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Diversity Analysis of Space-Time Coding in
Cascaded Rayleigh Fading Channels

Murat Uysal, Member, IEEE

Abstract— Cascaded Rayleigh distribution is used to model
multipath fading in mobile-to-mobile communication scenarios
and provides a better fit to experimental data in such scenarios
compared to the conventional Rayleigh channel model. In this
letter, we derive an exact expression for the pairwise error proba-
bility (PEP) of space-time trellis codes over the cascaded Rayleigh
fading channel, which is in the form of a simple single finite-
range integral. Through the derived PEP expression, we present
the maximum diversity order achievable over such channels
and demonstrate the performance degradation in comparison
to conventional Rayleigh channels. Monte-Carlo simulations are
further demonstrated to confirm the analytical results.

Index Terms— Space-time trellis coding, pairwise error prob-
ability, cascaded Rayleigh fading.

I. INTRODUCTION

S
PACE-time trellis codes (STTCs) [1] have been proposed

as an effective approach to support high data rate transmis-

sion over fading channels. Since its introduction, a significant

amount of work has been published on the performance anal-

ysis of this new family of codes. Most of these works assume

either Rayleigh or Rician fading channels, which are com-

monly used to characterize the cellular radio systems. These

statistical models typically assume a wireless communication

scenario with a stationary base station antenna above roof-top

level and a mobile station at street level. On the other hand,

in mobile-to-mobile communication systems such as mobile

ad-hoc networks, intervehicle communications and intelligent

highway applications, both the transmitter and receiver are in

motion. Experimental results [2, 3] and theoretical analysis

[4, 5] demonstrate that cascaded Rayleigh distribution, also

sometimes known as double Rayleigh, provides an accurate

statistical model for mobile-to-mobile communications.

Although there is a vast literature dedicated to the per-

formance analysis over Rayleigh fading channels, there are

only a few results available for cascaded Rayleigh channels

which are restricted to single antenna scenarios [5], [6]. In

this letter, we study the error rate performance of STTCs

over cascaded Rayleigh fading via the derivation of a pairwise

error probability (PEP) expression. In their pioneering work on

STTCs, Tarokh et.al. [1] derived an upper bound on the PEP

using the classical Chernoff bound over the Rayleigh fading

channels. Exact PEP expressions for STTCs were also pre-

sented via different approaches [7, 8, 9, 10]. In this letter, we

derive an exact PEP expression for cascaded Rayleigh fading
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channels and present the maximum achievable diversity order

in such channels demonstrating the performance degradation

in comparison to conventional Rayleigh channels.

The rest of the paper is organized as follows: In Section

II, the transmission model under consideration is introduced.

In Section III, we present a PEP derivation for STTCs in

cascaded Rayleigh fading. In Section IV, we investigate the

maximum diversity order achievable over such channels and

compare it to that over Rayleigh channels. In Section V, we

provide simulation results and finally conclude in Section VI.

II. TRANSMISSION MODEL

We consider a wireless communication system with M
transmit antennas and N receive antennas. The binary data

stream is first modulated and mapped to a sequence of

complex modulation symbols. The modulated sequence is then

fed to the space-time encoder and transmitted over the wireless

channel. The receiver employs a maximum-likelihood decoder

and has perfect channel state information (CSI). The received

signal in the time interval l at the nth receive antenna is given

as

rl,n =

M
∑

m=1

αm,nxm,l + zl,n, n = 1, ...N (1)

where xm,l is a complex valued modulation symbol transmit-

ted from the mth (m = 1, 2...M) transmit antenna at time

l and zl,n is the additive thermal noise term, the collection

of which is modeled as independent samples of a zero-mean

complex Gaussian random variable with variance N0/2 per

dimension. The fading coefficient αm,n represents the channel

gain from the mth transmit antenna to the nth receive antenna

and is assumed to be constant over the duration of one frame,

following a quasi-static channel assumption. αm,n is modeled

as the product of two independent complex Gaussian random

variables

αm,n = βm,n · γm,n (2)

where βm,n and γm,n have zero mean and variance of 0.5 per

dimension. Therefore, its magnitude |αm,n| follows a cascaded

Rayleigh distribution [5]

f (|αm,n|) = 4 |αm,n|K0 (2 |αm,n|) (3)

with normalized power E[|αm,n|
2
] = 1 . Here, K0(·) is the

modified Bessel function of the second kind of zero order.

III. DERIVATION OF PAIRWISE ERROR PROBABILITY

Let xl = [x1,l, x2,l, ..., xM,l] denote the code vector trans-

mitted from M transmit antennas in time interval l. For a
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frame length of L time intervals, we denote the codeword

matrix as X = [xT
1 ,xT

2 , ...,xT
L ] 1. The PEP represents the

probability of choosing the code matrix X̂ when indeed X

was transmitted. Under the assumption of perfect CSI, the

conditional PEP is given by [1]

P
(

X, X̂
∣

∣

∣ αm,n

)

= Q

⎛

⎝

√

√

√

√

Es

2N0

N
∑

n=1

αnAαH
n

⎞

⎠ (4)

where Q(.) is the Gaussian Q-function, Es is the en-

ergy per symbol, αn = (α1,n, ..., αn,M ) and A =
(

X − X̂

) (

X − X̂

)H

. Introducing βn = (β1,n, ..., βM,n)

and the diagonal matrix of γn = diag (γ1,n, ..., γM,n), we

can rewrite (4) as

P
(

X, X̂
∣

∣

∣ βm,n, γm,n

)

= Q

⎛

⎝

√

√

√

√

Es

2N0

N
∑

n=1

βnDβH
n

⎞

⎠ (5)

where we define D = γnAγH
n . Following [1], we write

βnDβH
n =

M
∑

m=1

χm |bm,n|
2

(6)

where χm are the (non-negative) eigenvalues of D and

bm,n =
∑M

k=1 βk,nv∗
k,m is the mth element of the M -length

vector bn = βnV
H . Here, V is a unitary matrix such that

VDV
H = C, where C is a real diagonal matrix with entries

χm. Defining the eigenvalues of A as λm, we can further

write χm = λm |γm,n|
2
. It is straightforward to show that

bm,ns are zero-mean complex Gaussian random variables with

variance of 0.5 per dimension. Using the alternative form of

the Gaussian Q-function [11] and via the moment generating

function (MGF) approach [9], the average of the PEP over

the channel statistics βm,n (while γm,n is still treated as a

constant) is given by

P
(

X, X̂
∣

∣

∣
γm,n

)

=
1

π

π/2
∫

0

N
∏

n=1

M
∏

m=1

sin2 θ

sin2 θ + Ωm |γn,m|
2
dθ

(7)

where Ωm = (Es/4N0) λm . Taking an expectation of (7)

with respect to |γm,n| which is Rayleigh distributed, we have

P
(

X, X̂
∣

∣

∣
γm,n

)

=

1
π

π/2
∫

θ=0

N
∏

n=1

M
∏

m=1

[

2
∞
∫

0

sin2 θ·|γm,n|·exp(−|γm,n|2)
sin2 θ+Ωm|γm,n|2

d |γm,n|

]

dθ (8)

Exploiting i.i.d. properties of γm,n and using the results from

[12- p.364, 3.382.4], we obtain the final PEP expression in

the form of a single finite-range integral as

P
(

X, X̂
)

=
1

π

×

π/2
∫

θ=0

[

M
∏

m=1

sin2 θ

Ωm
exp

(

sin2 θ

Ωm

)

Γ

(

0,
sin2 θ

Ωm

)

]N

dθ (9)

1Throughout the paper, we use (.)T and (.)H to represent transpose and
conjugate transpose operations respectively.

where Γ(., .) is the incomplete gamma function. To have

further insight into the performance over cascaded Rayleigh

fading, we can upper bound (9) replacing θ = π/2 to obtain

P
(

X, X̂
)

≤ G

(

Es

4N0

)−MN
(

M
∏

m=1

λm

)−N

(10)

where we define G as

G = exp

[

N

(

Es

4N0

)−1 M
∑

m=1

λ−1
m

]

×

[

M
∏

m=1

Γ

(

0,

(

Es

4N0

)−1

λ−1
m

)]N

(11)

This can be compared to a similar bound for Rayleigh fading

channels [1]

P
(

X, X̂
)

≤

(

Es

4N0

)−MN
(

M
∏

m=1

λm

)−N

(12)

It is seen that (10) and (12) are identical to each other expect

the additional term G which turns out to be a function of

signal-to-noise ratio SNR = Es/N0.

IV. ACHIEVABLE DIVERSITY ORDER

In this section, we investigate the diversity gain for space-

time codes operating over cascaded Rayleigh fading channels

based on the derived PEP expression. The asymptotical diver-

sity order is given by the magnitude of the slope of PEP as a

function of average SNR in a log-log scale

da = lim
SNR→∞

⎛

⎝−
log P

(

X → X̂

)

log SNR

⎞

⎠ (13)

Equivalently, a scheme achieving diversity order of da has an

error probability that behaves as P
(

X → X̂

)

∝ SNR−da .

It is therefore easy to see from (12) that a diversity order of

M × N can be obtained for space-time codes over Rayleigh

fading channels. Replacing (9) in (13) and taking the limit for

SNR → ∞, we observe that log G → 0 and, therefore, the

same asymptotical diversity order is also achieved for cascaded

Rayleigh fading. However, it should be emphasized that the

convergence of log G to zero is slow and, therefore the widely-

used definition of ”diversity gain” in terms of asymptotical di-

versity order is not able to capture the performance behaviour

over cascaded Rayleigh fading channels. To overcome this

problem, we define the effective diversity order (de) as

de = −
log P

(

X → X̂

)

log SNR
(14)

which obviously converges to da for asymptotically high SNR.

Fig.1 illustrates da over both Rayleigh and cascaded

Rayleigh channels for M = 2 and N = 1, 2, 4 considering an

error event with length of 2 and eigenvalues chosen as λ1 =
λ2 = 2. The asymptotical diversity orders for both channels

are 2, 4 and 8 for the considered cases as predicted through

(10) and (12). Fig.1 also demonstrates that the convergence

of effective diversity order to asymptotical diversity order is
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Fig. 1. Effective diversity order over Rayleigh and cascaded Rayleigh fading
channels (M=2).
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Fig. 2. BER performance of STTC over Rayleigh and cascaded Rayleigh
fading channels.

immediate for Rayleigh fading channels and is observed within

the range of practical SNR values. However, for cascaded

Rayleigh fading channels, this convergence is very slow and

only a partial diversity order is observed within the SNR range

of practical interest.

V. SIMULATION RESULTS

In this section, we present simulation results to verify our

analytical observations. As an example, we consider Tarokh

et.al’s 4-state 4-PSK STTC [1] designed for two transmit

antennas, i.e. M = 2. Bit error rate (BER) performance of

this code over both Rayleigh and cascaded Rayleigh fading

channels is illustrated in Fig.2 assuming one and two receive

antennas, i.e. N = 1, 2. A diversity order of M × N =
2, 4 is achieved for Rayleigh channels confirming (12). In

comparison to Rayleigh fading, we observe a performance

degradation in cascaded Rayleigh fading as predicted by

our derived expression in (10). Specifically at BER=10−4, a

performance loss of 7dB and 4.5dB is observed for N = 1, 2
antennas, respectively. We should further emphasize that the

slopes of performance curves for cascaded Rayleigh channels

are less than those observed for Rayleigh channels. Therefore,

space-time code enjoys only a partial diversity order over

cascaded Rayleigh channels in the considered SNR range of

(5dB, 30dB) which is practical for most purposes.

VI. CONCLUSION

We have derived an exact PEP expression for space-time

codes in cascaded Rayleigh fading channels through the MGF-

based approach. Our diversity analysis reveals out that the

asymptotical diversity order is equal to the product of number

of receive antennas and the number of transmit antennas which

is the same as that of conventional Rayleigh fading. However,

unlike Rayleigh channels this diversity advantage is partially

exploited within the practical SNR ranges.
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