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Diversity Analysis of Space-Time Coding in
Cascaded Rayleigh Fading Channels

Murat Uysal, Member, IEEE

Abstract— Cascaded Rayleigh distribution is used to model
multipath fading in mobile-to-mobile communication scenarios
and provides a better fit to experimental data in such scenarios
compared to the conventional Rayleigh channel model. In this
letter, we derive an exact expression for the pairwise error proba-
bility (PEP) of space-time trellis codes over the cascaded Rayleigh
fading channel, which is in the form of a simple single finite-
range integral. Through the derived PEP expression, we present
the maximum diversity order achievable over such channels
and demonstrate the performance degradation in comparison
to conventional Rayleigh channels. Monte-Carlo simulations are
further demonstrated to confirm the analytical results.

Index Terms— Space-time trellis coding, pairwise error prob-
ability, cascaded Rayleigh fading.

I. INTRODUCTION

SPACE-time trellis codes (STTCs) [1] have been proposed
as an effective approach to support high data rate transmis-

sion over fading channels. Since its introduction, a significant
amount of work has been published on the performance anal-
ysis of this new family of codes. Most of these works assume
either Rayleigh or Rician fading channels, which are com-
monly used to characterize the cellular radio systems. These
statistical models typically assume a wireless communication
scenario with a stationary base station antenna above roof-top
level and a mobile station at street level. On the other hand,
in mobile-to-mobile communication systems such as mobile
ad-hoc networks, intervehicle communications and intelligent
highway applications, both the transmitter and receiver are in
motion. Experimental results [2, 3] and theoretical analysis
[4, 5] demonstrate that cascaded Rayleigh distribution, also
sometimes known as double Rayleigh, provides an accurate
statistical model for mobile-to-mobile communications.

Although there is a vast literature dedicated to the per-
formance analysis over Rayleigh fading channels, there are
only a few results available for cascaded Rayleigh channels
which are restricted to single antenna scenarios [5], [6]. In
this letter, we study the error rate performance of STTCs
over cascaded Rayleigh fading via the derivation of a pairwise
error probability (PEP) expression. In their pioneering work on
STTCs, Tarokh et.al. [1] derived an upper bound on the PEP
using the classical Chernoff bound over the Rayleigh fading
channels. Exact PEP expressions for STTCs were also pre-
sented via different approaches [7, 8, 9, 10]. In this letter, we
derive an exact PEP expression for cascaded Rayleigh fading
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channels and present the maximum achievable diversity order
in such channels demonstrating the performance degradation
in comparison to conventional Rayleigh channels.

The rest of the paper is organized as follows: In Section
II, the transmission model under consideration is introduced.
In Section III, we present a PEP derivation for STTCs in
cascaded Rayleigh fading. In Section IV, we investigate the
maximum diversity order achievable over such channels and
compare it to that over Rayleigh channels. In Section V, we
provide simulation results and finally conclude in Section VI.

II. TRANSMISSION MODEL

We consider a wireless communication system with M
transmit antennas and N receive antennas. The binary data
stream is first modulated and mapped to a sequence of
complex modulation symbols. The modulated sequence is then
fed to the space-time encoder and transmitted over the wireless
channel. The receiver employs a maximum-likelihood decoder
and has perfect channel state information (CSI). The received
signal in the time interval l at the nth receive antenna is given
as

rl,n =
M∑

m=1

αm,nxm,l + zl,n, n = 1, ...N (1)

where xm,l is a complex valued modulation symbol transmit-
ted from the mth (m = 1, 2...M) transmit antenna at time
l and zl,n is the additive thermal noise term, the collection
of which is modeled as independent samples of a zero-mean
complex Gaussian random variable with variance N0/2 per
dimension. The fading coefficient αm,n represents the channel
gain from the mth transmit antenna to the nth receive antenna
and is assumed to be constant over the duration of one frame,
following a quasi-static channel assumption. αm,n is modeled
as the product of two independent complex Gaussian random
variables

αm,n = βm,n · γm,n (2)

where βm,n and γm,n have zero mean and variance of 0.5 per
dimension. Therefore, its magnitude |αm,n| follows a cascaded
Rayleigh distribution [5]

f (|αm,n|) = 4 |αm,n|K0 (2 |αm,n|) (3)

with normalized power E[|αm,n|2] = 1 . Here, K0(·) is the
modified Bessel function of the second kind of zero order.

III. DERIVATION OF PAIRWISE ERROR PROBABILITY

Let xl = [x1,l, x2,l, ..., xM,l] denote the code vector trans-
mitted from M transmit antennas in time interval l. For a
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frame length of L time intervals, we denote the codeword
matrix as X = [xT

1 ,xT
2 , ...,xT

L ] 1. The PEP represents the
probability of choosing the code matrix X̂ when indeed X
was transmitted. Under the assumption of perfect CSI, the
conditional PEP is given by [1]

P
(
X, X̂

∣∣∣ αm,n

)
= Q

⎛
⎝

√√√√ Es

2N0

N∑
n=1

αnAαH
n

⎞
⎠ (4)

where Q(.) is the Gaussian Q-function, Es is the en-
ergy per symbol, αn = (α1,n, ..., αn,M ) and A =(
X − X̂

) (
X − X̂

)H

. Introducing βn = (β1,n, ..., βM,n)
and the diagonal matrix of γn = diag (γ1,n, ..., γM,n), we
can rewrite (4) as

P
(
X, X̂

∣∣∣ βm,n, γm,n

)
= Q

⎛
⎝

√√√√ Es

2N0

N∑
n=1

βnDβH
n

⎞
⎠ (5)

where we define D = γnAγH
n . Following [1], we write

βnDβH
n =

M∑
m=1

χm |bm,n|2 (6)

where χm are the (non-negative) eigenvalues of D and
bm,n =

∑M
k=1 βk,nv∗

k,m is the mth element of the M -length
vector bn = βnVH . Here, V is a unitary matrix such that
VDVH = C, where C is a real diagonal matrix with entries
χm. Defining the eigenvalues of A as λm, we can further
write χm = λm |γm,n|2. It is straightforward to show that
bm,ns are zero-mean complex Gaussian random variables with
variance of 0.5 per dimension. Using the alternative form of
the Gaussian Q-function [11] and via the moment generating
function (MGF) approach [9], the average of the PEP over
the channel statistics βm,n (while γm,n is still treated as a
constant) is given by

P
(
X, X̂

∣∣∣ γm,n

)
=

1
π

π/2∫
0

N∏
n=1

M∏
m=1

sin2 θ

sin2 θ + Ωm |γn,m|2 dθ

(7)
where Ωm = (Es/4N0) λm . Taking an expectation of (7)
with respect to |γm,n| which is Rayleigh distributed, we have

P
(
X, X̂

∣∣∣ γm,n

)
=

1
π

π/2∫
θ=0

N∏
n=1

M∏
m=1

[
2

∞∫
0

sin2 θ·|γm,n|·exp(−|γm,n|2)
sin2 θ+Ωm|γm,n|2 d |γm,n|

]
dθ (8)

Exploiting i.i.d. properties of γm,n and using the results from
[12- p.364, 3.382.4], we obtain the final PEP expression in
the form of a single finite-range integral as

P
(
X, X̂

)
=

1
π

×
π/2∫

θ=0

[
M∏

m=1

sin2 θ

Ωm
exp

(
sin2 θ

Ωm

)
Γ

(
0,

sin2 θ

Ωm

)]N

dθ (9)

1Throughout the paper, we use (.)T and (.)H to represent transpose and
conjugate transpose operations respectively.

where Γ(., .) is the incomplete gamma function. To have
further insight into the performance over cascaded Rayleigh
fading, we can upper bound (9) replacing θ = π/2 to obtain

P
(
X, X̂

)
≤ G

(
Es

4N0

)−MN
(

M∏
m=1

λm

)−N

(10)

where we define G as

G = exp

[
N

(
Es

4N0

)−1 M∑
m=1

λ−1
m

]

×
[

M∏
m=1

Γ

(
0,

(
Es

4N0

)−1

λ−1
m

)]N

(11)

This can be compared to a similar bound for Rayleigh fading
channels [1]

P
(
X, X̂

)
≤

(
Es

4N0

)−MN
(

M∏
m=1

λm

)−N

(12)

It is seen that (10) and (12) are identical to each other expect
the additional term G which turns out to be a function of
signal-to-noise ratio SNR = Es/N0.

IV. ACHIEVABLE DIVERSITY ORDER

In this section, we investigate the diversity gain for space-
time codes operating over cascaded Rayleigh fading channels
based on the derived PEP expression. The asymptotical diver-
sity order is given by the magnitude of the slope of PEP as a
function of average SNR in a log-log scale

da = lim
SNR→∞

⎛
⎝−

log P
(
X → X̂

)
log SNR

⎞
⎠ (13)

Equivalently, a scheme achieving diversity order of da has an
error probability that behaves as P

(
X → X̂

)
∝ SNR−da .

It is therefore easy to see from (12) that a diversity order of
M × N can be obtained for space-time codes over Rayleigh
fading channels. Replacing (9) in (13) and taking the limit for
SNR → ∞, we observe that log G → 0 and, therefore, the
same asymptotical diversity order is also achieved for cascaded
Rayleigh fading. However, it should be emphasized that the
convergence of log G to zero is slow and, therefore the widely-
used definition of ”diversity gain” in terms of asymptotical di-
versity order is not able to capture the performance behaviour
over cascaded Rayleigh fading channels. To overcome this
problem, we define the effective diversity order (de) as

de = −
log P

(
X → X̂

)
log SNR

(14)

which obviously converges to da for asymptotically high SNR.
Fig.1 illustrates da over both Rayleigh and cascaded

Rayleigh channels for M = 2 and N = 1, 2, 4 considering an
error event with length of 2 and eigenvalues chosen as λ1 =
λ2 = 2. The asymptotical diversity orders for both channels
are 2, 4 and 8 for the considered cases as predicted through
(10) and (12). Fig.1 also demonstrates that the convergence
of effective diversity order to asymptotical diversity order is
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Fig. 1. Effective diversity order over Rayleigh and cascaded Rayleigh fading
channels (M=2).
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Fig. 2. BER performance of STTC over Rayleigh and cascaded Rayleigh
fading channels.

immediate for Rayleigh fading channels and is observed within
the range of practical SNR values. However, for cascaded
Rayleigh fading channels, this convergence is very slow and
only a partial diversity order is observed within the SNR range
of practical interest.

V. SIMULATION RESULTS

In this section, we present simulation results to verify our
analytical observations. As an example, we consider Tarokh
et.al’s 4-state 4-PSK STTC [1] designed for two transmit
antennas, i.e. M = 2. Bit error rate (BER) performance of
this code over both Rayleigh and cascaded Rayleigh fading

channels is illustrated in Fig.2 assuming one and two receive
antennas, i.e. N = 1, 2. A diversity order of M × N =
2, 4 is achieved for Rayleigh channels confirming (12). In
comparison to Rayleigh fading, we observe a performance

degradation in cascaded Rayleigh fading as predicted by
our derived expression in (10). Specifically at BER=10−4, a
performance loss of 7dB and 4.5dB is observed for N = 1, 2
antennas, respectively. We should further emphasize that the
slopes of performance curves for cascaded Rayleigh channels
are less than those observed for Rayleigh channels. Therefore,
space-time code enjoys only a partial diversity order over
cascaded Rayleigh channels in the considered SNR range of
(5dB, 30dB) which is practical for most purposes.

VI. CONCLUSION

We have derived an exact PEP expression for space-time
codes in cascaded Rayleigh fading channels through the MGF-
based approach. Our diversity analysis reveals out that the
asymptotical diversity order is equal to the product of number
of receive antennas and the number of transmit antennas which
is the same as that of conventional Rayleigh fading. However,
unlike Rayleigh channels this diversity advantage is partially
exploited within the practical SNR ranges.
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