.20 and 0.30,
among which 29% are from Turkey and 10% from Iran; 3483
(32.9%) with MRD between 0.30 and 0.35, mostly (92%) from
Ethiopia; and 356 (3.4%) with MRD > 0.35 from the elite lines,
42% of which are from Turkey (Supplementary Fig. 22).

The admixture analysis (K= 7) divided the diversity of the
tetraploid accessions (Fig. 2b) into: (1) a remarkably distinct
group of landraces from Ethiopia; (2) landraces mainly from
northern Africa (Morocco, Algeria, and Tunisia) and Portugal;
(3) landraces from Turkey, Iran, Jordan, and Syria; and (4)
landraces from Turkey, Azerbaijan, Iran, and Russia. The analysis
also identified a group (5) of the 3157 elite lines, 2279 (72%) of
which were pure to this population, and 879 (28%) were
admixtures of elites with landraces. Finally, we identified (6) a
small group of accessions from Triticum diccocum, and (7)
outliers that are potentially hexaploid accessions. All admixture
figures from K= 2 to K= 7 are presented in Supplementary
Figs. 23 and 24.
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The cluster diversity analysis revealed a high FST value (0.307)
at the level of seven clusters (Supplementary Fig. 25, Fig. 2c and
Supplementary Movie 4). This analysis highlights the relative
uniqueness of the diversity of Ethiopian landraces compared with
all other tetraploid materials: tetraploid wheat has been cultivated
in Ethiopia for thousands of years, and the area is considered a
center of diversity for that species38. The FST analysis shows a
substantial contribution to genetic diversity from the B genome
(Fig. 2c and Supplementary Movie 4). Supplementary Figs. 26 and
27 contains the FST distributions across all chromosomes and
Supplementary Figs. 28–30 shows the distribution inside each
chromosome. This analysis also identified a group of 1008
accessions with 20% of their SNP markers mapping to D
chromosomes, suggesting that they are hexaploids and demon-
strating the value of genomic profiling to curate germplasm bank
collections.

CWR analysis characterizes wheat sub-genomes diversity.
The 3903 accessions of wheat wild relative species (21% from

CIMMYT and 79% from ICARDA germplasm banks) include all
known 27 wild species from the Aegilops–Triticum species com-
plex (Fig. 3a, Supplementary Table 5, Supplementary Data 6 and
Supplementary Movie 5). Aegilops comprises 23 annual species, of
which 11 are diploid and 12 are allopolyploid39–41. The most
represented species in this study were Aegilops tauschii (974
accessions), Aegilops triuncialis (661), Aegilops geniculata (401),
Aegilops cylindrica (351), and Aegilops biuncialis (331). The
27 species comprised 11 genomic constitutions39. The accessions
originated from 55 countries, with the largest representations
from Turkey (17%), Iran (11%), Syria (10%), Lebanon (5%),
Jordan (4%), and Greece (4%).

Both the MRD and admixture analysis grouped the accessions
by similarity of genomes and then at species level (Fig. 3b, c). In
the cluster analysis, the Aegilops accessions (1857 accessions of
11 species) containing genome UU at three ploidy levels (red bar
in Fig. 3c), including D-genome-containing Aegilops juvenalis
(DDMMUU), were separated from all other Aegilops and
Triticum species (blue bar in Fig. 3c). Taxa with similar genomes
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Fig. 1 Diversity analysis of domesticated hexaploid accessions. a Multidimensional scaling plot visualized in Curlywhirly of 56,342 domesticated

hexaploid accession with 66,067 SNP markers differentiated by biological status based on passport information (elite, landraces, cultivar, synthetic, etc.);

b ADMIXTURE ancestry coefficients (k= 6, 12) for a subset of 45,000 samples and dendogram of k= 12; c the 56,342 hexaploids distributed in 12 clusters

based on MRD and clustering analysis. The axes X, Y, and Z correspond to first, second, and third dimensions in MDS.
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clustered together (e.g., Aegilops kotschyi and Aegilops peregrina).
The Aegilops and Triticum clusters were further differentiated
into section Cylindropyron (Aegilops markgrafii and A. cylindrica)
and most species of section Vertebrata (A. tauschii, Aegilops
crassa, and Aegilops ventricosa) versus sections Sitopsis and
Triticum. Section Cylindropyron are differentiated from section
Vertebrata. The four wild Triticum species plus Aegilops speltoides
(SS) initially grouped together with accessions from section
Sitopsis (Aegilops bicornis, Aegilops longissima, and Aegilops
sharonensis). Aegilops mutica clustered with section Comopyrum
(Aegilops comosa and Aegilops uniaristata) and with A.
uniaristata. Aegilops crassa (DDDDMM) and Aegilops vavilovii
(DDMMSS) grouped together. Interestingly, the Aegilops neglecta
were separated into two groups: (1) 49 potentially tetraploid
samples (ssp. neglecta, UUMM) and (2) 76 potentially hexaploid
(ssp. recta, UUMMNN) samples. These subspecies are difficult to
distinguish phenotypically according to Van Slageren42. It was
also interesting that A. biuncialis was separated into clusters of
261 and 46 samples. A total of 199 accessions (5.1%) were

identified as outliers or potentially misclassified samples, and will
be reanalyzed and evaluated to validate or correct their
passport data.

Core set capture global diversity and misclassified accessions.
Core germplasm subsets aim to eliminate redundancies and
identify representative samples for use in various analyses. We
formed core subsets that captured similar genetic diversity to
their respective complete collections as indicated by values of
expected heterozygosity (He2), inbreeding, and Shannon indices
for both complete population and core subsets (Supplementary
Fig. 31). The core subsets contained 20% of the complete popu-
lations, and consisted of 11,235, 3157, and 746 hexaploid, tetra-
ploid, and CWR accessions, respectively (Supplementary Fig. 32).

We conducted a global diversity analysis for wheat by
reanalysing the three core subsets together, obtaining 41,717
SilicoDArT and 112,748 SNP markers. The three groups were
clearly differentiated using the SilicoDArT markers, and as
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expected from the results for individual group analyses, we found
some outliers among putative tetraploids and hexaploids. We
investigated the outliers by calculating the percentage of
SilicoDArT markers located on the A, B, and D genomes
(Supplementary Fig. 33). A total of 138 (4.4%) putative
tetraploids had >10% of markers mapped to the D genome,
and 97 of them had >20%. Similarly, among putative hexaploids,
273 (2.4%) had <20% of the markers mapped to the D genome.
These observations suggest that 4.4% of tetraploid and 2.4% of
hexaploid samples are misclassified in their passport information,
a concern that is now being verified by the CIMMYT and
ICARDA genebanks. With this analysis, we demonstrate the value
of profiling using genomic tools to identified misclassification in
germplasm banks.

Genomic regions under positive selection. Analysis of FST values
on a variant per variant basis across the bread wheat genome
highlights areas of positive selection. This is particularly infor-
mative when relatively high FST values are considered together
with the backgrounds of the groups defined by the clusters
(Supplementary Figs. 13–15). For each cluster split, the highest
FST values reveal the genomic variants that contributed to the
separation of the two subgroups, thereby identifying molecular

footprints possibly associated with selective sweeps. We imple-
mented this analysis across the full dataset, noting the genomic
regions with high FST values (Supplementary Figs. 34–54). We
illustrate the numerous potentially interesting analyses by
focusing on two important cluster splits in the hexaploidy group:
(1) the first split, which separates the accessions of traditional
germplasm from the group that includes most of the elite lines,
and (2) the third split, which consolidates the core cluster of elite
lines by removing a large set of Mexican landraces (Supplemen-
tary Fig. 12). This analysis identified genomic regions that are
known to be associated with key agronomic traits, but more
importantly, we also uncovered many regions that could help
explain the recent history of modern wheat breeding and offer
target alleles for future breeding. For example, clusters of loci with
high FST within a region of chromosome 3A associated with the
well-characterized preharvest sprouting gene (TaMFT)43, are
present in germplasm in cluster 2 (elite lines and Mexican
landraces), but are absent in cluster 4 (elite lines and cultivars;
Fig. 4).

GWAS analysis reveals loci associated with GPC and SDS. To
conduct association scans with the DArTseq data, we phenotyped
3870 samples for two important traits for processing and end-use
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quality, grain protein content (GPC) and SDS sedimentation
(Fig. 5 and Supplementary Table 6). We found 18 genomic
regions associated with GPC on 12 chromosomes, with highest
peaks on 4A and 4B, followed by 5A, 5B, 7A, and 7B. Similarly,
Kumar et al.44 reported major and stable QTL for GPC on
chromosomes 5B, 7A, and 7B of an exotic genotype, and indi-
cated that these QTL were independent of grain yield. Such QTL
could be useful to enhance GPC through marker-assisted selec-
tion (MAS), particularly if they do not compromise yield. Com-
parison with 49 GPC studies45 suggests that QGPC.ndsu.5B
(located on 5BS) and QGPC.ndsu.7A.2 (located on 7AL) could be
novel QTL, and the exotic germplasm could contribute to the
wheat breeding gene pool for increasing GPC.

SDS sedimentation is a common test to determine overall
gluten quality. High values on this test are associated with strong
gluten (preferred for bread-making), while low values are
associated with weak gluten (preferred for pastry products).
Here, we report significant QTL for SDS sedimentation and
putatively associate them with known storage protein genes.
Specifically, high molecular weight glutenins, Glu-A1, Glu-B1,
and Glu-D1 (located on the long arms of chromosomes 1A, 1B,
and 1D), and low molecular weight glutenins, Glu-A3, Glu-
B3, and Glu-D3 (located on the short arms of chromosomes 1A,
1B, and 1D) are candidate genes for the QTL on chromosomes
1A, 1B, and 1D, which had the largest effects on SDS
sedimentation in this study. All these glutenin genes are well
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known, and their variability and effects on processing and end-
use quality have been extensively reported46.

Discussion
This diversity analysis for ca. 80,000 accessions from CIMMYT
and ICARDA’s seed banks is likely the largest such analysis for
any agricultural crop. The analysis of the 56,342 hexaploid
accessions highlighted that relatively little of the genetic diversity
available in landraces has been used in modern breeding. The
largest genetic distance among the hexaploid samples was
between elite germplasm and synthetic derivatives, the distinction
being driven, as expected, by alleles introduced from A. tauschii,
the D genome donor. The clustering analysis also identified
landraces that have contributed to the genetic pool of modern
breeding lines (e.g., landraces in clusters 6 and 7 in Fig. 2c), and
landraces that host unexplored alleles/diversity (e.g., landraces
from clusters 3, 4, 5, and 11), both presenting fertile ground for
exploration and application in breeding programs.

Our diversity clustering analyses reveal genetic footprints
defined by regions under selection. We describe the example of
preharvest sprouting among hexaploids, for which genetic var-
iants within the TaMFT gene (Chromosome 3A) are absent in the
cluster of elite lines and cultivars, descendant from precursor
cluster 2 that contains these variants. We envision numerous
genetic studies that researchers may wish to conduct using the
231 FST chromosome profiles (2–12 cluster on 21 chromosomes)
available in Supplementary Figs. 34–53. These data can be used,
for example, to explore selective sweeps for any specific gene or
chromosome region, analyze footprints defining divergence of
landraces from distinct ecologies, or identify germplasm groups
conserving allelic diversity missing in current breeding programs.

The analysis of 18,946 tetraploid accessions showed, and in
contrast to the hexaploids, that much of the total genetic diversity
is represented or explored by the elite durum accessions. There is,
however, a large subset of accessions collected in Ethiopia that
forms an isolated cluster, and whose genetic content is distinct
from and largely unexplored by the elite materials. Analysis of the
3903 CWR highlighted the strong differentiation of sections,
followed by species with similar genome constitution, and accu-
rately identified subspecies ploidy level.

We anchored the genomic data to three genomic resources: the
latest hexaploid and tetraploid wheat reference genomes and the
DArT genetic map, to obtain both physical and genetic positions
for the markers capturing the genetic diversity present in the
hexaploid and tetraploid wheat accessions, and the CWRs. All the
genotypic (DArTSeq) data, and two tools, the DArT genetic map,
and CurlyWhirly, are available for use by the research community
(see “Methods” section). The DArT genetic map enables con-
fident localization of markers to genome-specific regions, avoid-
ing the common problem in wheat (and other polyploids) of
confounding effects among homologous chromosomal regions.
CurlyWhirly is valuable for visualizing complex diversity data,
e.g., Figs. 1–3. These resources should be useful in gene discovery,
cloning, marker development, genomic prediction or selection
(GS), MAS, genome-wide association studies (GWAS), and other
applications.

These massive-scale genotypic data have already been used in
several studies focused on enhancing the use of genetic diversity
in wheat breeding. Singh et al.28 used DArTseq genotypic and
multi-environment phenotypic data to demonstrate positive
contributions of exotic germplasm to lines derived from crosses of
exotics with CIMMYT’s best elite lines. Genomic-based predic-
tion using 8416 Mexican and 2403 Iranian landraces from
CIMMYT’s germplasm bank estimated prediction accuracies
from 0.41 to 0.65 for Mexican, and from 0.18 to 0.65 for Iranian

landraces31. Saint Pierre et al.32 characterized 803 spring wheat
lines, including elite germplasm and diverse accessions, to
develop models for genomic prediction of phenology traits and
grain yield, and to predict performance of lines in environments
where the lines were not tested. Sehgal et al.30 selected 200 diverse
gene bank accessions out of 1423 spring bread wheat accessions
for use in pre-breeding and allele mining for candidate genes for
drought and heat stress tolerance. Finally, Sehgal et al.47 described
efforts to identify genomic regions with stable expression and
their epistatic interactions for grain yield and yield stability in a
large panel of elite wheat under multiple environments via a
genome-wide association mapping approach. These multiple
studies exemplify the value of this germplasm that is now easier to
utilize and exploit, thanks to the resources generated in the
present study.

Rapid human population growth, climate change, and the need
to balance increasing agricultural production with increased
environmental sustainability make it necessary to optimize the
use of available resources. Native allelic variation for relevant
breeding traits is one such resource. The analysis provides a basis
for targeted exploration and allele mining activities moving for-
ward. Diversity per se is of limited value for breeding, instead the
value lies in the understanding of diversity, and the identification
and use of diversity associated with breeder relevant traits. There
are a number of paradigms currently in use to better understand
and identify breeder relevant diversity. Before the advent of
widespread genomic characterization core collections were pro-
posed as a model for mining representations of general diversity,
these have evolved to use genomic data in their definition as more
widespread characterization has become available48–50. Another
approach, reflecting landrace adaptation to local environments,
was the FIGS (Focused Identification of Germplasm Strategy)51

where passport derived collection site variables were used to
identify materials of potential interest for phenotypic evaluation
for specific environment-associated traits. More recent analysis
has extended and revised these approaches to incorporate in-
depth understanding and application of genomics. In maize,
passport data, associated climate variables from collection sites
are being used in conjunction with genome-wide fingerprint data
to identify alleles from broad germplasm collections associated
with breeder relevant parameters52,53. Using this information and
screening against genomic profiles of existing elite germplasm
enables the identification of both previously unhighlighted
standing variation of breeding relevance existing within elite
germplasm and also breeder relevant diversity that can then be
introgressed into breeding pools using appropriate strategies (S.
Hearne pers comm). Taking these parallels and moving forward
with wheat, there is a clear opportunity to use the understandings
derived from comprehensive genomic characterization, together
with associated data, to define and implement clear strategies to
explore, and use relevant genetic diversity for breeding in a more
targeted data-driven manner.

The genomic data and analysis tools made public with this
paper can assist wheat researchers to discover and use functional
diversity that may be essential for meeting these challenges. The
massive scale of the genotypic data, describing nearly 80,000
publicly available germplasm accessions, offer ample scope for
further analyses, not only to understand selection footprints and
possible genetic diversity bottlenecks in current elite germplasm,
but to leverage relevant diversity from the shelves of germplasm
vaults into the hands of breeders. The analyses conducted and
described herein, plus examples cited from recent literature,
demonstrate the value of molecular data to enrich current pass-
port records and drive the transformation of germplasm banks
from museums into strategically, effectively used genetic resource
centers.
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Methods
Plant material and DNA isolation. We explored a total of 79,191 wheat samples;
50,053 from the CIMMYT and 29,138 from the ICARDA germplasm banks. The
material included landraces, elite breeding lines, cultivars, primary synthetics,
synthetic derivatives, genetic stocks, and wheat wild relatives. The complete list of
material is provided in Supplementary Data 1. We randomly selected five seeds of
each accession number and grew them at CIMMYT greenhouses in Mexico for
2 weeks. We harvested young leaves of a single plant per accession number, froze
them at −80 °C, and lyophilized for 24 h. To track and organize such a large
number of accessions, we used CIMMYT’s DNA Sample Tracker System, a plat-
form specifically developed to assist in the tracking of samples from seed to DNA.
Genomic DNA was extracted in 96-well plate format from lyophilized leaves using
a modified cetyltrimethyl-ammonium bromide method54. DNA quality and con-
centration were determined by electrophoresis on 1% agarose gels.

High-throughput genotyping using the DArTseq™. We use DArTdb (Diversity
Arrays Technology’s database and Laboratory Information Management System)
to track the DNA samples from wet lab analysis through to genotyping results. We
employed a high-throughput genotyping method using DArTseq™ technology33 to
genotype all samples. In this technology, the allele-calling pipeline does not require
a reference genome that offers an unbiased method to assess genetic diversity in a
large collection of accessions, as the one we have analyzed. It might not be the most
suitable approach for other investigations, in which having a free reference calling
or not using a fully repeatable method like a chip or array it could be a dis-
advantage. But, considering the objectives of this study and the exotic material we
are analyzing, we found that DArTseq was the most appropriate genotyping
approached to use at the beginning of the SeeD project. We genotyped ~20% of the
samples at the DArT laboratory in Australia and 80% at the Genetic Analysis
Service for Agriculture (Spanish acronym SAGA) in Mexico. The first step of
library preparation is genomic complexity reduction of the samples through a
digestion/ligation reaction using a combination of two restriction enzymes, PstI
and HpaII. A PstI-compatible adapter include the Illumina flowcell attachment
sequence, the sequencing primer (AATGATACGGCGACCACCGAGATCTACA
CTCTTTCCCTACACGACGCTCTTCCGATCT), and varying length barcode
regions. The reverse adapter contain the flowcell attachment region and the HpaII-
compatible overhang sequence (CAAGCAGAAGACGGCATACGAGATCGGTCT
CGGCATTCCTGCTGAACCGCTCTTCCGATCTCGG). Only fragments con-
taining PstI-HpaII ends are amplified. After the PCR reaction, equimolar amounts
of amplification products from each sample of the 96-well microtiter plate were
bulked together, purified, and quantified, followed by sequencing of 77 cycles on
Illumina Hiseq 2500 (Illumina Inc., San Diego, CA). The sequences were processed
using proprietary DArT analytical pipelines. In the primary pipeline, the FASTQ
files were first processed to filter poor-quality sequences by applying two filters: (1)
a more stringent filter performed on barcode sequences using a Phred quality score
of 30 (representing base call accuracy of 99.9% for at least 75% of the bases), and
(2) on the rest of the sequence a Phred quality score of 10 (representing base call
accuracy of 90% for at least 50% of the bases). The assignment of sequences to
specific samples carried in the barcode split step is therefore very reliable.
Approximately 2 million sequences per barcode/sample were used for marker
discovery, of which 500,000 unique sequences collapsed into FASTQCOL files. The
unique sequences were then identified and clustered by sequence similarity at a
distance threshold of three base variations, using DArTsoft14 plugin in KDCom-
pute application (http://www.kddart.org/kdcompute.html). The sequence clusters
were then parsed into SNP and SilicoDArT markers using a range of metadata
parameters derived from the quantity and distribution of each sequence across all
samples in the analysis. One of the crucial parameters is balance of allele counts
within the locus across the whole population under study, but there are many
additional parameters involved in marker selection. The marker parsing algorithm
was trained using data generated on DArTseq platform for over 1000 mapping
populations across a broad range of species, including several hundred maps
generated on wheat populations at three levels of ploidy reported in this paper. The
training process enabled clear discrimination between allelic variants and sequence
variation due to paralogous sequences, confirmed by segregation of markers in
agreement with Mendelian distributions. DArTsoft14 enables additional tuning of
the analysis process to specific material/genome, as it offers 43 parameters for
sequence selection/filtering, SNP, and SilicoDArT marker selection and reprodu-
cibility calculations.

Most accessions were genotyped once, with a single representative plant per
accession number. However, 23% (667 CWR, 4,057 tetraploid and 13,466
hexaploids) of the DNA samples were genotyped multiple times as technical
replicates, which enabled calculation of reproducibility scores for each candidate
marker. Thus, the total number of libraries analyzed was 97,381. The main
parameters to select the markers were call rate (the proportion of samples with
genotypic score, i.e. not recorded as missing data) with the threshold of 0.5, and
average reproducibility (the proportion of technical replicate assay pairs for which
the marker score is consistent) at least 0.95. Similar filtering parameters were used
for SilicoDArT markers, but with call rate selection >80%.

DArTsoft14 exports two types of markers, SilicoDArT and SNP. SilicoDArT
markers represent presence/absence of restriction fragments of a particular
sequence in genomic representations. The PAV acronym has been used for these

markers in some reports for genotyping-by-sequencing methods. However, as PAV
is a commonly used term to describe presence/absence of a section of DNA in the
genome, applying the same term to presence/absence of fragments in genomic
representations is a source of confusion. SilicoDArTs are extracted from the
sequence data using the DArT proprietary algorithm in DArTsoft14 software.
SilicoDArTs are genetically dominant markers, analogous to microarray DArTs,
but extracted in silico from sequences, hence the name. There are multiple
molecular bases for SilicoDArT markers, with the PAV (absence of DNA sequence
in the genome) being the least frequent one. SNPs in the recognition site of the
restriction enzymes used in complexity reduction are usually the most common
cause of SilicoDArT markers. Indels, both in recognition sites and within
restriction fragments delineated by those sites, are also a frequent cause for
SilicoDArTs. Cytosine methylation polymorphism within restriction enzyme
recognition sites (when using methylation sensitive enzymes for complexity
reduction) are responsible for varying proportions of SilicoDArTs, with the
proportion of SilicoDArTs resulting from this type of molecular mechanism
increasing with the genome size, with PstI site methylation being responsible for
<10% of DArT markers small genome Arabidopsis thaliana55. SilicoDArT’s ability
to detect methylation variation is very important as it complements the SNP-based
genome profiling by providing some insight into epigenetic variation. SilicoDArTs
also outperform SNPs in most deep phylogenetics analyses56.

SNP markers are identified de novo by comparing the sequences of fragments
present in genomic representations (libraries) of samples processed in DArTsoft14.
SNP markers are identified and called completely independently of any reference
genome. These two elements (de novo calling and independence from the reference
genome) make DArTseq SNP markers particularly robust and practically free from
ascertainment bias that plagues many other genotyping technologies.

In the diversity analysis of hexaploid and tetraploid groups, we used SNP
markers because it has more resolution for similar samples genetic background.
Then, for CWR, which include more diverse germplasm with 11 different genome
constitutions, we used SilicoDArT markers that perform better than SNP in deep
phylogenetic studies.

Alignment on the genome references. The sequence data of molecular markers
generated were processed with the dartR packagev1.0.5 (ref. 57) and converted to a
SNPRelate CoreArray Genomic Data Structure (GDS)58 before exporting to plink
bed format.

Nucleotide sequences for the DArT alleles were extracted from the markers
sequence file and transformed into FASTA format using an in-house Python script.
Adaptor trimming (performed by the same script) finds matches of at least 6 nt
between the adaptor and the 3′ of both DArT allele sequences. The resulting
FASTA was then used for downstream alignment.

A reciprocal Bowtie2 (ref. 59) alignment strategy was used to map the markers
to the genomic sequences. Markers were first aligned to the bread wheat IWGSC
RefSeq v1.0. for all three biological categories (domesticated hexaploids,
domesticated tetraploids, and CWR) and to the durum wheat Svevo reference for
the tetraploid group using end-to-end alignment. Unmapped reads were realigned
using local alignment. Bowtie2 version 2.3.3.1 was used with default parameters
with the following exceptions: –very-sensitive, -p 24 and –k 10, and –very-
sensitive-local. Samtools 1.5 (ref. 60) was used to convert sam to bam, with the
resultant files then merged using samtools merge and their output parsed with a
Python script to extract the genomic alignment regions. Bowtie2 with –very-
sensitive-local, -L 18, and –p 24 was then run to align these against the original
reads. The output of this step was then parsed and compared to the alignments of
the previous step. Alignments were parsed using the same Python script and only
alignments where both DArT alleles agreed and the alignment was reciprocal were
taken forward. For the remaining alignments, the number of mismatches was
calculated (ignoring the SNP position) and the alignment with the least number of
mismatches was written to a map plink file. A custom Python script was then used
to extract the corresponding entries from the initially generated ped plink file using
the recently created map file and produce a plink ped file containing genomic
coordinates. Plink v1.90b4 was used to convert the ped file to vcf format, the vcf file
was annotated using SnpEff61, and vcftools was used to generate SNP density
coverage statistics.

Genetic consensus map. The genetic consensus map was built based on 81
individual genetic maps using a DArT markers consensus map software developed
by F. Detering (DArT PL unpublished). The software requires the following inputs:
(i) a reference map with one linkage group and marker positions per chromosome,
and (ii) set of linkage groups from individual populations with marker positions
and chromosome assignment for each group. The construction procedure uses the
following pseudo-code algorithm: (i) initialize consensus map with the seed map
and (ii) for each chromosome, find subset of linkage groups for this chromosome
and repeat until subset is empty for each group in subset. The process requires at
least three markers in common with the consensus map and correlates the posi-
tions of common markers with the consensus map. The group with the highest
commonality (correlation × log [number of common markers]) is identified, and if
the correlation is larger than 0.5, all markers are joined to the consensus map by
linear interpolation. The group is removed from the subset and the process is
repeated. Using this iterative process, DArT consensus map version 4 has 105,122
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markers and is accessible at https://www.diversityarrays.com/technology-and-
resources/genetic-maps/.

Data cleaning filters. After allele frequency estimation, three filters were applied
to the SNP data: (1) selection of markers with proportion of missing values ≤0.50;
(2) selection of markers MAF > 0.001; and (3) selection of accessions with pro-
portion of missing values ≤0.50 (for hexaploids and tetraploids) or 0.75 (for wild
relatives). In the case of SilicoDArT markers, we instead used a filter to select
markers with proportion of missing values ≤0.80.

Diversity indices. For the genetic diversity analysis we used the allele frequencies
of the markers to calculate the expected and observed heterozygosity, inbreeding
coefficient, Shannon entropy index, MRD for SNP data, and Jaccard distance for
SilicoDArT data.

Expected heterozygosity62, or gene diversity63, he, is the most used index and, is
defined as:

hei ¼ 1�
X

2

j¼1

p̂2ij; ð1Þ

for an ith diploid marker (locus), and

he ¼ 1

L

X

L

i¼1

hei; ð2Þ

the average over all loci for the population. The index summarizes genetic variation
and it reaches a 0.5 value for diploid loci when the allelic frequencies are equal to
0.5, maximum of diversity. We used 2× he to describe the diversity on a 0 to
1 scale.

Observed heterozygosity, hoi, is the proportion of heterozygotes at locus ith,
and it is averaged for the population characterization, ho. Inbreeding and other
evolutionary processes affect ho, and comparison with he produces the inbreeding
coefficient f for a locus:

fi ¼ 1� hoi=hei; ð3Þ
and their average value for a population. The f coefficient is the maximum
likelihood estimator of inbreeding under Hardy–Weinberg equilibrium63.

We used the Shannon diversity index for the ith locus:

shi ¼ �
X

2

j¼1

p̂ij log2ðp̂ijÞ; ð4Þ

and its average value for the population. We used the base-2 logarithm as when the
allele frequencies are equal to 0.5 the index value is 1.0, maximum of diversity.

Genetic distances between individuals. Based on its good mathematical and
genetic properties14, we selected the MRD to calculate the genetic distance between
two individuals x and y, measured by a set of L SNP markers:

0 ≤mrdxy ¼
1
ffiffiffiffiffi

2L
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

L

i¼1

X

2

j¼1

p̂ijðxÞ � p̂ijðyÞ

� �2

v

u

u

t ≤ 1: ð5Þ

When using SilicoDArT data, we used the Jaccard distance, the ratio of number
of agreements (present, present) divided by the total number of loci comparisons
excluding the agreement (absent, absent):

0≤ jdxy ¼
npp

nap þ npa þ npp
≤ 1; ð6Þ

where n is the number of agreements or disagreements.

Graphical representation. We used the MDS statistical method to represent
distances (measured into P > 3 dimensions) into three dimensions. MDS64 is a
multivariate method for dimension reduction whose objective function, to be
minimized, is the sum of squared differences of the distance between pairs of
objects observed in P dimensions, minus an estimated distance between the same
objects measured into two or three dimensions. We used two algorithms for the
MDS analysis: (1) for hexaploids, we used the classical approach in which, to avoid
computer memory issues, a matrix basic algorithm65 is applied to obtain a solution
(60k × 60k distance matrix); and (2) the SMACOF66 solution (using a majorization
algorithm, minimizing the same objective function as in the classical solution) was
used with tetraploids (20k × 20k) and wild relatives (7k × 7k) matrices.

Cluster analysis and FST computation. We implemented an iterative hierarchical
cluster analysis to group the accessions based on genetic diversity. This process
starts by considering n (the size of the whole population being clustered) clusters.
At each iteration, the method joins the nearest (minimum distance) two accessions,
or a group and an accession, or two nearest groups to create n1, n2, …, 2, and 1
final cluster, where genetic distance is maximized between clusters and minimized
within clusters. To identify the appropriate number of clusters that best explain the

genetic distances in the original collection, we used the changes in pseudo F sta-
tistic67, i.e., the quotient between the variance between clusters divided by the
variance within clusters. At each clustering level, we described the genetic diversity
using the AMOVA both between and within clusters. For each clustering, we also
analyzed the FST values using sliding window and considered their chromosome
position to identify putative genomic regions driving the differences in the genetic
diversity between and within clusters.

To understand which alleles contribute to the cluster subdivisions in each of the
three main groups (CWR, tetraploids, and hexaploids), we computed FST
calculation using vcftools v0.1.15 (ref. 68). For each cluster subdivision, a list of
individuals was generated and calculations were performed, using FST window size
of 1 Mb. Results were then loaded into R and plotted using the ggplot2 library. A
scatter plot was generated, where x is the BIN_START, y is the WEIGHT_FST and
each chromosome is plotted and colored separately. A geometric smooth was also
added with a span= 0.1.

Building core subsets. Core subsets are a sampling solution to a germplasm bank
manager’s challenge of managing big collections. The idea, from Brown24, is to look
for a 10 or 20% subset of accessions representing the diversity of the whole col-
lection. We followed the strategy proposed by Franco et al. (refs. 69,70) to form 20%
subsets for genetic analyses, although the method allows formation of smaller or
lager subsets according to the needs of the researcher. Briefly, accessions were
grouped based on their pair distances (MRDs) and Ward71 minimum variance
within groups clustering method, before assigning to each cluster a number of
genotypes to be sampled that was proportional to the diversity of the cluster,
measured as the average value of MRD distances within the group (D-method).
Finally, 1000 candidate samples were extracted using stratified random sampling,
and the most diverse candidate sample (the sample showing the maximum of
average distance) was selected to be the core subset.

Analysis of molecular variance. The AMOVA analysis was challenging due to the
specific markers, even after the filtering process. When comparing hexaploid,
tetraploid, and CWR biological groups, we could use a defined number of markers
that were informative for those three groups when together, but a different set of
markers would be informative when comparing only a pair of them. To address
this, we performed different AMOVA analyses: (1) analysis using all informative
(polymorphic) markers for all comparisons, (2) analysis using only the informative
markers for each specific comparison between pairs, even if a marker was not
informative for one of the elements in the comparison, and (3) analysis using only
the informative markers for all the groups or categories being compared.

AMOVA analyses were done both per locus (useful to identify different groups)
and across all of them (a more general test). We used the AMOVA method as
proposed by Nei72, and posteriorly described by Berg and Hamrick73. HT is defined
as the genetic diversity in the whole populations, that is, the average value for he for
the pooled population, and Hs is defined as the average value of the within
subpopulation genetic diversity values:

DST ¼ HT � HS; ð7Þ
is the among subpopulations genetic diversity, and the ratio:

FST ¼ DST=HT; ð8Þ

is the proportion of the total diversity distributed among populations. FST does not
own an identified statistical distribution, thus a way to determine its significance is
using permutation tests, that is, obtaining an estimation of the FST statistic under
the null hypothesis (H0: there are not biological subpopulations), and comparing
the real observed value with the 90, 95, or another significant percentile of the null
distribution. To obtain the null distribution, 1000 random permutations of
genotypes (and their associated allelic frequencies) across biological groups were
obtained and their FST values calculated.

Genome-wide association scans. We subsampled 3870 samples from the diver-
sity analysis to phenotype for GPC and SDS sedimentation at the Wheat Quality
laboratory at CIMMYT. We obtained a total of 145,422 SNPs by DArTSeq plat-
form. We filtered to 46,594 SNPs that met the criteria RepAvg ≥ 0.95, MAF ≥ 0.01,
missing rate ≤ 0.6, and heterozygosity rate ≤ 0.2. For high-quality 46,594 SNPs
dataset, we firstly align it to the wheat reference genome, 31,694 SNPs across the
wheat genome were obtained with 11,751, 13,441, and 6502 SNPs distributed on A,
B, and D genome separately, secondly, the dataset was compared with consensus
map, 3447 SNPs were obtained on A, B, and D genome with 1,234, 1,793, and 420
SNPs, finally, there are 8.62% SNPs couldn’t be mapped. Combined with the two
mapped data sets, 35,141 SNPs across the wheat genome were retained for further
study. We performed genome-wide association analysis on 35,141 SNPs dataset
using an iterative usage of fixed and random model circulating probability uni-
fication74 implemented by R software with correction of kinship, including the first
three PCA values as fixed effects.

Visualization tools. In this study, we used visualization tools and interactive data
repository to handle the large data volumes generated. One of the tools is Flapjack
application that provides interactive visualizations of high-throughput genotypic
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data, allowing for rapid navigation and comparisons between lines, markers, and
chromosomes. We exported data sets created in Flapjack or Germinate for
visualization using CurlyWhirly (https://ics.hutton.ac.uk/curlywhirly), a tool that
we hereby release for use by the research community. CurlyWhirly is a 3D
visualization tool that handles large-scale genetic diversity data with plots con-
taining hundreds of thousands of data points. To explore data sets in detail, a
comprehensive hierarchical categorization and filtering system allows for fine-
grained filtering and selection of data points. Furthermore, CurlyWhirly allows
export of screenshots and videos of the data, with associated categorical color keys
included. 3D-based multi-select functionality allows selection of data points within
a given distance from a defined point, and export of these data points to a file.
CurlyWhirly links smoothly with Germinate and Flapjack, providing many options
for sub-setting, analysis, and visualization of large data sets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work is available in the Supplementary Information
files and CIMMYT Dataverse repository (https://data.cimmyt.org/dataset.xhtml?
persistentId=hdl:11529/10548030). We also stored the same data into Germinate (http://
germinate.cimmyt.org/wheat/), which are accessible after a brief registration in the
website. All data sets generated and analyzed during the current study are available from
the corresponding author upon request. The data sets created in Flapjack or Germinate
can be visualized using CurlyWhirly (https://ics.hutton.ac.uk/curlywhirly). A reporting
summary for this article is available as a Supplementary Information file. All biological
material is available at the CIMMYT and ICARDA germplasm bank upon on-line request
at https://www.cimmyt.org/resources/seed-request/ or https://indms.icarda.org/. Records
for all germplasm accessions with DOIs included in this study can also be accessed
through the Global Information System of the International Treaty on Plant Genetic
Resources for Food and Agriculture at https://ssl.fao.org/glis/. Publicly available data used
in this manuscript are IWGSC RefSeq v1.0 (https://wheat-urgi.versailles.inra.fr/Seq-
Repository/Assemblies) and durum wheat genome (cv. Svevo) (https://www.interomics.
eu/durum-wheat-genome). The detailed description of all parameters and settings used in
the marker calling pipeline cannot be provided given the proprietary nature of the
software, but access to the software can be negotiated and provided free for testing
purposes by Diversity Arrays Technology Pty Ltd by contacting dart@diversityarrays.com.
The source data underlying Figs. 1–5 are provided as a Source data file.

Code availability
The CurlyWhirly visualization tool is described and available for download at https://ics.
hutton.ac.uk/curlywhirly/ and the underlying code are available at GitHub (https://
github.com/cropgeeks/curlywhirly). The Flapjack analysis and visualization tool is
described and available for download at https://ics.hutton.ac.uk/flapjack/ and the
underlying code are available at GitHub (https://github.com/cropgeeks/flapjack). Free R
software environment used for the diversity and clustering analysis are available at
GitHub (https://github.com/jfranco1951/Genetic-Diversity).
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