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Abstract 

Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of dis‑
ease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, 
particularly in the field of vaccination. Although herd management programs have helped to reduce the number of 
clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research 
on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We 
describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones 
in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance 
of host‑adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence 
determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although 
traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current 
understanding of the key host‑pathogen interactions that determine the outcome of S. aureus IMI is very limited. We 
suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is 
essential for the identification of novel therapeutic and vaccine targets.
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Background
Bovine mastitis is a multifactorial inflammatory disease 
that depends on a combination of animal-, environmen-
tal-, and pathogen-related factors. Visible abnormalities 
in the milk, swelling or tenderness of the udder are signs 
of clinical mastitis while no overt signs are observed in 
subclinical mastitis. S. aureus is a well-studied oppor-
tunistic pathogen frequently associated with subclinical 
mastitis and responsible for large economic losses due 
to reduced milk quality and production [1]. S. aureus 

spreads among cows during milking, requiring a coop-
erative approach to reduce dissemination to healthy ani-
mals [2]. Bovine isolates of S. aureus are also a leading 
cause of foodborne diseases with bulk tank and raw milk 
products important vehicles for bacterial transmission to 
humans [3].

The importance of the human-animal-environment 
One Health approach for investigating disease transmis-
sion and control has been well highlighted [4] but con-
crete strategies are still needed to reduce the burden of 
infectious diseases and the impact of antimicrobial resist-
ance in livestock and humans. Indeed, implementation 
of the One Health approach is essential to improve ani-
mal welfare, enhance food safety, and promote human 
health. An important consideration is the capacity for 
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transmission of S. aureus among livestock and humans 
or host-switching events leading to the emergence of new 
pathogenic or resistant clones [5, 6].

S. aureus of bovine origin has long been a focus of 
microbiological research. However, the scientific knowl-
edge gained has yet to be translated into effective vac-
cines, therapeutics or rapid, inexpensive diagnostics that 
can be applied for better disease control [7]. Limited 
insights into the pathogenesis of mastitis will result from 
analysis of S. aureus strains in isolation. It is imperative 
that we examine the bacterial interaction with the host to 
identify novel therapeutics to fight this old disease. This 
review has compiled worldwide studies on the popula-
tion diversity and virulence of S. aureus of bovine origin 
that have been published in the last 16 years. Articles 
describing the clonal complexes (CCs) or spa types iden-
tified among bovine S. aureus were included to reveal the 
worldwide distribution of the pathogen. Overall, there 
are remarkable differences in virulence profiles among 
field isolates and some virulence factors display rumi-
nant-specific features like LukMF’ suggesting a potential 

role during intramammary infection (IMI). Studies that 
shed light on the mechanism of virulence factors made by 
S. aureus from bovine IMI are described with emphasis 
on adhesins and toxins whose function has been experi-
mentally demonstrated (Fig. 1).

Main text
Worldwide distribution of clones
From 2004 to early 2021, 79 articles were published on 
the epidemiology of bovine S. aureus isolated in 31 
countries. However, the 67 articles that used multilocus 
sequence typing (MLST) or spa typing, two commonly 
used methods for the molecular typing of S. aureus iso-
lates, were included in this review (Table  1). CC97 was 
the most disseminated genotype, identified in 15 different 
countries of America, Asia, Europe, and Africa. CC97 has 
been reported as the dominant lineage in Chile [8], Brazil 
[9, 10], Japan [11], and the USA [8]. It has been reported 
that IMI cases caused by CC97 strains lead to asympto-
matic, subclinical or persistent infections, increasing the 
challenge of pathogen control in dairy herds [11, 12]. 

Fig. 1 Proteins that have been implicated in the pathogenesis of Staphylococcus aureus of bovine origin. Surface proteins interact with host 
proteins to promote bacterial adhesion and invasion. Biofilm‑associated protein (Bap) interferes in the internalization pathway mediated by FnBP 
and contributes to biofilm formation, a process that also depends on the ica locus. Toxins such as alpha and beta hemolysins, promote necrosis of 
the mammary gland tissue and lyse bovine erythrocytes to use hemoglobin as a source of iron. Leukotoxin LukMF´ binds to neutrophils present 
in the bovine milk. Staphylococcal superantigens activate T‑cells resulting in the release of various pro‑inflammatory cytokines. Figure created by 
authors using resources from Smart Servier Medical Art and BioRender
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Table 1 Clonal complexes and spa types of bovine isolates of Staphylococcus aureus disseminated worldwide

Countries Clonal complex spa types References

Algeria CC8, CC97 t024, t267, t359, t1965, t521, t2112, t7234, t11511  [16, 17]

Austria ND t011, t024, t095, t097, t359, t398, t521, t524, t529, t1182, t1403, 
t2953, t6158, t13487, t16197, t16200

 [18]

Belgium CC8, CC398 t008, t011, t037, t108, t121, t388, t567, t1451, t1456, t1985, t3423, 
t6228

 [19, 20]

Brazil CC1, CC5, CC30, CC97, CC126, CC133 t002, t021, t114, t127, t138, t177, t267, t318, t321, t342, t359, 
t456, t458, t521, t559, t605, t693, t1192, t2066, t2164, t3324, 
t6811, t6980, t7335, t10856, t11659

 [9, 10, 21, 22]

Canada CC8, CC97, CC126, CC133, CC151 t015, t021, t127, t177, t224, t267, t359, t451, t521, t529, t605, 
t1166, t1190, t1236, t1965, t2211, t2445, t3051, t3380, t10610, 
t11215, t12186, t13401, t16275

 [13, 23, 24]

Chile CC97 ND  [8]

China CC1, CC7, CC50, CC81, CC88, CC97, CC188, CC398, CC479, CC705, 
CC5405, CC5406

t034, t127, t131, t189, t224, t237, t267, t359, t518, t519, t521, 
t528, t529, t571, t730, t1234, t1764, t2279, t2592, t2699, t2756, 
t2970, t4570, t4682, t5100, t6297, t14156, t16314, t16315, t17095,
t17182

 [25–27]

Egypt CC5, CC15, CC88, CC188, CC398 t084, t127, t167, t223, t267, t304, t314, t359 t786, t1234, t2117, 
t3071, t4019

 [28, 29]

Finland ND t172, t3256  [30]

Germany CC1, CC5, CC8, CC20, CC50, CC97, CC130, CC133, CC151, CC350, 
CC398, CC479, CC705

t011, t034, t91, t267, t359, t519, t521, t524, t528, t529, t571, t586, 
t1106, t1403, t2576, t2873, t3297, t5180, t5920, t10610, t13769

 [31–38]

Hungary CC1 t127  [39]

India ND t002, t008, t267, t304, t311, t359, t1200, t2104, t2478, t2770, 
t2802, t2915, t3841 t3992, t5019, t6297, t6861, t6877, t7286, 
t7287, t7288, t7680, t7681, t7683, t7684, t7695, t7696, t7867

 [40–42]

Iran CC5, CC22, CC45, CC88, CC398, CC522, t084, t230, t267, t304, t521, t527, t937, t2526, t3576, t3680  [43]

Ireland CC97, CC151, CC126 ND  [44]

Israel CC1, CC5, CC7, CC12, CC15, CC20, CC88, CC151, CC188 t127, t002, t091, t160, t164, t186, t529, t189, t3380  [31]

Italy CC1, CC5, CC8, CC20, CC72, CC97, CC101, CC126, CC133, CC151, 
CC398, CC479, CC522, CC705

t011, t024, t034, t053, t108, t127, t164, t267, t309, t359, t442, 
t521, t524, t529, t535, t548, t605, t688, t730, t899, t1236, t2421, 
t2953, t3802, t3987, t4795, t5268, t5694, t9295, t13277, t13269, 
t13278

 [31, 45–50]

Japan CC5, CC6, CC7, CC8, CC12, CC15, CC20, CC25,CC30,CC45,CC59, 
CC88, CC97, CC509, CC705

t002, t008, t021, t024, t050, t078, t091, t127, t160, t164, t179, 
t189, t203, t216, t224, t258, t267, t287, t359, t362, t375, t377, 
t458, t521, t529, t630, t693, t701, t729, t881, t1028, t1109, t1201, 
t1234, t1767, t1775, t1858, t2109, t2360, t2453, t2844, t3277, 
t3332, t3418, t3782, t3929, t4133, t4359, t4542, t5259, t5260, 
t5261, t5263, t5264, t5265, t5266, t5267, t5352, t5412

 [11, 12, 51, 52]

Korea ND t002, t034, t084, t127, t148, t164, t189, t304, t324, t2459, t2612, 
t4050

 [53–55]

Norway CC1, CC2, CC3, CC5, CC25, CC133, CC135, CC136, CC479 ND  [56]

Poland CC97 ND  [57]

Portugal CC7, CC97, CC133 t091, t267, t1166  [58]

Rwanda CC97, CC152, CC3591, CC3666 t355, t458, t1236, t1398, t2112, t9432, t10103, t18835, t18853  [59]

Sweden ND t008, t052, t127, t164, t177, t267, t359, t529, t543, t1294, t1403, 
t4955, t13621

 [60]

Switzerland CC1, CC5, CC7, CC8, CC9, CC15, CC20, CC45, CC97, CC151, CC398, 
CC479, CC705

t018, t024, t034, t052, t160, t164, t267, t458, t524, t529, t543, 
t711, t2094, t2953, t3802, t4318, t5268, t5270, t5271, t5694, 
t6281, t7007, t7013, t7061, t12926

 [37, 61–70]

Tunisia CC1, CC6, CC15, CC97, CC188, CC522, CC1153 t267, t426, t509, t521, t529, t1773, t2421, t2802, t2844, t10381  [71, 72]

Uganda CC435 t645  [73]

UK CC9, CC97, CC130, CC151, CC425 t131, t224, t267, t359, t521, t529, t742, t843, t6220, t6292, t6300, 
t8433

 [8, 74, 75]

USA CC1, CC5, CC8, CC9, CC25, CC30, CC45, CC50, CC51, CC97, CC126, 
CC188, CC206, CC258, CC348, CC350, CC353, CC354, CC398, 
CC705

t034, t044, t084, t189, t203, t267, t337, t359, t521, t529, t1166, 
t2734, t4173

 [8, 31, 76]

ND not determined
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Based on genomic comparison, a higher virulence poten-
tial was predicted for CCs 151 and 97 compared to other 
bovine-associated S. aureus lineages [13], a finding that is 
consistent with functional and in vivo studies carried out 
[14, 15].

CC1 and CC5 also have a global distribution, each 
being reported among cows in ten countries. Although 
these lineages are associated with human infections 
[77, 78] they have recently emerged in cows via host 
switch events [79]. It is reported that CC1 is less likely 
to cause clinical mastitis in cows [80]. The CC126, 
CC130, and CC133 strains were less widely distributed, 
in four, two, and six countries, respectively. CC133 and 
CC130 were localized in Europe with CC130 found 
in Germany and the UK and CC133 identified in four 
countries (Portugal, Italy, Germany, and Norway) in 
addition to Brazil and Canada. Although CC133 is 
most related to small ruminants [31], it was also iso-
lated from cows with mastitis [44, 81]. CC126 was 
identified in Brazil [21], the USA [8], and Italy [45] and 
frequently recovered from subclinical mastitis.

Several CCs such as CC97, CC705, CC398, CC479, 
and CC8 were shared between proximal countries Ger-
many, Italy, and Switzerland, consistent with cross-bor-
der movement of animals. Of note, CC479 strains were 
associated with severe bovine mastitis cases [80, 82] and 
demonstrated to induce a stronger pro-inflammatory 
response from bovine mammary epithelial cells (bMEC) 
than other bovine associated lineages such as CC151 
[83]. Unlike CC479 and CC705 that show high preva-
lence in only Northern Italy, Germany, and Switzerland 
[32, 33, 46, 47, 61, 62], methicillin-resistant isolates of 
CC398 have been reported in eight countries across three 
continents: the USA, China, Belgium, Egypt, Germany, 
Iran, Italy, and Switzerland [34, 43, 47, 48, 84]. The ST398 
MRSA lineage emerged in pigs but is now widely identi-
fied in other animal hosts including ruminants, poultry, 
horses, dogs, and cats [85]. It is reported that CC398 is 
a more promiscuous clone compared to other CCs [86], 
and therefore may represent a greater threat to public 
and animal health, especially considering the prevalence 
of MRSA strains.

CC8 is a global human lineage associated with an array 
of different diseases and includes the major epidemic 
clone USA300 [87]. Recently, CC8 S. aureus strains have 
been found in association with bovines [88] and reported 
in eleven countries: Algeria, Australia, Belgium, Canada, 
China, Germany, Italy, Japan, Switzerland, and the USA. 
It was suggested that the bovine sequence type (ST) 8 
strains were the likely result of a recent human to bovine 
host jump [63, 89]. These data are important to evaluate 
the transmission risk for people working in the farm and 
milking environments and for consumers of raw dairy 

products [35]. Studies conducted in Uganda and Hungary 
identified the same lineage in both milkers and cows, sug-
gesting transmission events between species, although 
the direction of transfer (cow-human or human-cow) was 
not defined [39, 73].

Taken together, this literature review identified a wide 
variety of S. aureus genotypes in dairy cattle worldwide. 
Considering the region of interest, it might help to for-
mulate strategies to understand and reduce the infection 
spread of S. aureus strains. The most disseminated geno-
types (CCs) globally were CC97 (15 countries), CC1 (10 
countries), CC5 (10 countries), CC8 (8 countries), and 
CC398 (8 countries). Some lineages may be the result of 
human to bovine host switching events.

Population genomics of bovine S. aureus host‑adaptation
The wide availability of inexpensive high-through-
put sequencing has resulted in an explosion of whole 
genomes sequences for S. aureus and several popula-
tion genomic studies of bovine strains have been pub-
lished since the first genome of a bovine S. aureus strain 
RF122 was reported [90]. Overall, as indicated from 
population studies summarized in the previous section, 
a limited number of widely distributed S. aureus clones 
are responsible for the great majority of S. aureus mas-
titis cases worldwide [5, 86]. These clones have evolved 
through human to bovine host-switching events that 
have happened since the Neolithic era after domesti-
cation led to increased opportunities for transmission 
among humans and livestock [86, 91]. After a host-jump 
into cows from humans, S. aureus has undergone host-
adaptation via gene acquisition, loss and diversification to 
allow it to survive in an anatomically and physiologically 
distinct niche [86, 90, 92]. For example, mobile genetic 
elements (MGE) including staphylococcal pathogenicity 
islands and bacteriophages which encode bovine-specific 
effectors of virulence are widely disseminated among 
bovine S. aureus clones and encode known and putative 
virulence factors including superantigens, von Wille-
brand binding protein (vWBP), and LukMF’ [92–94]. 
These effectors represent some of the best characterized 
factors involved in the pathogenesis of S. aureus mastitis 
with particular importance in both innate and acquired 
immune evasion [95, 96].

In addition to gene acquisition, loss of gene function 
has been a hallmark of bovine and ovine S. aureus strains 
that are adapting to their ruminant host species, as genes 
which are unessential for survival or fitness in the new 
host acquire nonsense or frameshift mutations that cor-
rupt the open reading frame resulting in truncated or 
untranslated proteins [90, 92]. In addition, diversifica-
tion of existing genes can occur that is associated with 
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adaptation to a distinct host environment. For example, 
in bovine S. aureus strains, genes associated with car-
bohydrate utilization were identified to be under diver-
sifying selective pressure suggesting adaptive evolution. 
Consistent with this genetic signature, bovine strains 
were better able to utilize lactose, the major source of 
carbohydrate in bovine milk, than S. aureus strains from 
humans or birds [86]. In another study, extensive recom-
bination events were associated with the evolution of a 
subtype of CC97 (ST71), which led to the acquisition of 
several genes encoding proteins that promoted human 
innate immune evasion [97].

A recent study from Richardson et  al. estimated the 
number of host-switching events that have occurred dur-
ing the evolutionary history of S. aureus and although 
most jumps have occurred from humans into cows [89], 
several instances of reverse host-switches from cows 
back into humans have been identified [86]. For exam-
ple, a study of the CC97 clone has identified at least two 
host-switch events from cows into humans that led to 
the emergence of a new human pathogenic clone that 
has spread around the world [6]. In addition, the major 
human epidemic clone in Southeast Asia (ST59) is pre-
dicted to have originated in cows [91, 98]. In each case, 
the strains have adapted to a human host species by the 
acquisition of genes required for human adaptation such 
as the immune evasion cluster of the Sa3int phage fam-
ily which encodes factors that mediate human-specific 
innate immune evasion [6]. Richardson et  al. identi-
fied a set of putative MGE that was associated with 
host-switching events suggesting an important role in 
host-adaptation [86] and providing avenues for future 
research into the host-pathogen interactions important 
for the colonization of dairy cows and the pathogenesis 
of mastitis.

Pathogenesis of bovine S. aureus
Adhesion to bovine mammary cells
Colonization is a key step in bacterial pathogenesis and 
bovine S. aureus has evolved in many ways to facilitate 
adhesion to different host cell types [98, 99]. One fam-
ily of S. aureus adhesins comprises the microbial sur-
face component recognizing adhesive matrix molecules 
(MSCRAMMs), which are cell-wall anchored proteins 
that share structural features like an N-terminal folded 
domain responsible for ligand binding, and a wall-span-
ning region followed by a sorting signal located at the 
C-terminal that anchor the protein to the cell wall [100].

Adhesion to and invasion of bovine mammary epi-
thelial cells is mainly promoted by the fibronectin-bind-
ing protein MSCRAMMs FnBPA and FnBPB, [101]. 
Fibronectin acts as a bridge that connects FnBPA to the 
α5β1 integrin present on the cell surface [102, 103]. It 

has been demonstrated that the FnBP-integrin interac-
tion induces the assembly of a cytosolic protein complex 
that modulates cytoskeleton rearrangement and medi-
ates bacterial uptake [104]. S aureus may also adhere to 
fibrinogen, elastin, and plasminogen in an FnBP-depend-
ent manner [105–107] that could promote colonization 
of different tissues and spread to other anatomical sites. 
Laboratory strains lacking FnBPs have a lower ability to 
colonize mouse mammary glands under suckling pres-
sure, confirming that FnBPs confer a competitive advan-
tage in vivo and may be considered as virulence factors 
for mammary gland colonization [108]. Overexpression 
of the fnb genes results in a higher invasion of bovine 
mammary epithelial cells (bMEC) [109]. Expression of 
FnBPB but not FnBPA is also related to increased inva-
siveness of isolates representative of ST8 [110]. However, 
the presence of fnb genes is not a prerequisite for cell 
adhesion because bacteria still retain the ability to invade 
even if both genes are absent [99], or if a truncated pro-
tein is produced [110] suggesting that additional factors 
may also be involved.

The high prevalence reported for the fnbA gene in 
bovine isolates [111–113] may reflect the importance 
of this adhesin in the pathogenesis of bovine mastitis. 
In contrast, a considerable discrepancy (1.5–100%) in 
the prevalence of the fnbB gene was reported in bovine 
S. aureus isolates, even among isolates from the same 
region that may in part reflect allelic variation that pre-
cluded PCR amplification [25, 114, 115].

Bovine isolates of S. aureus produce other MSCRAMMs 
that may promote colonization [109, 116, 117]. For exam-
ple, clumping factors A and B (ClfA and ClfB) are fibrino-
gen-binding proteins that act as adhesins and have several 
defined roles in colonization and pathogenesis [100, 118, 
119]. Although adherence to human endothelial cells 
requires fibrinogen to mediate the interaction between 
ClfA and the host integrin α5β3 [120], adherence to bovine 
epithelial cells occurs in a fibrinogen-independent man-
ner via the annexin A2 receptor [121]. ClfA expressed by S. 
aureus also inhibits phagocytosis through the cleavage of 
C3b in a process mediated by an interaction with the com-
plement regulator factor I [122]. It is yet to be confirmed 
if a similar inhibition mechanism is utilized by bovine S. 
aureus isolates. The clfA gene is usually described as highly 
prevalent (63.7-100%) in bacterial isolates of dairy cattle 
across all investigated countries with some disparities seen 
in the Netherlands (21%) [99, 123, 124]. The frequency of 
the clfB gene is reported as between 50 and 100% in bovine 
S. aureus isolates [25, 99, 111].

The collagen adhesin (Cna) protein is a MSCRAMM 
that not only has a role in adhesion but also partici-
pates in immune evasion during human infection [125]. 
Again, there is considerable variation in the prevalence of 
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the cna gene observed among S. aureus isolates in dairy 
herds around the world [26, 111, 114]. Considering that 
collagen is highly prevalent in udder tissue, the expres-
sion of the cna gene by S. aureus of bovine origin could 
be important for adherence. Of note, it has been demon-
strated that the cna gene has been acquired by the ST71 
lineage of CC97 through recombination, conferring the 
capacity for adherence to collagen in vitro [97].

Other less studied fibrinogen-binding proteins have 
been described in S. aureus of bovine origin like the ser-
ine-aspartate repeat proteins (Sdr), extracellular fibrino-
gen binding protein (Efb), and the iron-regulated adhesin 
IsdA. Although there is no clear role for sdrCDE in masti-
tis the sdrD gene correlates with a high prevalence of IMI 
[126]. In addition, a strong association between the srdD 
and sdrE genes and clinical mastitis has been reported 
[127]. The efb gene has also been reported to have a high 
prevalence in field isolates [123]. During human infec-
tion, the interaction of Efb with fibrinogen creates a pro-
tective shield with an anti-phagocytic role indicating an 
immunosuppressive role [53]. Although IsdA binds to 
fibrinogen and fibronectin [128], it has been well-studied 
as a vaccine target for mastitis control along with other 
iron-regulated proteins such as IsdB and IsdH due to 
their high immunogenicity, gene expression during IMI 
and presence of antibodies in milk of animals naturally 
infected with S. aureus [7, 129, 130].

Bovine isolates of S. aureus produce a carbohydrate-
based surface component when cultured in milk whey 
resulting in enhancement of bacterial adherence to 
bovine mammary cells and increased virulence in a 
murine model of mastitis [131, 132]. Although the carbo-
hydrate-based surface component was never confirmed 
as a true capsule, other authors described encapsulated 
isolates as less adherent compared to acapsular strains 
[133, 134]. Internalization by MAC-T cells was also 
lower in encapsulated isolates while acapsular mutants 
persisted longer in host cells compared to the wild-type 
strains [135]. A one herd study reported that acapsular 
isolates belonging to ST9 exhibit high invasive capacity, 
a phenotype that was suggested to contribute to the dis-
semination of bacteria among lactating cows [136].

In summary, the expression of a large array of surface 
proteins with the ability to bind to extracellular matrix 
proteins by bovine S. aureus highlights the different 
strategies that have evolved to promote colonization 
and pathogenesis. Studies have reported the high preva-
lence of particular adhesins among bovine isolates from 
intercontinental herds, but further functional analysis is 
required, along with improved understanding of the syn-
ergy between the adhesins, and the regulation of gene 
expression, to provide important insights into the pro-
gression of intramammary infection.

Biofilm formation and bovine mastitis
S. aureus of bovine origin is usually described as a biofilm 
producer [109, 137, 138], a trait that is usually related to 
bacterial persistence and increased tolerance to antibiot-
ics [139]. The biofilm has a complex structure consisting 
of many cell layers embedded in an extracellular matrix, 
which in S. aureus consists mainly of the polysaccharide 
intercellular adhesin (PIA), a poly-β (1–6)-N-acetylglu-
cosamine (PNAG) produced by the ica locus. Besides 
PIA, the biofilm matrix is also composed of several 
MSCRAMMs, such as FnBPs, ClfA, ClfB, and Protein A, 
that promote bacterial adhesion to host cells to initiate 
biofilm formation (56). The production of S. aureus bio-
film has not yet been demonstrated in vivo in IMI, despite 
immunological detection of certain components such as 
slime and PIA from mammary gland samples [134, 140].

There are many differences in the production of biofilm 
among bovine isolates of different genetic origins. Gener-
ally, strong biofilm producers belong to the agrIII group 
[113, 141] and invade epithelial cells to a lesser degree com-
pared to planktonic or low biofilm producers [142, 143]. 
agrI-type isolates are moderate biofilm producers, highly 
invasive, and are frequently isolated from subclinical masti-
tis in contrast to the agrII group that produces less biofilm, 
has reduced invasiveness, and is more related to clinical 
mastitis [144–147]. Nevertheless, differences in the level of 
biofilm formation among isolates from the same lineage are 
also observed [23, 24].

Milk and lactose can positively influence biofilm forma-
tion by S. aureus agrII bovine isolates due to the produc-
tion of PIA [141, 144, 148]. In addition, milk and lactose 
stimulate the expression of the lactose transporter EII 
and the teichoic acid biosynthesis protein B (TagB) that 
is regulated by Rbf, the repressor of biofilm [148–150]. 
Teichoic acids are an important component of the staph-
ylococcal biofilm extracellular matrix and establish elec-
trostatic interactions with PIA [151].

S. aureus can cause mastitis in cows in different stages 
of lactation and infections frequently persist over the 
ongoing lactation [152, 153]. A non-lactating period, 
also called the dry period, allows the recovery of the 
cow’s mammary gland and improves milk production in 
the following lactation. Additionally, dry cow therapy is 
recommended to reduce the risk of staphylococcal infec-
tions. High biofilm producers are likely to persist during 
the cow’s dry period [23] due to their efficient adherence 
to the mammary epithelium. Also, S. aureus isolated 
from milk is more likely to produce biofilm compared to 
bacteria isolated from teat skin and milking unit liners 
[154]. In a three-year follow-up of a dairy herd, S. aureus 
strains that produced more biofilm and higher amounts 
of PNAG showed higher within-herd prevalence and 
persistence [136]. These strains also presented reduced 
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cellular cytotoxicity and high invasiveness. A less preva-
lent phenotype whose persistence was related to the for-
mation of dendrites instead of biofilm was also described 
by the authors. These findings show that although biofilm 
production is usually described as a primordial factor 
that contributes to persistence other bacterial traits may 
also support chronic infections during bovine mastitis.

The impact of ica deletion on biofilm production can 
be compensated by the expression of a surface protein 
known as the biofilm-associated protein (Bap) that pro-
motes adhesion of S. aureus to abiotic and biotic surfaces 
[155]. Isolates expressing Bap adhere to epithelial cells 
but are less invasive due to the interaction between Bap 
and the Gp96 receptor expressed by mammary epithelial 
cells, which interferes with the internalization pathway 
mediated by FnBP [99, 156]. Furthermore, isolates har-
boring ica and bap are strong biofilm producers and are 
more resistant to antibiotics than isolates harboring only 
ica or bap [155]. However, Bap-positive strains can lose 
the ability to form biofilm when grown in milk, probably 
due to the stabilization of Bap in the presence of calcium 
[49]. At lower concentrations of calcium, Bap is cleaved 
into fragments that form amyloid fibers providing a scaf-
fold for biofilm development [157]. Taken together, these 
data indicate that S. aureus of bovine origin forms biofilm 
through a PIA-dependent manner during the lactating 
period but a PIA-independent mechanism via Bap might 
play a role during the dry cow period when concentra-
tions of calcium in the udder are low.

Toxins as important virulence factors in mastitis
A wide array of different secreted toxins has been impli-
cated in S. aureus disease pathogenesis [158]. Superan-
tigens (SAgs) are a family of potent immunostimulatory 
exotoxins produced by S. aureus that are known for 
their ability to circumvent normal immune function. 
They bind as a bridge to major histocompatibility com-
plex class II molecules and specific Vβ segments of T-cell 
receptors, resulting in their proliferation, differentiation 
into effector cells, and massive cytokine release [159]. As 
a result, several T cells that share the same Vβ segment 
may be activated, independently of antigen specificity 
[160]. SAgs in bovine strains of S. aureus include TSST-
1, staphylococcal enterotoxins (SE), and staphylococcal 
enterotoxin-like proteins (SEl) that are mostly encoded 
on MGE [88, 93].

Genomic analysis revealed variation in the gene con-
tent of SAgs of bovine isolates from 57 distinct sequence 
types (ST) [161] in concordance with the findings 
reported for isolates around the world [90, 162, 163]. 
However, there are disparities in the distribution of the 
enterotoxin gene cluster (egc), which is highly prevalent 
within CC30, CC151, and CC45, and the pathogenicity 

island  SaPIbov, which is primarily associated with CC133 
and CC151 [161]. The prevalence of enterotoxins is also 
highly variable in isolates belonging to different geo-
graphical locations [21, 124, 164], which is explained by 
the wide variety of S. aureus genotypes found in dairy 
cattle [124], besides differences in environmental and 
management factors in each geographical area [165].

The presence of specific enterotoxin genes has been 
linked to acute and clinical bovine mastitis [23, 166] 
although seg and sei were found in persistent subtypes 
recovered from cows presenting subclinical mastitis 
[136]. Additionally, seh and sek tend to be more frequent 
in isolates causing subclinical mastitis, while sed and 
sej are mostly associated with persistent mastitis [166]. 
Other studies reported that neither the genes sea and sed 
[167] nor the set of genes sea, seb, see [168] were detected 
in isolates causing subclinical mastitis in cows on dairy 
farms in Spain [167] or the USA [168]. Due to the large 
repertoire of enterotoxins present in S. aureus more stud-
ies are needed before gene signatures can be associated 
with the outcome of mastitis in dairy cows.

Current evidence indicates the involvement of SAgs in 
the pathogenesis of bovine mastitis. Enterotoxin M and 
H contribute to inflammation, necrosis, and/or apoptosis 
of bovine mammary epithelial cells [169, 170], pathology 
also observed upon injection of SEC into the mammary 
glands of mice [171]. However, the high concentrations 
of toxins used in those studies may not mimic the in 
vivo condition and therefore are unlikely to occur during 
intramammary infection. It was demonstrated that most 
SAgs produced by S. aureus RF122 present mitogenic 
activity for bovine T cells, even at low concentrations 
[161]. In this study cows challenged with a SAg-deficient 
strain demonstrated an inability to develop clinical mas-
titis but had similar somatic cell counts and milk quality 
compared to wild-type RF122-infected cows, highlight-
ing the functional importance of SAgs during bovine 
infection.

S. aureus also produces numerous membrane-dam-
aging toxins that compromise host-cell function in vitro 
and are involved in iron acquisition and host immune 
evasion [172]. α-hemolysin (Hla) binds to the ADAM10 
receptor and assembles into a β-barrel transmembrane 
pore in the cell surface, promoting the release of small 
molecules that lead to tissue necrosis [173]. Phagocytized 
bacteria secrete Hla to lyse bovine endothelial cells, an 
event that may free intracellular bacteria to target other 
cells [174]. β-hemolysin (Hlb) also damages the secretory 
epithelial cells but has less cytotoxicity, with a synergistic 
effect seen with a combination of both toxins [175]. The 
hydrolysis of sphingomyelin by β-hemolysin increases 
host cell permeability with progressive loss of cell surface 
charge, rendering the cells more susceptible to the action 
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of α-hemolysin. Additionally, β-hemolysin exerts lym-
photoxic effects and lyses bovine erythrocytes contribut-
ing to iron acquisition [172]. δ-hemolysin (Hld) is a small 
peptide that is translocated across the plasma membrane 
at low concentrations, forming a transient structure that 
perturbs the bilayer and induces ionic efflux [176]. Hld 
belongs to the family of phenol-soluble modulins (PSM), 
toxins that are highly cytolytic and have proinflamma-
tory activities. A high expression of hld but no other psm 
genes was reported in the well-studied bovine strains 
RF122 and N305 [177]. In the same study, the authors 
showed reduced cytokine production in bacteria express-
ing psmαβhld, suggesting that an attenuated immune 
response is related to chronic mastitis.

The hemolytic activities of Hlb and Hld produced by 
S. aureus isolates recovered from clinical mastitis when 
grown in the whey of skimmed milk suggest a role for 
Hld in IMI [178] but there is experimental evidence that 
supports the relevance of the other toxins in bovine mas-
titis. Antibodies raised against α- but not β-hemolysin 
produced by bovine S. aureus strains protect rabbits from 
mastitis [179]. Intramammary injections of Hla in lac-
tating rabbits disrupt the architecture of the mammary 
gland, with necrotic lesions seen at high doses while 
injection of purified Hlb causes an influx of polymorpho-
nuclear leukocytes (PMN) into the alveoli besides edema 
[180]. These findings were further corroborated by stud-
ies showing less necrosis and greater preservation of tis-
sue structure 24 h post-challenge in a murine model with 
a Δhla/Δhlb mutant [181]. Compared to the parental 
strain that caused 60% mortality, no mortality was seen in 
mice inoculated with the double mutant. Cows infected 
with Δhla and Δhlb mutants were able to eliminate the 
bacteria and suffer only mild inflammation compared to 
the severe clinical signs presented by animals infected 
with the parental strains [182]. Taken together, these 
studies reveal the importance of Hla and Hlb in bacterial 
virulence during IMI.

Genes involved in the synthesis of hemolysins are fre-
quently found in bovine isolates of S. aureus [166, 183, 184] 
and nearly 50% of those isolated from subclinical disease 
show hemolytic activity [163, 185]. There is no correlation 
between hemolysin expression and bacterial lineage since 
strains from the same ST often demonstrate both high 
and low levels of gene expression and activity [186, 187]. 
S. aureus isolated from cows with subclinical mastitis that 
shows higher expression of hld are more likely to be non-
persistent during either lactation or through the dry period 
[23]. Also, isolates causing clinical mastitis show higher 
hemolytic activity and prevalence of hemolysin genes when 
compared to isolates recovered from subclinical masti-
tis [163, 188], which may result in greater damage of the 
bovine mammary secretory epithelial cells. In addition, the 

presence of single nucleotide polymorphisms within the 
promoter region of hla is likely to be associated with a high 
α-hemolysin expression by S. aureus isolates associated 
with severe bovine mastitis, a finding that may be used as a 
marker to discriminate strain virulence [189].

Leukocidins secreted by S. aureus are bicomponent 
toxins that target white blood cells leading to the for-
mation of pores that disrupt host cell function allow-
ing S. aureus to escape from the immune system [190]. 
The leukocidin S subunit binds to a receptor in the host 
cell membrane, followed by F subunit recruitment and 
oligomerization into an octameric structure creating a 
β-barrel channel inserted in the host cell lipid bilayer. The 
presence of interchangeable classes of S and F subunits 
in bovine S. aureus raises the hypothesis that leukocidins 
may present distinct activities according to the cell target 
during the infective process [191]. LukMF’ is restricted to 
S. aureus strains associated with animals such as bovines 
and ovines [192] although the prevalence of the lukM and 
lukF genes varies considerably (4–96%) among S. aureus 
isolates recovered from cows [82, 193, 194]. Among 
all bovine-associated S. aureus lineages, CC97 showed 
a high prevalence of the genes lukMF [11, 195]. Also, 
there are reports that associate gene presence with cer-
tain clones such as CC151, CC479, and CC133 [36]. Even 
though the genes have been detected in S. aureus iso-
lated from subclinical mastitis [24, 82, 167], expression 
is more often detected in those recovered from clinical 
mastitis or lineages that carry a nonsense mutation in the 
repressor of toxins Rot [82]. The presence of LukMF´ and 
antibodies in milk and the serum of goats that received 
intramammary infusion with a high leukocidin-produc-
ing strain is evidence of the functional role of these toxins 
during mastitis [196].

The high cytotoxicity of LukMF’ may be conferred by 
the high efficiency of LukM for cell receptors present on 
bovine leukocytes, neutrophils, and macrophages [197]. 
Interestingly, no inflammation was seen in cows that 
received intramammary injections of purified LukMF’ 
[198]. Later, it was shown that the expression of CCR1 
on bovine, but not on human neutrophils was the cause 
for species-specific killing by LukMF’ [199]. Further stud-
ies challenged cattle with high and intermediate LukMF’ 
producing strains and correlated the higher level of 
expression and the presence of milk antibodies against 
LukM with clinical mastitis severity [96]. Taken together, 
these studies strongly support the functional significance 
of LukMF’ in the pathogenesis of bovine mastitis.

Other leukotoxins such as γ-hemolysin (Hlg) and 
LukED are produced by bovine S. aureus but vary in their 
activities against bovine cells. These toxins recognize cer-
tain receptors in neutrophils but compared to LukMF’ 
they are expressed in lower levels during in vitro growth 
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[96]. Hlg is composed of the F subunit HlgB that com-
bines with HlgC or HlgA to form the active toxin [200]. 
The effect of HlgAB on bovine PMN is greater than 
HlgBC [191]. The same authors showed that reduced 
activity of the leukotoxin LukED was boosted when LukD 
was replaced by LukM. The genes hlg and lukED are fre-
quently reported in bovine S. aureus [184, 195, 201] but 
more studies are needed to provide data on their role 
during IMI.

In summary, bovine strains of S. aureus produce a 
plethora of toxins that target different host cells and 
have wide ranging roles during infection including nutri-
ent acquisition and immune evasion. If in the past stud-
ies were focused on detecting their presence, now they 
have started to reveal the molecular functions of toxins 
and their interplay with the host. The immunogenicity 
of some toxins has been shown supporting their use as 
therapeutic agents for fighting IMI. Though higher levels 
of toxin expression are more likely to be associated with 
more severe symptoms of mastitis it is still unknown if 
their complementary and/or redundant activities are 
needed during IMI progression.

Conclusions and future directions
S. aureus has been the subject of intense investigations 
in the veterinary field and is probably the most studied 
causative agent of bovine mastitis, a disease with a huge 
impact on the dairy supply chain. Here we compiled find-
ings specifically related to important virulence factors 
of bovine S. aureus. Considering the 27 countries from 
which the studies have been published, CC97 and t267 
are the most disseminated lineages. There is no clear pat-
tern of distribution of adhesion or toxin genes in bovine 
S. aureus isolates making the outcome of association 
studies of mastitis and novel therapeutic development 
complicated. Although the production of biofilm has 
been reported for every field isolate, more evidence is 
needed to confirm in vivo biofilm formation and the spe-
cific role of Bap in bovine S. aureus antibiotic-resistant 
biofilm production. Except for leukocidin LukMF’, few 
virulence determinants have been correlated with clinical 
severity.

There is still much must be done to improve ani-
mal health, diagnosis, and control of mastitis in dairy 
herds. 3D cell culture is emerging as a powerful tech-
nology to replicate mammary gland structural com-
plexity, allowing advances in the pathophysiology of 
mastitis and reducing the dependence on animal mod-
els. Organoid cultures open new windows to explore 
the molecular crosstalk between host and pathogen, 
host and lineage-specific traits that affect disease out-
come, and the contribution of the host microenviron-
ment to the expression of the virulence factors highly 

prevalent in field isolates. This may shed light on the S. 
aureus biology of bovine mastitis and eventually open 
new perspectives aimed at better controlling bovine 
mastitis.

While numerous genomes have been sequenced, 
bovine S. aureus contains many genes of unknown func-
tion. The construction of transposon (Tn) mutant librar-
ies will deepen our understanding of the pathogen´s 
biology, unveil new virulence factors and mechanisms of 
bacterial resistance to antibiotics allowing more efficient 
strategies for bacterial control. The co-existence of differ-
ent clonal complexes within dairy herds is a challenge to 
the control of mastitis. Tn mutagenesis may also be used 
to identify lineage-specific traits that contribute to the 
success of clinically relevant clones.

Antibiotics are frequently used to prevent and treat 
bovine mastitis. With the emergence of antimicrobial-
resistant clones and consumer demand for food safety, 
farmers must rely on strategies other than herd sanita-
tion to control intramammary infections. Although 
vaccination is available, multifactorial causes like poor 
antigens and gaps in the understanding of the immune 
response hinder the development of effective vaccines 
against S. aureus. Over the last years, there has been an 
increase in the search for alternative treatment methods 
using natural products, bacteriocins, bacteriophages, 
and nanoparticles. Despite showing promise, the inhibi-
tory activity seen in vitro is not always sustained when 
the therapy is tested in vivo regardless of the animal 
model used, an interference probably caused by milk 
components. This can be circumvented using nanocar-
riers that bring stability, solubility, tissue permeability, 
or controlled release of the antibiotic drug which can be 
used in formulations to eradicate planktonic or sessile 
bacteria. However, there is still a long road to successful 
clinical translation.
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