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Abstract The multidimensional character and inherent conflict with categorisation of

interdisciplinarity makes its mapping and evaluation a challenging task. We propose a

conceptual framework that aims to capture interdisciplinarity in the wider sense of

knowledge integration, by exploring the concepts of diversity and coherence. Disciplinary

diversity indicators are developed to describe the heterogeneity of a bibliometric set

viewed from predefined categories, i.e. using a top-down approach that locates the set on

the global map of science. Network coherence indicators are constructed to measure the

intensity of similarity relations within a bibliometric set, i.e. using a bottom-up approach,

which reveals the structural consistency of the publications network. We carry out case

studies on individual articles in bionanoscience to illustrate how these two perspectives

identify different aspects of interdisciplinarity: disciplinary diversity indicates the large-

scale breadth of the knowledge base of a publication; network coherence reflects the

novelty of its knowledge integration. We suggest that the combination of these two

approaches may be useful for comparative studies of emergent scientific and technological

fields, where new and controversial categorisations are accompanied by equally contested

claims of novelty and interdisciplinarity.
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Introduction

In policy discourse interdisciplinarity is often perceived as a mark of ‘good’ research:

interdisciplinary research is seen as more successful in achieving breakthroughs and rel-

evant outcomes, be it in terms of innovation for economic growth or for social needs. This

has led to policies aimed at fostering interdisciplinarity, particularly in fields, such as

biotechnologies or nanotechnologies, regarded as emerging through technological con-

vergence. However, there is no systematic evidence, to our knowledge, showing that

‘‘more’’ interdisciplinarity leads to ‘‘better’’ research, although there is plenty of anecdotal

evidence suggesting that interdisciplinarity has played a crucial role in many scientific

breakthroughs (e.g. Hollingsworth’s (2006) work on biomedical research). This lack of

evidence stems from the difficulties of agreeing on criteria to define scientific performance

(a complex issue we will not discuss here) and intensity of interdisciplinarity (the aim of

this paper).

The concept of interdisciplinarity and its variants (multi, trans, crossdisciplinarity)1 is

problematic, if not controversial (Weingart and Stehr 2000). First, given its polysemous

and multidimensional nature (Sanz-Menéndez et al. 2001), there is no agreement about

pertinent indicators, or the appropriateness of categorisation methods (Bordons et al.

2004). Second, although the etymology of inter-, multi-, trans- and cross-disciplinarity

suggests that this is a property that is between, beyond or across various disciplines,

interdisciplinarity is widely and ambiguously used to mean research spanning a variety of

areas—academic disciplines, technological fields and/or even industrial sectors. Conse-

quently, interdisciplinarity has been declared to be ‘no longer adequate’ (Klein 2000, p. 3)

or a misnomer (Gläser, J., 2006, personal communication). Thus, the process of integrating

different bodies of knowledge rather than transgression of disciplinary boundaries per se,

has been identified as the key aspect of so-called ‘interdisciplinary research’ (National

Academies 2005).

How can this knowledge integration be assessed? While some sort of taxonomy is

necessary to ‘shrink’ and locate on a manageable map the integration occurring in the

gigantic landscapes of scientific knowledge, any categorisation entails the adoption of

‘rigid’ boundaries, which hinders accurate description of the ‘fluid’ dynamics of science

(Zitt 2005). This tension between taxonomy and dynamics is particularly acute in emergent

fields, and often produces conflicting views. For example, in nanotechnology, coarse-

grained studies tend to emphasize the interdisciplinary nature of the field (Meyer and

Persson 1998; Leydesdorff and Zhou 2007), whereas lower level studies suggest that,

below the re-labelling, genuine knowledge integration is occurring at a slower pace

(Schummer 2004; Rafols 2007).

Policies fostering interdisciplinarity, therefore, sometimes appear to be based more on

conventional wisdom and arbitrary classification than on empirical evidence. This inves-

tigation aims to inform policy-making on the dynamics of emerging fields by providing

measures that capture the intensity of interdisciplinarity in the wider sense of knowledge

integration. We do so by combining macro and micro level perspectives. We use as case

studies individual publications in biomolecular motors, a research specialty of bionano-

science, and analyse interdisciplinarity as revealed from the set of references.

The paper is organised as follows. Section ‘‘Conceptual framework’’ presents the

concepts of diversity and coherence, relates them to the literature on interdisciplinarity and

proposes an analytical framework to investigate knowledge integration. Section ‘‘Data and

1 In this study interdisciplinarity refers to all these types of cross-disciplinary research.
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methods’’ describes the empirical data and the operationalisation of diversity and coher-

ence as bibliometric indicators. Section ‘‘Case studies in molecular motors’’ applies the

diversity-coherence framework to case studies of individual articles in biomolecular

motors. Section ‘‘Conclusions’’ summarises the results and discusses their implications.

Conceptual framework

Review of bibliometric studies on interdisciplinarity

Several bibliometric studies have addressed the issue of interdisciplinarity, directly (see

review by Bordons et al. 2004) or through discussion of related issues such as mapping

knowledge flows among fields (see review by Zitt 2005). Its study involves the choice of a

disciplinary taxonomy, and/or relational properties (similarities, co-occurrences, flows) to

characterise the interactions between elements or categories.

Most investigations use a top-down approach and predefined categories (typically ISI

Subject Categories—SCs) to study their proportions and/or relations. For example, van

Raan and van Leeuwen (2002) describe interdisciplinarity in an institute in terms of the

percentage of publications and citations received to and from each SCs. In the following

three sections, we explore how these studies can be conceptualised as expressing disci-
plinary diversity.

Some investigations adopt a bottom-up approach, in which the low-level elements

investigated (e.g. publications, papers) are clustered or classified into factors on the basis of

multivariate analyses of similarity measures (Small 1973; Braam et al. 1991; van den

Besselaar and Leydesdorff 1994; Schmidt et al. 2006). These clusters are then projected in

2D or 3D maps to provide an insight into the structure of the field and estimate the degree

of network-level similarity. Similarity measures have also been used to compute network

properties, such as centralities, to identify interdisciplinarity (Otte and Rousseau 2002;

Leydesdorff 2007). Following Nesta and Saviotti (2005), in this study, we conceptualise

network-level properties as network coherence.

We build on top-down and bottom-up approaches, to develop a methodology combining

(i) diversity measures using large-scale disciplinary categories, with (ii) network measures

based on similarities among publications.

Definition of interdisciplinarity

In line with a number of works (National Academies 2005; Porter et al. 2006, p. 3),

interdisciplinarity is defined here as a mode of research that integrates concepts or theories,

tools or techniques, information or data from different bodies of knowledge. As highlighted

by Porter et al., the key concept is ‘knowledge integration’. In order to capture the process

of integration in research, we need to investigate two aspects:

Diversity: number, balance and degree of difference between the bodies of knowledge

concerned;

Coherence: the extent that specific topics, concepts, tools, data, etc. used in a research

process are related.

In this framework, we view the knowledge integration as a dynamical process that is

characterised by high cognitive heterogeneity (diversity) and increases in relational
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structure (coherence); in other words as a process in which previously different and dis-

connected bodies of research become related.

Diversity: concept and measures

The concept of diversity is used in many scientific fields, from ecology to economics and

cultural studies, to refer to three different attributes of a system comprising different

categories (Stirling 1998, 2007; Purvis and Hector 2000):

• variety: number of distinctive categories;

• balance: evenness of the distribution of categories;

• disparity or similarity2: degree to which the categories are different/similar.

Figure 1 depicts how an increase in any of these attributes results in an increase in the

diversity of the system examined.

Stirling (2007) shows that classic indices of diversity, such as Shannon’s or Simpson’s3,

measure a combination of variety and balance, but fail to account for the distances or

similarities between categories. On the basis of a set of criteria, he proposes a general

diversity heuristic in order to explore how diversity indices differ when more or less

emphasis is given to variety, balance and similarity. Stirling’s heuristic can be formulated

in a generalised diversity index which reduces to the traditional indices for specific set of

parameters a, b (Stirling 2007, p. 7). For parsimony, here we define Stirling index D as the

Variety:
Number of 
disciplines

Balance:
Evenness of 
distribution

Disparity or 
Similarity:
Degree of difference

Increasing
Diversity

Fig. 1 Schematic representation of the attributes of diversity, based on Stirling (1998, p. 41)

2 Hereafter we will use only the term similarity, which is the one commonly used in bibliometrics.
3 Simpson’s diversity is defined as (1-Simpson Index), where the Simpson index is the commonly used
measure of concentration (also known as Herfindahl-Hirschman Index in disciplines such as economics).
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variant for a = 1, b = 1, the simplest form incorporating variety, balance and similarity.4

Table 1 presents the notation and diversity indices used in our study.

As the formulae show, Stirling index D can be understood as a Simpson diversity in

which the products of proportions of categories are weighted by distance/similarity. Our

interest in using Stirling’s framework to track interdisciplinarity is twofold. First, since

Stirling’s generalised formulation needs a metric (dij) and has open values for the

parameters a and b, it highlights that the mathematical form of any diversity index includes

some prejudgement of the aspect of diversity that is considered important. High values for

b give more weight to the contribution of large categories, and high values for a see the co-

occurrence of distant categories as more important. The choice of the metric used to define

distance is inevitably value laden. Second, and very importantly for emerging fields, the

inclusion of distance among categories lessens the effect of inappropriate categorisation

changes: if a new category i is very similar to an existing category j, their distance dij will

be close to zero, and its inclusion in categories list will result in only slightly increased

diversity.5

In the next section, we explore how these measures relate to already developed mea-

sures of interdisciplinarity.

Use of diversity in studies of interdisciplinarity

In this section, we present some illustrations of how bibliometric studies explicitly or

implicitly address the properties of diversity, namely variety, balance and similarity, when

investigating interdisciplinarity:

Variety: Morillo et al. (2003, p. 1241) for each SC, counted the number of other SCs

with which it shared journals. Presentations of disciplinary profiles, e.g. in bar charts,

provide visual cues for this variety (e.g. van Raan and van Leeuwen 2002, p. 611).

Balance: Since Porter and Chubin’s (1985) seminal contribution, perhaps the most

common indicator of interdisciplinarity has been the percentage of citations outside the

discipline of the citing paper. Van Leeuwen and Tijssen (2000) showed that this could be

as high as 69% on average. Similarly, Schummer (2004, p. 449) uses the percentage of

co-occurrences of affiliations based on different disciplines as indicator.

Table 1 Selected measures of
diversity

Notation

Proportion of elements in category i: pi

Distance between categories i and j: dij

Similarity between categories i and j: sij = 1 - dij

Indices

N = Variety N

H = Shannon �
P

i pi ln pi

I = Simpson diversity
P

i;j i 6¼jð Þ pipj ¼ 1�
P

i p2
i

D = Stirling (a = 1, b = 1)
P

i;j dijpipj ¼ 1�
P

i;j sijpipj

Generalised Stirling
P

i;j da
ij pipj

� �b

4 Stirling index has become known in ecology literature as Rao’s quadratic entropy (Rao 1982).
5 One example could be ‘Nanoscience&Nanotechnology’ (N&N) from the ISI categorisation: according to
Leydesdorff’s and Rafols’ metric (2009), N&N has a distance of only 0.0354 with ‘Materials Science,
multidisciplinary’, whereas the distance between the latter and a relatively related field, such as ‘Physics,
applied’, is 0.1916.
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Similarity: Measures of similarity among predefined categories have been widely used

to visualise the relative positions of different scientific disciplines (Moya-Anegón et al.

2004, 2007). Although in most cases associated dissimilarity values are not presented, the

visualisation implicitly conveys the degree of diversity.6

In some instances, these three properties are explicitly addressed in the same study. An

interesting case is Morillo et al.’s work on the multi-assignation of journals to SCs (Morillo

et al. 2003; Bordons et al. 2004, pp. 447–453). For each category, these studies looked at:

• the balance, in terms of percentage of multi-assigned journals for one SC;

• the variety of links with other SCs, namely the number of different SCs with which a

given SC shares journals;

• the strength of linkages (or similarities) given by number of co-assigned journals for

two SCs.

This multidimensional approach, covering different aspects of disciplinary diversity,

allowed Morillo and co-workers to develop an elaborate taxonomy of interdisciplinarity

types across science fields.

Finally, some studies use more complex indicators, such as the Pratt number (similar to

Simpson’s; see Morillo et al. 2001), or Shannon entropy (Barjak 2006), which combine the

properties of variety and balance.7

While the bibliometric studies referred to above touch on particular aspects of diversity,

to our knowledge, only the recent paper by Porter et al. (2007) actually integrates the

attributes of variety, balance and similarity into one index. Interestingly, Porter’s indicator

of Integration is a particular parameterisation of Stirling’s index D (see Table 1), where the

similarities sij are Salton’s cosines for co-citation patterns among ISI SCs. Here, we op-

erationalise Stirling’s diversity following Porter’s indicator, as described in the Data and

Methods section.

Coherence: concept and measures

The concept of coherence aims to capture the extent to which of a system’s elements are

consistently articulated and form a meaningful constellation (Stirling, personal commu-

nication). Hence, coherence is a general property that addresses the functionality of a

system. In our bibliometric context, coherence expresses the extent to which publication

networks form a more or less compact structure. If we take degree of cognitive similarity

as the linkage between publications (e.g. by using co-citation, co-word or bibliographic

coupling), a more clustered network is seen as having higher cognitive coherence.

Coherence, or cognate concepts such as cohesion or compactness, have been exten-

sively investigated in information sciences (see Egghe and Rousseau 2003, for a biblio-

metric discussion). In the context of economic studies of innovation, coherence has been

utilised to account for the aggregated relatedness (or similarity) of the firm’s technological

base, with the idea that ‘‘coherent firms are more likely to be successful than incoherent

ones’’ (Nesta and Saviotti 2005, p. 124). Here, we introduce coherence in order to express

the degree of integration already in place in a body of research. However, since the key

6 Matrices of knowledge flows among disciplines are another way to present interdisciplinarity. E.g. Bourke
and Butler (1998), calculated the number of publications from discipline-based departments associated to
discipline-based journals. These matrices can then be used to compute similarity measures.
7 Other publications use measures of diversity in bibliometrics, to examine not the diversity of disciplines,
but diversity/concentration of research in institutions (e.g. Rousseau 2000).
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aspect of interdisciplinary research has been argued to be the dynamical process of

knowledge integration (section ‘‘Definition of interdisciplinarity’’), interdisciplinarity

should ideally be assessed in terms of a temporal derivative, i.e. a change in coherence.

Depending on the unit of analysis used in the study of interdisciplinarity, coherence can

take different meanings. High coherence within the reference set in a publication means

that its referencing practices are highly specialised and hence, that it builds on an already

established research specialty. High coherence in the publication set of an interdisciplinary

centre would suggest that it is achieving its integrative mission.

Since our definition of coherence is in terms of the network of relations among the basic

elements (publications), it has to be operationalised using bottom-up approaches. This

avoids the use of previous categorisations but requires spiralling computing efforts for

large data sets.

In our view, bibliometric studies related to network coherence fall into the areas of

mapping and associated methods of clustering, along with other multivariate analyses

based on low level categories such as single articles, authors or journals. An example is

Small’s (1977) study of a research specialty over five years. Using co-citation analysis,

Small tracked the appearance and disappearance of clusters in the research specialty and

proposed a ‘Stability Index’, based on degree of overlap between the clusters that described

the coherence of the network. Other examples are combinations of co-citation and co-word

analysis (Braam et al. 1991), and large-scale mapping using inter-citation flows among

journals (Boyack et al. 2005). Methodologies from network analysis continue to be

experimented with, as shown by Hellsten et al.’s (2007) adoption of an Optimal Perco-

lation Method, and Schmidt et al.’s (2006) clustering of research fronts. The connection

between interdisciplinarity and network structure, as shown by factor analysis, was made

explicit by van den Besselaar and Heimeriks (2001). More recently Leydesdorff (2007)

explored network centralities as indicators of interdisciplinarity. Building on these network

approaches, we use simple network analysis measures for the operationalisation of

coherence, as described in the ‘‘Data and Methods’’ section.

Disciplinary diversity vs. network coherence

We introduced the concepts of diversity and coherence in relation to interdisciplinarity and

have shown how they are related to previous bibliometric investigations. Table 2 presents a

summary of this conceptual framework. In this subsection we argue for the need to

combine disciplinary diversity and network coherence analyses to achieve a more nuanced

view of knowledge integration.

As discussed above, the problem with disciplinary diversity is that it relies on prede-

fined and ‘rigid’ categories, which may miss emergent or dynamic phenomena in science.

The inclusion of metrics between categories (as in Stirling’s index) lessens the effect of

creating very similar categories, but does not solve the problem of hidden divides within

existing categories.

Coherence approaches might be seen as being more accurate, but unfortunately they

present a very problematic trade-off between size and level of analysis. For micro- or

meso-level investigations, bottom-up network approaches are more accurate for describing

direct knowledge flows or other explicit relations. However, they cannot capture the

position of local elements in the global map of science, and thus miss the large-scale

perspective of the integration process. At the other extreme, in macro-level studies using

complicated metrics, the direct relations between elements become opaque. In addition, the
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use of large bibliometric sets requires access to expensive databases and computational

resources that are beyond the reach of most researchers.

Given these constraints, we propose to combine disciplinary diversity (top-down) and

network coherence (bottom-up) perspectives to track knowledge integration in small and

medium sized studies. Figure 2 provides a schematic representation of this twofold per-

spective, after Porter et al.’s (2007, p. 139) proposal. Since in this study we take individual

publications and study knowledge integration through their reference sets, each of the

nodes in the networks represents a reference, and each link the degree of similarity

between references (we use bibliographic coupling). There are four possible combinations:

Table 2 Summary of conceptual framework

Diversity Coherence

General concept: Heterogeneity in terms
of variety, balance and
similarity of categories

Functional articulation
and structural compactness
of elements in system

Main research tradition: Ecology Network analysis

Type of approach: Top-down Bottom-up

Categorisation: Pre-defined Unnecessary

Metric: Optional (needed for Stirling) Necessary

Indices: N = Variety S = Mean linkage strength
L = Mean path lengthH = Shannon

I = Simpson

D = Stirling

Specialised disciplinary Potential integration
within discipline

Low

Specialised interdisciplinaryPotential interdisciplinary 
integration

High

HighLow

Network Coherence

D
is

ci
pl

in
ar

y 
D

iv
er

si
ty

Fig. 2 Disciplinary diversity vs. network coherence
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(i) Low diversity—High coherence is a case of specialised disciplinary research—all the

references are from the same discipline and are related.

(ii) Low diversity—Low coherence is a case of a publication relating distant research

specialties within one discipline.

(iii) High diversity—Low coherence is a case of a publication citing references that were

hitherto unrelated and belong to different disciplines: a potential instance of

interdisciplinary knowledge integration.

(iv) High diversity—High coherence is a case of a publication citing across several

disciplines, to references that are similar. This similarity suggests that the references

belong a single research specialty. Hence, although the publication is interdisci-

plinary, it does not involve new knowledge integration.

Figure 2 provides a simple heuristics to trace knowledge integration. However, as

discussed above, although low coherence suggests potential integration, we would need to

examine the process, i.e. the trajectory over the matrix, to confirm this. Knowledge inte-

gration trajectories should move from left to right, from less to more coherence.

This scheme is partly based on Porter et al.’s (2007) framework. They rely on the

combination of two indicators based on ISI SCs: Integration and Specialisation. Integra-

tion captures the diversity of SCs in the references of the set of papers; specialisation is the

reverse of diversity (i.e. 1 - D, in its most recent formulation) for the SCs of the journals

in which the papers are published. The distinction between diversity in referencing and

publishing is insightful and useful to differentiate between multidisciplinary and inter-

disciplinary research. However, since both integration and specialisation are based on ISI

SCs, they are correlated. The complement of network coherence is useful; since its indi-

cators are based on data and methods independent of SCs, they contribute an ‘orthogonal’

perspective on knowledge integration.

Data and methods

Data

This study builds on previous investigations of interdisciplinary practices in laboratories of

biomolecular motors, one of the specialties in bionanoscience (Rafols and Meyer 2007).

From the keynote speakers at a 2005 international conference on biomolecular motors, we

selected the Japanese researchers and interviewed them about a specific project, as per-

ceived in the light of two or three major publications. We inquired into their affiliations,

backgrounds, the techniques and instruments used and how they were acquired, their

collaborations, and the story of the research process. These data were complemented by

information from scientific publications, miscellaneous documentation and homepages.

Detailed data for these case studies was presented in Rafols and Meyer (2007) and dis-

cussed in Rafols (2007).

From the ISI Web of Science we downloaded full bibliometric records for the publi-

cations on which we had based our interviews. These records were processed using the

bibliometric programme Bibexcel (Persson 2008), the statistical packet R (2007), and the

network analysis software Pajek (Batagelj and Mrvar 2008). For each publication, diversity

and coherence measures were computed as summarised in Fig. 3 and described in the

following two subsections.
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Operationalisation of disciplinary diversity

The disciplinary diversity of an article was constructed from the distribution of ISI SCs in

the references of references (ref-of-refs in Fig. 3, and hereafter) of an article.8 To compute

this distribution, we constructed a frequency list of the journals in which the ref-of-refs

were published, and converted it into a frequency list of ISI SCs using the SC attribution of

each journal as given in the Journal Citation Reports. The mean for each article was 30

references (range 17–55), and 1,290 ref-of-refs (range 601–2,227). We cleaned the list for

misnamed journals until at least 90% of the ref-of-refs in each list were attributable

(average attribution rate: 95%).

The distribution of SCs in the ref-of-refs list allowed us to compute variety N as the

number of SCs that appeared at least once, and the Shannon H and Simpson I diversities

(see Table 1). All indicators were normalised to a value between zero and 1.9 In order to

compute the Stirling D diversity, a similarity matrix sij for the SCs must be constructed. To

do so, we created a matrix of citation flows matrix between SCs, and then converted it into

a Salton’s cosine similarity matrix in the citing dimension. The sij describes the similarity

in the citing patterns for each pair of SCs in 2006, for the SCI set (175 SCs). A detailed

description and analysis of this sij SC-similarity matrix is provided elsewhere (Leydesdorff

and Rafols 2009). By combining the ref-of-refs SC proportions pi and similarities sij, we

Object of Study Bibliometric Set Analytical Unit

Article

Ref 1
Ref-of-Ref 1

Ref 2
Ref-of-Ref 2
Ref-of-Ref 3
Ref-of-Ref 4
Ref-of-Ref 5

Ref 3

References 
in Article

Distribution of 
Subject Categories

in Ref-of-Refs

Network of References
linked by

Bibliographic Coupling 
(i.e. linkages depend on 

shared Ref-of-Refs)

Disciplinary Diversity

N = Variety
H = Shannon
I = Simpson
∆ = Stirling

Network Coherence

S = Mean Linkage Strength
L = Mean Path Length

Article

Concept and Measures

Fig. 3 Scheme of operationalisation of disciplinary diversity and network coherence for one article

8 If the initial bibliometric set is large enough for statistical purposes, diversity can be computed directly
from the SCs of the references.
9 Simpson I and Stirling D, by definition, satisfy this condition. Variety N and Shannon H are normalised by
dividing by their maximum values, Nmax and ln(Nmax), respectively, with Nmax being the total number of ISI SCs.
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computed D as shown in Table 1. This particular operationalisation of the Stirling D
diversity yields an indicator that is almost identical to Porter et al.’s (2007) Integration.

Using the sij similarity matrix we constructed science maps in terms of SCs (Fig. 4),

similar to those reported in Moya-Anegón et al. (2004, 2007). The labels in Fig. 4 describe

clusters of similar SCs derived from factor analysis (Leydesdorff and Rafols 2009). The key

structure of the maps has been proved to be surprisingly robust to changes in the classifi-

cations schemes used, i.e. it does not depend on the use of ISI SCs (Rafols and Leydesdorff

2009). Following Klavans and Boyack (2008), we used the science map as a ‘backbone’ on

which to overlay the distribution of SCs from each article, to provide an intuitive per-

spective of the position of its knowledge base in the scientific landscape (Scharnhorst 1998).

Operationalisation of network coherence

In order to operationalise network coherence for our bibliometric set, we chose first, a similarity

metric between network elements (articles) in order to measure the strength of their linkages;

second, an indicator of structural coherence of the network. Since the aim was to map the

breadth of knowledge sources, similarity was measured in terms of bibliographic couplings10

between articles (co-occurrences of references), and normalised using Salton’s cosine (Ahlgren

et al. 2003). Then, basic network measures were used as indicators for network coherence:

Neurosciences

Computer Sciences

Geoscience
Agriculture

Ecology

Biomedical Sciences

Chemistry

Physics

Engineering

Environ. Sci.

Materials Sci.

Infectious Diseases

Clinical Medicine

General Medicine 

Fig. 4 Map of science for 2006 based on similarities in citing patterns between ISI Subject Categories.
Based on Leydesdorff and Rafols (2009)

10 Although co-citation analysis is the most extended technique to measure similarities between publications,
it is impractical for our purposes for two reasons: first, it cannot be for used for recently published papers, due to
lack of citations; second, it reflects similarities in the audience, rather than in the knowledge sources.
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• Mean linkage strength, S: the mean of the bibliographic coupling matrix, excluding the

diagonal—equivalent to network density in binary networks. In valued networks, it

describes both realised links and intensity of similarities. By definition, S has a value

between zero and 1.

• Mean path length, L: the path length between two articles is defined as the minimum

number of links crossed to go from one article to the other over the network. Mean path

length describes how ‘spread’ the network is; it is computed after binarising similarities.

These measures can be interpreted in terms of network centralities, which were intro-

duced in bibliometrics to study research communities (Otte and Rousseau 2002) and

interdisciplinarity in journal sets (Leydesdorff 2007). Mean linkage strength S is the mean

degree centrality normalised by network size; mean path length L is equal to the mean of

closeness centrality. More sophisticated measures of network ‘compactness’ or cohesion

(Egghe and Rousseau 2003) are not used in this study, but deserve further exploration

within the conceptual framework proposed.

Given that network measures are generally highly size dependent, it is necessary to check

the scale invariance of S and L. Since the bibliometric networks in these case studies are

small (between 17 and 55 articles), we tested empirically the scale invariance of S in an

independent sample of 1,275 articles related by research topic (kinesin). It was found that S
was size independent and that the distribution of bibliographic couplings could be

approximated to a log-normal distribution.11 This result is in accordance with Havemann

et al. (2007), who used a similar approach. Since S and L are highly correlated in our sample

(Pearson = 0.95), L’s size dependence appears to be negligible as well in this study.

A possible drawback to bibliographic coupling is that it relates articles that share only

one or two very general references, e.g. classical methodological handbooks, which do not

necessarily inform about shared expertise. In order to minimise these spurious connections,

we set a threshold of linkage strength to 0.05 = 1/20 when computing path length—as a

result even in the smallest reference sets (20), at least two common references are needed

for two papers to be linked.12

Case studies in molecular motors

The objective of this study is to assess the degree of interdisciplinarity of individual

contributions in the specialty of molecular motors. As explained in the ‘‘Data and Meth-

ods’’ section, we build on previous investigations that carried out detailed case studies on

11 Details of the scale invariance test are presented below.

Network size 10 51 255 637 1275

Mean linkage strength 0.022 0.023 0.024 0.025 0.024

Standard deviation per network 0.045 0.046 0.047 0.047 0.046

Network realisations 10 9 7 1 1

Standard deviation over realisations 0.007 0.004 0.002 – –

From a network of 1,275 publications on kinesin research, random subnetworks of different sizes were
extracted. Mean linkage strength and standard deviation were computed for each. For small networks,
multiple realisations were carried out to minimise statistical fluctuations.
12 In one case, Noji 1997, we had to set the threshold at 0.025 in order to keep the network connected.
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interdisciplinary practices in five research projects (Rafols and Meyer 2007; Rafols 2007).

It emerged from interviews that the techniques and concepts in all cases came from a

variety of disciplines and that their combined use had been crucial for the success of the

research. For example, in one case, newly developed fluorescence microscopy (biophysics)

was combined with genetically engineered biomolecular motors (molecular biology) in

order to trace the displacement of the motor at the nano-scale.13 However, in spite of this

shared interdisciplinarity, in some cases the projects were a continuation of a well-

established research tradition and built on a narrow literature, and in others the projects

brought together different research traditions and previously unrelated literatures. Can the

indicators of disciplinary diversity and network coherence capture these differences?

We present the results of five case studies based on analysis of 12 articles. Table 3

shows the distribution of SCs in the ref-of-refs for each article. Given the well-documented

innacuray of ISI SCs (Boyack et al. 2005), these proportions should be taken as indicative.

Biochemistry and Molecular Biology is the dominant discipline, but there are also

important contributions from Cell Biology and Biophysics. Records in Multidisciplinary
Sciences journals constitute almost 25% of the total, possibly obscuring the actual distri-

bution of references among the top SCs.14 In particular, qualitative data from interviews

suggested a larger presence of biophysics. After the four top SCs, the proportions are much

smaller, and the distribution tails of some articles differ, e.g. Funatsu (1995) has a ‘fatter’

tail for the physical and chemical disciplines.

Comparison between indicators

Table 4 presents the measures for disciplinary diversity and network coherence for each

article; Table 5 presents the correlations between the different diversity and coherence

measures. Figure 5 plots diversity D vs. coherence S for each article.

We compare, first, indicators, and, second, articles. Diversities H, I and D were found to

be correlated. Interestingly, the highest correlation was between Shannon H and Stirling D,

although Stirling D and Simpson I (rather than Shannon) have similar mathematical for-

mulations. Since Shannon H gives more weight to the small terms in its sum through its

logarithmic factor, while Stirling D gives more weight to the combinations of disparate

SCs, we believe that the high correlation between H and D is due to the fact that many SCs

with small proportions happen also to be distant from the core SCs.

Indicators of coherence, S and 1/L, were also highly correlated with one another, but not

with the diversity measures. Hence, we are capturing two different aspects of the same

bibliometric set. Variety N was not correlated with any other measure, and it does not seem

to be a good indicator of knowledge integration. Given this set of correlations, and in order

to simplify the analysis, the discussion that follows is based on Stirling’s D for diversity

and mean linkage strength S for coherence.

Comparison among articles

Since we do not have benchmarks for diversity or coherence from other areas of science,

we cannot investigate whether this field is (or is not) particularly diverse or coherent.

However, this does not preclude comparison within our set. To do so, we combine the data

13 More qualitative insights are described in Rafols and Meyer (2007) and Rafols (2007).
14 This might explain, in part, the large difference between the SC distribution of ref-of-refs in Table 4 and
the distribution of references among four selected disciplines reported in Rafols and Meyer (2007).
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presented in Table 4 and Fig. 5, with visualisations of the SC distributions and network

structures, respectively, in Figs. 6 and 7.

Figure 6 visualises the relative contribution of SCs to an article over the backbone map

of science, on the basis of the ref-of-refs distribution. Here the size of each SC node is

arbitrarily set to a logarithmic factor of its SC proportion (i.e. Area ¼ lnð1þ 1000 � piÞ) in

order to facilitate visualisation of small SCs. The map shows that the most highly cited SCs

are in the area of biomedical sciences and closely related to one another. There are a few

contributions from nearby areas such as neuroscience, and a tail of contributions spanning

from chemistry to some areas of physics.

Table 5 Pearson correlations between diversity and coherence measures

Pearson’s correlations Disciplinary diversity Network coherence

N H I D S 1/L

N 1.00 0.04 -0.20 -0.01 -0.23 -0.10

H 1.00 0.81 0.95 -0.12 -0.06

I 1.00 0.71 0.32 0.31

D 1.00 -0.10 -0.06

S 1.00 0.95

1/L 1.00

Legend: N = variety of disciplines, H = Shannon, I = Simpson, D = Stirling, S = mean linkage strength,
L = mean path length. Highest correlations are shown in bold

Table 4 Measures of disciplinary diversity and network coherence

Articles Disciplinary diversity Network coherence

N H I D S 1/L

Funatsu 1995 0.16 0.39 0.79 0.27 0.054 0.54

Kojima 1997 0.20 0.38 0.79 0.24 0.074 0.70

Ishijima 1998 0.22 0.34 0.72 0.18 0.042 0.53

Noji 1997 0.18 0.32 0.70 0.15 0.024 0.43

Yasuda 1998 0.19 0.31 0.68 0.14 0.039 0.54

Okada 1999 0.14 0.32 0.74 0.15 0.107 0.73

Kikkawa 2001 0.20 0.33 0.75 0.16 0.072 0.63

Sakakibara 1999 0.15 0.34 0.77 0.16 0.029 0.47

Burgess 2003 0.20 0.34 0.74 0.14 0.050 0.59

Tomishige 2000 0.19 0.33 0.75 0.14 0.104 0.69

Tomishige 2002 0.16 0.33 0.75 0.15 0.113 0.79

Yildiz 2004 0.18 0.35 0.77 0.17 0.065 0.58

Mean 0.18 0.34 0.75 0.17 0.064 0.60

SD 0.02 0.02 0.03 0.04 0.030 0.11

Legend: N = variety of disciplines, H = Shannon, I = Simpson, D = Stirling, S = mean sinkage strength,
L = mean path length. Indicators are normalised to a value between zero and 1. Highest diversity and lowest
coherence values are shown in bold
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In line with information gleaned from the interviews, the disciplinary distributions in

the science map are very similar for all the articles. The exceptions are Funatsu 1995 and

Kojima 1997, which have thicker tails—see Fig. 6 and compare maps for Funatsu 1995

(top) with that of Noji 1997 (bottom). This is congruent with the indicators in Fig. 5.

Funatsu 1995 and Kojima 1997 are publications from a research group composed mainly of

biophysicists, which made major contributions to the development of single molecule

microscopy and manipulation. The distribution in Table 3 shows that the share of bio-

physics is not particularly high, but there are sizeable proportions of physics and chemistry

related disciplines. Ex-post, it could be argued that the physics tail is consistent with the

type of physics-based insights and techniques needed to develop single molecule

microscopy and manipulation. Since physics and biological sciences have a large cognitive

distance (see Fig. 4), their interaction would have a larger weight in Stirling D.

However, ex-ante, based on the qualitative investigation, we did not assess Funatsu and

Kojima’s group to be any more interdisciplinary than the others on this axis, and we remain

cautious in claiming higher disciplinary diversity for this group. For example, Yildiz 2004

is a publication that also developed single molecule microscopy based on biophysics, yet it

does not present a physics related tail in its SC distribution. Hence, the two exception cases

showing higher D, cast doubt on the reliability of the disciplinary diversity indicator. Our

unit of analysis, individual publication, may be too small for the ISI SC categorisation,

which is known to be coarse-grained; e.g. Boyack et al. 2005, report a more than 50%

disagreement between journal-based clustering and SCs. We expect improved reliability

from use of finer-grained and/or more accurate taxonomies, e.g. based on bottom-up large-

scale mapping efforts (Boyack et al. 2005).

Network coherence values, on the other hand, vary widely among case studies, as shown

in Fig. 5. Figure 7 illustrates the differences in network structure associated with

increasing values for coherence, for four articles. The first, Noji 1997, is an interesting case

Noji97
Yasuda98

Funatsu95

Kojima97

Ishijima98

Okada99
Kikkawa01Sakakibara99

Burgess03

Yildiz04

Tomishige02
Tomishige00

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Network Coherence (Mean Linkage Strength, a.u.)

D
is

ci
p

lin
ar

y 
D

iv
er

si
ty

 (
S

ti
rl

in
g

, a
.u

.)

Fig. 5 Disciplinary diversity vs. network coherence. Same shape and colour indicate same project. Data is
presented in arbitrary units (a.u.) obtained by dividing a series by the largest value
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Biomedical Sciences

Chemistry

Physics

Infectious Diseases

Funatsu 1995

Materials Sci.

Noji 1997

Infectious Diseases

Biomedical Sciences

Chemistry

Engineering

Physics

Fig. 6 Distribution on the map of science of Subject Categories (SCs) of ref-of-refs in an article. The area
of nodes is a logarithmic factor of a SC proportion in the ref-of-refs distribution, i.e. ln(1 ? 1000pi)
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of convergence of two strands of research by two laboratories in one collaborative project

spawned by a PhD student (Noji). Noji’s lab was mainly based in biochemistry and worked

on F1-ATPase, a protein complex in the mitochondria studied by a research community

focused on bioenergetics. The publication Noji 1997 was the result of a close collaboration

with a biophysics laboratory specialised in linear molecular motors (myosin and kinesin).

The network of Noji’s references depicted in Fig. 7, neatly illustrates the divide in the

literature between the two research communities: on the right hand side, are publications

on linear molecular motors; on the left, are publications on bioenergetics (F1-ATPase). The

only (weak) link between the two is due to a review with more than 311 references.15 The

low value for network coherence captures the fact that this article brought together distant

bodies of knowledge, i.e. it would fall in the upper left quadrant in Fig. 2.

Figure 8 illustrates the disciplinary mix of the Noji 1997 reference set by locating the

SC where references were published. Given that Noji’s project was a collaboration

between a biophysics and a biochemistry laboratory, it could be expected that the bioen-

ergetics cluster would publish mainly on biochemistry, and the molecular motors cluster on

biophysics. However, both clusters have publications in biochemistry, biophysics and cell

PajekPajek

Pajek

Pajek

Noji 1997 (S=0.024) Funatsu 1995 (S=0.054) 

Tomishige 2002 (S=0.113) Yildiz2004 (S=0.065) 

Fig. 7 Bibliographic coupling networks for the reference set of various articles. The figures are ordered
from lower to higher network coherence S (from top left to bottom right); thicker lines indicate greater
similarity

15 The historical anecdote is that Paul D. Boyer, the author of this long review, was awarded the Nobel Prize
precisely in 1997, thanks, in part, to the evidence provided by Noji and co-authors on his model of ATPase
as a rotary motor.
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biology,16 which suggests that bioenergetics research on its own, and molecular motors on

its own scored high for disciplinary diversity prior to Noji’s paper. In other words, this is a

case of convergence of two bodies of knowledge that were already interdisciplinary.

The second case of network coherence we examine is Yildiz 2004 (Fig. 7—bottom left).

This article was also the result of a collaborative project, between a biophysics laboratory

with expertise in fluorescent microscopy and Vale’s laboratory, one of the leading

molecular motors groups, which has an eclectic knowledge mix of cell biology and bio-

physics (including fluorescent microscopy expertise). Vale’s lab contributed a genetically

modified protein that they had engineered in a previous study, and Yildiz’s lab contributed

a new type of single molecule microscopy. Since both teams were working in the same

specialty (molecular motors) and had some overlapping expertise in single molecule

microscopy, they already shared a cognitive base. Hence, the references in their joint

Pajek

Pajek

Pajek

Biochemistry

Pajek

Pajek

Pajek

Biophysics

Cell Biology

Noji 1997 Yildiz2004

Fig. 8 Distribution of SCs for publications in bibliographic coupling networks. Black nodes indicate the
papers published in a given ISI subject category

16 Two caveats apply to Fig. 8: (i) on average 30% of the references were published in Multidisciplinary
Sciences journals; (ii) about 25% of the references are published in journals that are attributed to at least two
SCs (which is why the publication SCs cannot be presented in one unique network).
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publication form a coherent cluster. Nevertheless, the cluster contains publications in

biochemistry, cell biology and biophysics—the three main areas of molecular motors

research, as shown in Fig. 8 (right). Therefore, Yildiz 2004 appears to be a case of research

within an already integrated (or specialised) interdisciplinary body of knowledge (upper

right quadrant in Fig. 2). Tomishige 2002 (a previous publication from Vale’s lab, see

Fig. 7, bottom right) is an even more ‘compact’ example of an already specialised inter-

disciplinary publication—although, as explained, Vale’s approach is integrative in the

disciplinary sense: he draws on knowledge and recruits researchers from biophysics, cell

biology and related fields.

Finally, we have Funatsu 1995 (top right in Fig. 8), which is an intermediate case

between Noji 1997 and Yildiz 2004. This article reports a technical breakthrough in single

molecule visualisation by a team mainly based in biophysics and well established within

the research specialty of molecular motors. Hence, not surprisingly, molecular motors

constitutes the main body of the literature in the dense cluster, in the lower left of Fig. 8.

However, the group also drew on its unique microscopy expertise, which extended beyond

molecular motors. This ‘external’ expertise is exemplified by the three detached papers in

the network which dealt exclusively with microscopy from a physical science perspective.

Thus, Funatsu 1995 would be a case of acquisition of external supplementary knowledge

from one literature (technical studies of microscopy) into the main cluster of molecular

motors research. This limited integration effort would locate this publication in the upper

middle part of Fig. 2.

These examples suggest that bibliographic coupling networks and the network coher-

ence indicators derived from them, provide a suitable tool for examination of the processes

of knowledge integration at local level. The limitation, as discussed in section ‘‘Disci-

plinary diversity vs. network coherence’’, is that these micro perspectives cannot assess

how different are the bodies of knowledge integrated in the larger context of science.

From the dual perspective of diversity and coherence, the case studies investigated

provide empirical evidence that publications with similar levels of disciplinary diversity

could be at very different stages of knowledge integration: Noji 1997 would be an example

of an incipient interdisciplinary knowledge integration process (upper left in Fig. 2), To-

mishige 2002, an example of interdisciplinary specialised research (upper right) and

Funatsu 1995, an intermediate case. Hence, molecular motors research appears to be spread

over the upper part of Fig. 2 (relatively high disciplinary diversity),17 covering the left and

right quadrants.

Conclusions

Summary of analytical framework and results

In this article, we proposed a novel conceptual framework to investigate interdisciplinary

processes in the wider sense of knowledge integration. The framework is based on the

concepts of diversity and coherence, borrowed, respectively, from ecology and network

analysis (Table 2 and Fig. 2), and already used implicitly in previous bibliometric studies

on interdisciplinarity (e.g. Morillo et al. 2003). Diversity was used to capture the disci-

plinary heterogeneity of our bibliometric set as seen through the filter of predefined

17 This is an inference from the qualitative interviews. Without quantitative benchmarks from other areas of
science, the position of the case studies on the disciplinary diversity axis cannot be determined.
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categories, i.e. taking a top-down perspective in order to locate the set on the global map of

science (Fig. 6). Coherence was used to apprehend the intensity of similarity relations

within the bibliometric set, i.e. using a bottom-up approach to reveal the structural con-

sistency and cognitive articulation of the publications network (Fig. 7).

Disciplinary diversity indicators were constructed from diversity indices (Shannon H
and Simpson I) and a recently developed indicator (Stirling D, parameterised as Porter’s

Integration), which takes account of the similarities between SCs (Stirling 1998, 2007;

Porter et al. 2007). ISI SCs were used as disciplinary categories. Network coherence was

operationalised in terms of the network measures Mean linkage strength and mean path

length, in bibliographic coupling networks (see Havemann et al. 2007 for a similar

approach). These indicators were applied to the reference set of publications in a bio-

nanoscience research specialty, biomolecular motors, for which we had detailed infor-

mation from interviews (Rafols and Meyer 2007; Rafols 2007).

First, we found that the indicators for disciplinary diversity and network coherence were

not correlated (Table 4), thus providing ‘orthogonal’ perspectives of the knowledge inte-

gration process. Among diversity indicators, Shannon H and Stirling D made more salient

the contributions of small or disparate categories.

Second, disciplinary diversity took similar values for most of the publications examined,

in line with our previous qualitative investigations (Table 4 and Fig. 5). However, there are

grounds to cast some doubt on the reliability of this indicator, given its unexpected high

values for two publications (out of 12) and low proportion of biophysics in the SC distri-

butions. Since there is a trade-off between accuracy and simplicity of a taxonomy, it is

possible that the unit of analysis (the article) in this study is too small for the coarse-grained

description of science provided by ISI SCs. Comparative studies using different disciplinary

taxonomies (e.g. provided by other bibliometric databases or categories derived from large-

scale clustering) would be needed to ascertain the scope of reliable application.

Third, we found that measures for network coherence could discriminate among articles

according to their different degrees of knowledge integration at micro level. For example,

the case of lowest network coherence (Noji 1997), was the result of a collaboration

between two laboratories based on two different bodies of knowledge (bioenergetics vs

linear molecular motors). On the contrary, those cases with high network coherence (such

as Tomishige 2002) were based on only one research tradition (molecular motors),

although they still relied on several disciplines. We believe that the discrimination between

these two different phases of knowledge integration (seminal integration vs specialisation

in already integrated areas, depicted in Figs. 2, 7), is important in emergent fields such as

nanotechnology and systems biology, in order to distinguish pioneering integrative efforts

from less risky rides on ‘interdisciplinary bandwagons’.

The operationalisation of network coherence in terms of mean linkage strength of

bibliographic coupling appeared to work well, both for our small sets and in larger studies

reported by Havemann et al. (2007). Moreover, it has the advantage of simplicity. How-

ever, there is scope for exploring more sophisticated measures of network coherence (e.g.

Egghe and Rousseau 2003), and more nuanced cognitive similarities between publications

(e.g. including co-word analysis, as in Braam et al. 1991).

Fourth, the visualisations of diversity (through the overlay of disciplinary proportions

on the map of science, Fig. 6), and of coherence (by means of the bibliographic coupling

network, Fig. 7), proved more valuable than expected. Although initially developed to

support the indicators, the maps and networks provide a richer and subtler representation of

the different aspects of diversity (variety, balance and similarity) and coherence (linkage

strength, density, clustering), which characterise the knowledge integration process.
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Fifth, the differences in network coherence observed for publications with similar

disciplinary diversity, support the view that interdisciplinarity is an inadequate term or a

misnomer (Klein 2000, p. 3; Gläser, J., 2006, personal communication). In focusing on

knowledge integration, adopting a bottom-up approach and looking at emergent structures,

we encounter fuzzy and overlapping bodies of knowledge, as illustrated in Fig. 7, that do

not conform to established categories. In our view, the crucial dynamics of knowledge

integration lies in the interactions between these local bodies of knowledge. The use of

macro (disciplinary) categories only provides information on the position of these local

bodies on the science map.

Future research and possible applications

This study has developed a conceptual framework and methodology for capturing

knowledge integration in research, which we applied to small case studies. How robust and

generalizable is this approach? We think that this pilot study should be extended in the

following directions for the method to be fully validated. First, benchmarks with other

areas of science need to be established in order to gauge the range of high/low values on

the diversity and coherence axes; second, investigations employing larger bibliometric sets

are needed to check scalability; and third, studies using different taxonomies should test

the sensitivity of disciplinary diversity to differences in categorisations. The approach

proposed could easily be adopted and adapted, at least for small and medium sized bib-

liometric sets (e.g. 104 records), given that it is based on simple indicators and standard

similarity measures. Most of these can be computed using very simple bibliometric tools

(freeware) and publicly available data.18

Regarding the degree of general applicability, we believe the approach could be directly

utilised, with little modification, for a number of science policy issues, including:

(1) Evaluation of interdisciplinary programmes: Porter et al. (2007) report the use of the

Integration indicator (equivalent to our development of Stirling D) for evaluation of

interdisciplinary performance of researchers involved in the National Academies

Keck Future Initiative, on the basis of their publication records. The inclusion of an

indicator for network coherence may add an orthogonal perspective;

(2) Emergence and diffusion of research topics: We have conducted preliminary studies

on kinesin research (Kiss et al. submitted), investigating diffusion and knowledge

integration patterns from their appearance in a narrow field of science to their spread

into broader research areas. Here the aim is to identify the key integrative research

communities in the diffusion/translation process. We think that this use of diversity

and coherence indicators can be valuable in comparative studies of emergent and

‘hyped’ fields such as nanotechnology, where claims of novelty and interdisciplina-

rity are rife, but not always substantiated.

(3) Evaluation of diversity in science: Concerns have been expressed that diversity in the

science system might be declining as a result of the increasing dependence of funding

on performance evaluation (Schmidt et al. 2006). Diversity and coherence indicators

offer the possibility to address this issue through longitudinal or national comparative

studies, as in Havemann et al. (2007).

18 The only processed input needed is the SC similarity matrix used to create the science map and compute
Stirling D. This is available as a Pajek input file (Leydesdorff and Rafols 2009): http://users.fmg.uva.nl/
lleydesdorff/map06/data.xls.
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Finally, we would point to the benefits of basing our approach on a general conceptual

framework. First, in using a general framework, the concepts underlying the current

indicators of interdisciplinarity are rendered more transparent. This, in turn, facilitates

discussion of their inevitable biases, and adaptation to social and policy needs. Second, the

generality of the formulation allows its application and cross-fertilisation among distinct

research areas. Thus, we expect insights and enriching perspectives of the diversity-

coherence framework from ongoing investigations on technological diversification in

firms, biodiversity, energy portfolio and similar system approaches (Nesta and Saviotti

2005; Stirling 2007).
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