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Drug resistance testing has been shown to be beneficial for clinical
management of HIV type 1 infected patients. Whereas phenotypic
assays directly measure drug resistance, the commonly used ge-
notypic assays provide only indirect evidence of drug resistance,
the major challenge being the interpretation of the sequence
information. We analyzed the significance of sequence variations
in the protease and reverse transcriptase genes for drug resistance
and derived models that predict phenotypic resistance from ge-
notypes. For 14 antiretroviral drugs, both genotypic and pheno-
typic resistance data from 471 clinical isolates were analyzed with
a machine learning approach. Information profiles were obtained
that quantify the statistical significance of each sequence position
for drug resistance. For the different drugs, patterns of varying
complexity were observed, including between one and nine se-
quence positions with substantial information content. Based on
these information profiles, decision tree classifiers were generated
to identify genotypic patterns characteristic of resistance or sus-
ceptibility to the different drugs. We obtained concise and easily
interpretable models to predict drug resistance from sequence
information. The prediction quality of the models was assessed in
leave-one-out experiments in terms of the prediction error. We
found prediction errors of 9.6–15.5% for all drugs except for
zalcitabine, didanosine, and stavudine, with prediction errors be-
tween 25.4% and 32.0%. A prediction service is freely available at
http:""cartan.gmd.de"geno2pheno.html.

Resistance testing significantly improves response to antiret-
roviral therapy in patients infected with HIV type 1 (HIV-

1), as was recently demonstrated in retrospective and prospective
studies (1–3). Drug resistance can either be directly assessed by
phenotypic assays or can be deduced from genotypic assays,
which are based on sequencing of the relevant parts of the viral
genome (4). Most phenotypic assays use recombinant virus
techniques directly measuring viral replication in the presence of
increasing drug concentrations (5, 6). The results can be inter-
preted easily, but the assays are time- and labor-consuming, and
are therefore restricted to specialized laboratories. In contrast,
genotypic assays can provide results within a few days, are less
expensive, and are now available as commercial test kits for
routine virologic diagnostics. The challenge with using genotypic
assays is the interpretation of sequence information. Interpre-
tation usually relies on tables of drug-resistance-associated
mutations (7). Whether a mutation is considered resistance-
associated or not is either based on the emergence of this
mutation in clinical samples or cell culture under continuous
drug pressure, or on the determination of drug resistance, after
the respective mutation has been inserted into a wild-type
background. However, with increasing numbers of antiretroviral
drugs and drug resistance-associated mutations, interpretation is
becoming increasingly difficult. This difficulty is because the
influence of a certain mutation on drug resistance cannot be

considered independently of other mutations, but that different
types of interactions must be taken into account (8). Further-
more, viruses may exhibit varying degrees of cross-resistance
even to drugs to which the patient has not yet been exposed (9).

Although it could be shown that phenotypic resistance to
protease inhibitors may be predicted by a few simple, carefully
chosen rules (10), computer-based methods that can quickly
analyze large sets of matched genotypic and phenotypic data are
becoming more and more helpful with growing complexity of
resistance patterns. Described approaches comprise database
pattern search (11, 12), the application of neural networks (13),
multiple correspondence analysis (14), cluster analysis, and
linear discriminant analysis (15). Using the so-called mutual
information, an information–theoretic correlation measure, we
quantitatively evaluated the statistical significance of each se-
quence position for drug resistance. We generated decision trees
(16–18) for the discrimination between resistant and susceptible
viruses as a tool for the prediction of the resistance phenotype
from genotypic data. Decision trees appear to be appropriate for
this task, as they naturally handle discrete data, evaluate infor-
mation context-specifically, and represent extracted knowledge
intelligible to human experts. They have recently been applied
successfully to protein sequence classification tasks such as
discriminating between soluble and insoluble proteins (19) and
the prediction of protein secondary structure (20). In particular,
decision trees were used for assigning HIV-1 protease sequences
to clusters of genotypically similar samples and predicting resis-
tance to two protease inhibitors by the mean phenotype of these
clusters (15). Here we show that decision tree building based on
mutual information is a powerful method for the prediction of
drug resistance and susceptibility from complex mutational
patterns for a broad spectrum of antiretroviral drugs.

Materials and Methods
Data Set. We analyzed 471 clinical samples from 397 patients sent
in for resistance testing between January 1998 and June 2000,
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mostly because of therapy failure. We determined viral genotype
and drug susceptibility to six nucleoside inhibitors of the reverse
transcriptase (NRTIs), zidovudine (ZDV), zalcitabine (ddC), di-
danosine (ddI), stavudine (d4T), lamivudine (3TC), and abacavir
(ABC); three nonnucleoside reverse transcriptase inhibitors
(NNRTIs), nevirapine (NVP), delavirdine (DLV), and efavirenz
(EFV); and five protease inhibitors (PIs), saquinavir (SQV), indi-
navir (IDV), ritonavir (RTV), nelfinavir (NFV), and amprenavir
(APV). We obtained 443–469 genotype–phenotype pairs for each
of these drugs, except for APV, for which we obtained 277 pairs.

Resistance Testing. HIV drug resistance testing was performed as
described (6, 10). For genotyping, a fragment of the pol gene
containing the complete protease and the first 650–750 nt of the
reverse transcriptase (RT) was analyzed by direct sequencing of
PCR products. All sequences have been deposited in GenBank
(accession numbers AF347117 to AF347605). The detection
limit for minority species was about 30%.

Phenotyping was performed by using a recombinant virus
assay (6). A PCR product containing the complete protease and
the first 900 nt of the RT was obtained from patient plasma and
ligated into a matched deletion mutant of pNL4–3 (GenBank
accession number U26942). After titration, recombinant viruses
were cultivated in the presence of increasing amounts of anti-
retroviral drugs. Sensitive detection of viral replication was
obtained by an indicator cell line containing the secreted alka-
line phosphatase gene under the control of the simian immu-
nodeficiency virus long terminal repeat (21). The resistance
factor was calculated by dividing the 50% inhibitory concentra-
tion (IC50) of the respective recombinant virus by the IC50 of the
nonresistant reference strain (NL4–3).

Data Modeling. After sequence alignment to the pol gene of HXB2
(GenBank accession number K03455), we found one sample with
a deletion and eight samples containing insertions of two amino
acids between positions 67 and 70 of the RT as described (22).

We modeled each protease sequence with one attribute for
each of its 99 aa, allowing as a value either 1 of the 20 naturally
occurring amino acids or ‘‘unknown’’ for positions for which

ambiguous or no sequence information was available. For the
RT, we defined one binary attribute indicating the occurrence of
an insertion and 250 further attributes for each of the first 250
aa of the RT. A binary attribute for deletions was not introduced
because only one sequence showed a deletion. For more than
95% of the samples, sequence information was available for the
entire protease and up to position 220 or further for the RT.

For each drug, we divided the sample set into two classes by
attaching to each sequence either the label ‘‘resistant’’ or
‘‘susceptible,’’ depending on whether the resistance factor of the
sample exceeded a certain drug-specific cutoff value or not. We
decided to use the following values based on previously pub-
lished data (10, 23–25): 8.5 for ZDV, 3TC, and the NNRTIs; 2.5
for ddC, ddI, d4T, and ABC; and 3.5 for all PIs (Table 1).

Mutual Information. For a random variable X with finite alphabet
(set of possible outcomes) ! and probability distribution p the
quantity,

H"X# ! " Ep"x#log2p"X# ! " $
x ! !

p"x#log2 p"x#,

where E denotes the expectation, is called the entropy of X (26).
If Y is another discrete random variable and p(Y # X) denotes the
conditional probability, then H(Y # X) $ %Ep(x,y) log2 p(Y # X) is
known as the conditional entropy. The mutual information
between X and Y is defined as I(X, Y) $ H(Y) % H(Y # X). This
quantity measures the amount of information that X provides
about Y. It follows from these definitions that

I"X, Y# ! Ep"x,y# log2 "p"X, Y#"p"X#p"Y##.

Therefore, I(X, Y) is proportional to the log-likelihood ratio
between the joint distribution p(X, Y) and the product distribu-
tion p(X)p(Y).

Here, the observed amino acids at specific sequence positions
were considered as the outcomes of random variables Xi (i $ 1,
. . . , 99 for the protease and i $ 0, . . . , 250 for the RT) with
alphabet ! comprising the 20 natural amino acids. Similarly, the
sequence label was interpreted as the outcome of another

Table 1. Results from decision tree building (learning phase), leave-one-out experiments, and an example of a prediction compared
with the actual phenotype

Drug Cutoff
No. of

samples

Resistant
fraction,

%

Learning phase Leave-one-out experiments Prediction example

Minimal
split*

No. of
interior
vertices

Training
error, %

Prediction
error, %

Sensitivity,
%

Specificity,
%

Observed
resistance

factor
Observed

class
Predicted

class
Confidence

factor

ZDV 8.5 456 58.1 2 5 8.8 10.7 92.1 85.8 419 resistant resistant 0.79
ddC 2.5 456 43.0 7 5 23.7 26.3 58.2 85.4 1 susceptible susceptible 0.78
ddI 2.5 456 49.1 7 4 25.7 32.0 73.7 62.5 3 resistant resistant 0.58
d4T 2.5 456 38.6 7 4 21.5 25.4 63.1 81.8 2 susceptible susceptible 0.68
3TC 8.5 452 54.4 2 4 7.7 10.4 87.4 92.2 13 resistant resistant 0.60
ABC 2.5 445 66.3 5 5 13.5 15.5 92.5 68.7 4 resistant resistant 0.66
NVP 8.5 457 45.1 2 7 7.0 9.6 82.0 97.2 407 resistant resistant 0.74
DLV 8.5 455 36.5 2 5 8.1 10.5 77.7 96.2 168 resistant resistant 0.73
EFV 8.5 443 35.9 2 6 7.7 10.2 79.9 95.4 7 susceptible susceptible 0.92
SQV 3.5 465 46.7 2 5 11.2 12.5 87.6 87.5 39 resistant resistant 0.87
IDV 3.5 469 48.8 2 5 11.2 10.9 89.5 88.8 32 resistant resistant 0.87
RTV 3.5 469 50.1 2 4 9.0 10.2 89.8 89.7 33 resistant resistant 0.88
NFV 3.5 468 53.6 2 4 9.6 11.5 89.6 87.1 93 resistant resistant 0.91
APV 3.5 277 32.9 2 4 10.5 12.6 82.4 89.8 3 susceptible susceptible 0.92

Samples with a resistance factor higher than the value denoted ‘‘Cutoff’’ are considered resistant. The two rightmost columns show the output of the
prediction system for a selected sample. This sample contained the following amino acid exchanges relative to the reference virus HXB2: Q2X, V3I, I15V, Q18X,
L19X, K20I, L23R, M36I, K43T, I62V, L63P, A71T, I72V, G73S, and L90M in the protease gene, and V35T, M41L"M"V, V60I, D67N, T69D, K70R"S, L74X, V75T, R83S,
F87F"L, L92F, I94S, V108I, E122K, I135V, S162C, V179I, Y181F, Q207E, L210L"F, L214F, and T215Y in the RT gene.
*Minimum number of samples that have to be present in at least two branches at each split.
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random variable Y with possible outcomes in ! $ {resistant,
susceptible}. Thus, I(Xi, Y) is the amount of information that
sequence position i provides about discriminating resistant from
susceptible samples.

Decision Trees. A decision tree is an acyclic graph whose interior
vertices specify tests to be carried out on a single attribute and
whose leaves indicate classes. Classification of a sample is
achieved by running through the tree from the root to a leaf
according to the values (amino acids) of the attributes (sequence
positions) of the sample that appear on this path. We used the
software package C4.5 to generate decision trees (16). The
classifiers were constructed by recursively splitting the sample
set. Each subset gives rise to one new vertex connected with an
edge to its parent. For each of the new subsets we proceed in the
same way until at each leaf all samples belong to the same class.

For determining the split, the normalized mutual information,
defined as I(Xi, Y)"H(Xi), is calculated from the subset to be split.
This ratio expresses the information generated by the split that
appears helpful for classification. We chose the attribute for
which this ratio is maximal subject to the constraint that the
mutual information is at least as great as the average mutual
information over all attributes. The normalized mutual infor-
mation is one possible measure of impurity, and other possible
measures are discussed elsewhere (16, 17). Unknown attribute
values are assumed to be distributed probabilistically according
to the known values, and are therefore divided into fractions
distributed over several vertices.

To avoid overfitting, trees are pruned following a ‘‘reduced
error-pruning’’ strategy (27). The error estimate for the removal of
subtrees also gives rise to confidence factors given with each
prediction based on the tree (Table 1). At each leaf of the decision
trees, the (possibly fractional) number of samples that have been
classified by this leaf and the number of errors that are estimated
to occur on unseen samples are given in brackets. The minimum
number of samples in at least two branches at each split was
optimized with respect to the estimated prediction error. Best
results were obtained with seven samples for ddC, ddI, and d4T, five
samples for ABC, and two samples for all other drugs.

Results
Analysis of the frequency distribution of resistance factors
revealed considerable differences between drugs (Fig. 1).
Whereas resistance factors of more than 100 were detected for
samples resistant to ZDV, 3TC, NNRTIs, and PIs, the maximum
of resistance was much lower for ddI, ddC, d4T, and ABC.
Furthermore, a second peak in the frequency distribution at
higher resistance factors was not observed for these drugs.

Mutual Information. For all drugs, we calculated mutual informa-
tion profiles quantifying the usefulness of each sequence position
for discriminating between susceptible and resistant samples
(Fig. 2 a–n). All amino acid positions showing substantial
information content have already been described to be associ-
ated with HIV drug resistance and many of them appear in the
profiles for several drugs. The approach was validated by cal-
culating mutual information profiles for randomly drawn subsets
of 200–300 samples (data not shown). Very little variation was
observed for the different data sets indicating that the mutual
information profiles do not depend critically on the sample size.

Comparing profiles within drug classes reveals a high similarity
among NNRTIs (Fig. 2 g–i) and especially among PIs (Fig. 2 j–n).
For all PIs, position 90 appeared to be highly relevant, however,
several other positions (10, 46, 54, 63, 71, 73, and 82) also have a
substantial information content for all PIs investigated. Consistent
with recent findings (28), position 84 provided more relevant
information on resistance to APV than to the other PIs. Among the
NRTIs, we observed substantially different, distinct profiles for

ZDV and 3TC, whereas the other NRTI profiles showed much
weaker signals. Profiles for ddI and ABC combine elements of
ZDV and 3TC profiles, whereas those for ddC and d4T resemble
3TC and ZDV profiles, respectively, on a lower scale.

Decision Trees. We generated decision tree models that describe
phenotypic drug resistance in terms of the amino acid compo-
sition of the enzyme targeted by the drug. This learning phase
resulted in one decision tree for each drug (Fig. 3 a–n). We found
rather simple models for all drugs with only 4–7 interior vertices
(Table 1). We observed the highest degree of heterogeneity of
structures within the group of NRTIs, as was suggested by the
mutual information profiles. Also, when generated with only at
least two samples in each branch (instead of seven and five,
respectively, see Materials and Methods), the trees for ddC, ddI,
d4T, and ABC grew much larger (8–12 interior vertices, data not
shown), but tended to overfit the data. Thus, the genetic basis of
drug resistance appears to be more complex for these drugs.
Several trees show a linear structure without major branchings,
where most of the resistant samples are classified by considering
two to five sequence positions one after another, whereas most
of the susceptible samples are assigned to their class after
considering all these positions. In contrast, decision trees for the
NNRTIs (Fig. 3 g–i) exhibit a different structure with three or
four branches arising from the first split.

Several amino acid positions that do not show high peaks in the
mutual information profiles (positions 70, 74, 77, 82, 122, 124,
151, 179, and 211 in the RT, and 30, 31, 32, 72, and 88 in the
protease) appear in the decision trees, whereas on the other hand
a number of sequence positions with high peaks in the mutual
information profiles do not show up in the decision trees,
especially for the PI.

We examined the ability of the decision trees to model our set
of training samples by calculating the training error, defined as
the percentage of misclassified training samples. Training errors
ranged from 7.0–13.5% except for ddC, ddI, and d4T with
training errors between 21.5% and 25.7% (Table 1).

Prediction Quality. To estimate the predictive power of the models
on unseen cases we performed leave-one-out experiments. In
this crossvalidation technique, for each sample, a decision tree

Fig. 1. Frequency distribution of resistance factors of a subset of 271 samples
for which data are available for all 14 antiretroviral drugs. Resistance factors
(RF) have been rounded to integers and grouped into equidistant bins on a
logarithmic scale. RF values smaller than one are reported as equal to one.
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is generated on all but this sample and the respective tree is then
used for classifying this sample. The percentage of misclassified
samples, the prediction error, estimates the ability of the models
to generalize from the sample set (29). We found prediction
errors in the range of 10.2–12.6% for the PIs, 9.6–10.5% for the
NNRTIs, and 10.7, 10.4, and 15.5% for ZDV, 3TC, and ABC,
respectively. Error rates for ddC, ddI, and d4T ranged from
25.4% to 32.0% (Table 1). A more detailed picture of the error
rates is given in terms of the sensitivity (percentage of pheno-
typically resistant viruses that were correctly scored as ‘‘resis-
tant’’) and specificity (percentage of phenotypically susceptible
samples that were correctly scored as ‘‘susceptible’’) of the
models. The decision trees achieved sensitivities ranging from
77.7% to 92.5% and specificities between 68.7% and 97.2%,
except for ddC, ddI, and d4T, where sensitivities between 58.2%
and 73.7% and specificities between 62.5 and 85.4% were
obtained (Table 1). The prediction method described here can
be used freely on the world wide web at http:""cartan.gmd.de"
geno2pheno.html. A confidence factor is given for all
predictions.

Discussion
We applied a machine learning approach to analyze correlations
between HIV-1 genotype and resistance phenotype based on
more than 400 samples. No prior knowledge about drug resis-
tance has been incorporated and all sequence positions have
been considered equally. Thus, the results provide an unbiased
picture of drug resistance in clinical samples.

Although our approach is therefore principally capable of
identifying as yet unknown resistance-associated mutations, all
sequence positions that were recovered in the mutual informa-
tion profiles have been described as resistance-associated (7).
Nevertheless, some results are unexpected. For example, RT
positions 44 and 118 show high peaks in the profiles for ZDV and
d4T, but in clinical samples and mutagenesis experiments they
have been associated only with resistance to 3TC (30). On the
other hand, some positions previously associated with drug

resistance (e.g., protease position 30 for NFV, RT position 151
for NRTI multidrug resistance) do not show up in the mutual
information profiles; this may be because they are too rare in the
data set or because their appearance is associated with different
resistance levels than the chosen cutoffs specify. For example,
using a cutoff value of 8.5 instead of 2.5 for ABC increased
substantially the mutual information of position 151 (data not
shown).

One may wonder if the observed similarities between some
mutual information profiles reflect true crossresistance or only
statistical coincidence, e.g., because of preferred combination
therapies. The lack of similarities between profiles of NRTIs and
NNRTIs, which are often administered together, as well as the
mutually exclusive profiles of ZDV and 3TC—also a frequent
drug combination—demonstrate the general ability of the
method to distinguish different profiles even within the same
drug class. Thus, the observed similarities in the mutual infor-
mation profiles indeed appear to indicate crossresistance.

We generated decision trees that identify patterns of several
positions predictive of drug resistance or susceptibility. The
decision tree method appears adequate because the classifica-
tion knowledge is presented in a form that human experts can
easily understand and examine, and because it is capable of
representing effects of interactions between different mutations.
From decision trees it is easy to derive rules, the currently
dominating form of representing HIV-1 resistance knowledge.
Tracing out a path from the root of the tree to a leaf yields a rule
whose premise is induced by the interior vertices on the path and
whose conclusion is the class represented by the leaf. For
example, following the path through positions 184 and 75 for
3TC yields (among others) the rule: if RT codon 184 codes for
Methionine (M) and RT codon 75 codes for Alanine (A), Glutamic
acid (E), or Threonine (T), then the virus carrying this gene is
resistant to 3TC (Fig. 3e). Human experts can examine such rules,
and they can be used for coding resistance knowledge in expert
systems designed for selecting optimal therapies (31). Derived
rules either predict resistance or susceptibility to a certain drug,

Fig. 2. Mutual information profiles for ZDV (a), ddC (b), ddI (c), d4T (d), 3TC (e), ABC ( f), NVP (g), DLV (h), EFV (i), SQV (j), IDV (k), RTV (l), NFV (m), and APV
(n). In a–i, position 0 denotes the insertion flag, 1–250 represent the first 250 positions of the HIV-1 reverse transcriptase; in j–n, positions 1–99 of the HIV-1
protease are displayed. Peaks above 0.06 bits are annotated for ddC, ddI, and d4T, and peaks above 0.1 bits are annotated for all other drugs.
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thus addressing the problem of identifying drugs that will most
probably be active as part of a new regimen. The extracted
knowledge can also be useful in investigating the structural basis
for drug resistance. The findings obtained from the SQV deci-
sion tree, for example, are in concordance with insights into the
molecular mechanisms of drug resistance recently obtained from
the crystal structure of a mutant–inhibitor complex (32).

It has been shown that mutations often evolve in a certain
order (33) and that the effect of several mutations depends on
the presence or absence of other mutations (8). Decision trees
represent this dependence in a natural way. Indeed, two exam-
ples show that the decision trees are able to capture resensitizing
or hypersusceptibility effects. In the first case, ZDV resistance
deduced from RT mutation T215Y appears to be reversed by
mutations V or I at RT position 74 (Fig. 3a), an effect that has
been described (7). In the second case, the APV hypersuscep-
tibility effect of protease mutation N88S that has been recently
described in vitro (34) is also represented in the APV decision
tree (Fig. 3n). Interestingly, a similar pattern is observed in the
SQV decision tree, where samples with the resistance-associated

mutation I54V and additional mutations R, T, or V at position
72 are classified as susceptible (Fig. 3j). This finding suggests that
the latter mutations at position 72 can reverse the effect of
mutation I54V, though independent confirmation is needed.

The mutational patterns that appear in the decision trees do
not necessarily consist of those sequence positions with the
highest peaks in the corresponding mutual information profiles,
because profiles generated on subsets of samples created by
subsequent splits are in general different from those of the
complete sample set. Even the roots of the trees do not always
correspond directly to the highest peaks in the profiles, because
the test criterion further requires normalization (see Materials
and Methods). In particular, mutations that frequently occur
simultaneously will not all appear in a decision tree because this
would not provide additional information for classification. For
example, of the six amino acid positions with the highest peaks
in the profile for ZDV (Fig. 2a) only two (41 and 215) appear in
the ZDV decision tree (Fig. 3a). A similar observation can be
made for the prominent protease sequence positions (Figs. 2 j–m
and 3 j–m). Thus, decision trees reduce the complexity observed
in mutual information profiles.

Fig. 3. Decision trees for ZDV (a), ddC (b), ddI (c), d4T (d), 3TC (e), ABC ( f), NVP (g), DLV (h), EFV (i), SQV (j), IDV (k), RTV (l), NFV (m), and APV (n). Numbers N(E)
at the leaves denote the number of samples (N) and the estimated error (E). Branches leading to the same leaf are summarized. Capital letters annotating the
edges denote amino acids in one-letter code.
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On the other hand, a number of sequence positions without
high peaks in the profiles are incorporated into the decision
trees. These positions are considered useful for classification
either because of a very low entropy and an only moderate
amount of mutual information (e.g., RT position 151 in the ddI
decision tree; Fig. 3c) or because of a specific context (e.g.,
position 30 in the NFV decision tree in the context of 90L, 54I,
and 46M; Fig. 3m).

The predictive power of the decision trees on unseen cases is
very good, with error rates ranging between 9.6% and 15.5% for
most drugs. Higher error rates for ddC, ddI, and d4T may be
caused by the fact that for these drugs the sample set is not
divided into two parts, one being clearly susceptible, the other
highly resistant (Fig. 1). Furthermore, the cutoff value of 2.5
used for these drugs overlaps with the phenotypic interassay
variability (6). However, this low value has been shown to be
predictive of therapy failure (23). Nevertheless, we could obtain
a concise model with good prediction results for ABC, which
shows a frequency distribution of resistance factors similar to
ddC, ddI, and d4T (Fig. 1). All of these four NRTIs combine
characteristics of ZDV and 3TC resistance. Therefore, it may be
speculated that there are two principal NRTI resistance mech-
anisms, one responsible for ZDV resistance and the other
responsible for 3TC resistance. Both mechanisms may act syn-
ergistically in the case of ABC, but antagonistically for ddC, ddI,
and d4T. This hypothesis could explain the weak signals ob-
served in the profiles for the latter drugs.

Prediction accuracy will always be limited by the uncertainty
of the experimental data, e.g., because of the variability of
phenotyping, sequencing errors and the quasi-species nature
of HIV. Another constraint consists in the limited flexibility of
describing the functional relationship between sequence infor-
mation and drug resistance provided by the chosen type of
model. Furthermore, because the treatment history of patients

is a major driving force for the development of amino acid
changes, the usefulness of our analysis may be limited for
patients with substantially different therapy regimens. For ex-
ample, our results for amprenavir, a PI not yet approved for
clinical use in Germany during the time the samples were taken,
may lack genotypic changes that develop exclusively under
amprenavir-containing regimens (such as protease mutation
I50V).

Certainly, a comparison of the decision tree method presented
here with other approaches (rule-based or data-driven) is de-
sirable. Toward this end, it has been shown that linear support
vector machines, a highly performant machine learning tech-
nique, gives slightly (but nonsignificantly) better predictions on
the same data set analyzed here (35). However, contrary to
decision trees, interpretation of the support vector models and
comparison with existing knowledge is not straightforward.
Thus, decision trees provide suitable models for revealing the
diversity and complexity of HIV-1 drug resistance. They have
proven to provide concise and interpretable models that for most
drugs are capable of reliable predictions.
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