
Diversity-Based Inference of Finite Automata

RONALD L. RIVEST AND ROBERT E. SCHAPIRE

MIT Laboratory for Computer Science, Cambridge, Massachusetts

Abstract. We present new procedures for inferring the structure of a finite-state automaton (FSA)

from its input\ output behavior, using access to the automaton to perform experiments.

Our procedures use a new representation for finite automata, based on the notion of

equivalence between tesfs. We call the number of such equivalence classes the diLersL@of the

automaton; the diversity may be as small as the logarithm of the number of states of the

automaton. For the special class of pennatatton aatornata, we describe an inference procedure

that runs in time polynomial in the diversity and log(l/6), where 8 is a given upper bound on the

probability that our procedure returns an incorrect result. (Since our procedure uses randomiza-

tion to perform experiments, there is a certain controllable chance that it will return an erroneous

result.) We also discuss techniques for handling more general automata.

We present evidence for the practical efficiency of our approach. For example, our procedure is

able to infer the structure of an automaton based on Rubik’s Cube (which has approximately 10 lY

states) in about 2 minutes on a DEC MicroVax. This automaton is many orders of magnitude

larger than possible with previous techniques, which would require time proportional at least to

the number of global states. (Note that in this example, only a small fraction (10-14, of the global

states were even visited.)

Finally, we present a new procedure for inferring automata of a special type in which the global

state is composed of a vector of binary local state variables, all of which are observable (or risible)

to the experimenter. Our inference procedure runs provably in time polynomial in the size of this

vector (which happens to be the diversity of the automaton), even though the global state space

may be exponentially larger. The procedure plans and executes experiments on the unknown

automaton: we show that the number of input symbols given to the automaton during this process

is (to within a constant factor) the best possible.

Categories and Subject Descriptors: F. 1.1 [Computation by Abstract Devices]: Models of Compu-

tation—automata: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algo-

rithms and problems—cornpufafions on discrete smacfares; 1.2.6 [Artificial Intelligence]: Learning

—concept learnuzg; vzdztctzon; 1.2.9 [Artificial Intelligence]: Robotics

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Diversity-based representation, finite automata, inductive

inference, learning theory, permutation automata

This paper was prepared with support from National Science Foundation (NSF) grant DCR

86-07494, ARO grant DAAL03-86-K-0171, and a grant from the Siemens Corporation.

Authors’ current addresses: R. L. Rivest, Laboratory for Computer Science, Massachusetts

Institute of Technology, Cambridge MA 02139, e-mail: rivest~theor-y.lcs. mit.edu; R. E. Schapire,

AT& T Bell Laboratories, 600 Mountain Avenue, Room 2A-424, Murray Hill, NJ 07974, e-mail:

schapire@research. att.com.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish. requires a fec and/or

specific permission.

O 1994 ACM 0004-541 1/94/0500-0555 $03.50

Journal of the Awoc]atlon fm Computing Machmmy, Vol 41. No 3, MqI 1994, pp 555-589

556 R. L. RIVEST AND R. E, SCHAPIRE

1. Introduction

We address the problem of inferring a description of a deterministic finite-state

automaton from its input/output behavior.

Our motivation is the “artificial intelligence” problem of identifying an

environment by experimentation. We imagine a robot wandering around in an

unknown environment whose characteristics must be discovered. Such an

environment need not be deterministic, or even finite-state, so the approach

suggested here is only a beginning on the more general problem.

In line with our motivation, our inference procedures experiment with the

automaton to gather information.

A unique and valuable feature of our procedures is that they do not need to

have the automaton “reset” to some start state or “backed-up” to a previous

state; instead, data is gathered in one continuous experiment (as in real life).

Our procedures are practical; their time and memory requirements are quite

reasonable. For example, our procedures do not need to store the entire

observed input/output history.

In Sections 3 and 4, we present a new representation of finite automata

based on the notion of test equivalence. We present and prove the effective-

ness of a probabilistic algorithm for inferring permutation automata. We also

discuss possible techniques for handling more general automata, and give some

prelimina~ experimental results.

In Section 5, we extend the work of the preceding sections focusing on one

aspect of the inference problem; namely, that of planning experiments for

gathering information.

2. Prel’ious Work

For a fascinating discussion of the problem of inferring an environment from

experience, the reader is encouraged to read Drescher [1986; 1987] whose

approach is based on the principles of Piaget.

Kohavi [1978] gives a fine introduction to the theory of finite-state automata,

as do Hartmanis and Stearns [1966].

The problem of inferring a finite-state automaton from its input/output

behavior has a long history. Pitt [1989] provides an excellent survey of this

history. Here are some of the highlights.

Gold [1967] presented a number of recursion theoretic results concerning

several language classes, including the regular languages. Gold considered the

problem of identifying a language “in the limit,” and showed that the feasibility

of this problem for regular languages depends on the manner in which

examples of the language are presented to the learner. In the same paper,

Gold described the problem of “black box” identification, closely related to the

particular problem that we are here addressing. In this situation, the learner is

able to experiment with an unknown black box. At each step, the learner

supplies the black box with an input symbol and the black box in turn outputs

an output symbol calculated as a function of the input symbols provided to it so

far. Gold shows that if the black box is a finite automaton, then it can be

identified in the limit. Note however that Gold’s results do not address the

time complexity of any of these problems.

In a later paper, Gold [1972] examined more closely the problem of inferring

a black box finite automaton. Here, Gold assumed that the experimenter has

available to it a mean of resetting the automaton to some initial state. He

Diuersity-Based Inference of Finite Automata 557

described how the automaton can be identified in the limit, how experiments

can be efficiently planned, and how the automaton can be identified in a finite

amount of time if the learner is given beforehand the number of states of the

automaton.

Trakhtenbrot and Barzdin’ [1973] described several variations on the prob-

lem of identifying a black box finite state machine. Among their results are

algorithms for finding a perfect model of an unknown finite automaton that

has been chosen partially at random. Like Gold, Trakhtenbrot and Barzdin’

generally did not consider the time complexity of their algorithms.

Later, Angluin [1987a] elaborated on Gold’s algorithm to show how to

efficiently infer an automaton with active experimentation. In her model, the

learner has a “minimally adequate teacher” who can answer two kinds of

queries: First, the teacher will tell the learner whether any particular string is a

member of the unknown automaton’s language (i.e., whether the string is

accepted by the automaton). Second, the teacher is able to supply the learner

with a counterexample to an incorrect conjecture of the automaton’s identity.

Angluin showed that the number of queries required by her algorithm to

correctly identify the unknown automaton is polynomial in the number of

states of the automaton and in the length of the longest counterexample

supplied by the teacher. Note that Angluin’s procedure depends critically on

the availability of a reset.

The problem of learning an automaton by passively observing its behavior is

now well established to be a hard computational problem. Angluin [1978] and

Gold [1978] proved that finding an automaton of n states or less agreeing with

a given sample of input\ output pairs is NP-complete. Pitt and Warmuth [1993]

showed that merely finding an approximate solution is infeasible if P + NP.

Kearns and Valiant [1994] extending the work of Pitt and Warmuth [1990],

showed that learning finite automata is intractable, regardless of the represen-

tation used by the learner (assuming the security of various cryptographic

functions). Note that in all of these situations the inference algorithm does not

have access to the automaton—the input/output pairs are given and the

learner is not able to experiment with the automaton it is trying to identify.

Their results indicate that active experimentation is an indispensable tool for

inference of finite automata.

Finally, Angluin [1982] showed how to infer in polynomial time a special-class

of finite-state automata, called “k-reversible” automata, from a sample of

input/output behavior. Later, we will give special consideration to the class of

permutation automata of which the zero-reversible automata are a subclass.

As previously mentioned, our algorithms are based on a new “diversity-based”

representation of finite automata. This representation was previously consid-

ered by Bainbridge [1977].

3. A New Representation of Finite Automata

3.1 AUTOMATA AND ENVIRONMENTS. Our definition of a finite-state au-

tomaton is a generalization of the usual Moore automaton [Kohavi, 1978]. (Our

approach generalizes to handle Mealy automata; however, we find Moore

automata more natural.)

A finite-state automaton ~ is a 6-tuple (Q, B, P, qo, a, y) where

—Q is a finite nonempty set of states.

558 R. L. RIVEST AND R. E. SCHAPIRE

—B is a finite nonempty set of input symbols, also called basic actions.

—P is a finite nonempty set of predicate symbols, also called sensations.

—qO, a member of Q, is the initial state.

—8 is a function from Q x B into Q; 8 is called the next-state function.

—y is a function from Q x P into {true, false}.

When P only contains a single predicate (e.g., accept), we have the standard

definition of a Moore automaton. We allow multiple predicates to correspond

to the notion of a robot having multiple sensations in a given state of the

environment.

We assume henceforth that we are dealing with a particular finite-state

automaton % = (Q, B, P, q,], 8, -y), which we call the environment of the learn-

ing procedure.

We say that E is a pewnutation eru’ironment if for each b c B. the function

8(., b) is a permutation of Q.

We let A = B* denote the set of all sequences of zero or more basic actions

in the environment %; A is the set of actions possible in the environment %,

including the null action A

If q is a state in Q, and a = blbz ““- b,, is an action in A, we let qa = qblbz

“o” b,, denote the state resulting from applying action a to state q:

qa = 6(”.” 8(6(q. bl), bz) ””. b~). (1)

(The basic actions are performed in the order b,, b,,..., b,,.) Similarly, if q is a

state and p is a predicate, we let w = y(q, p) denote the result of applying

predicate p to state q.

We say that E is strongly connected if

We do not assume that ~ is strongly connected in our general discussion of

automata and diversity. However, when we describe our inference procedure,

we will make this assumption with little loss of generality: If % is not strongly

connected, then an experimenting inference procedure, having no “reset”

operation, will sooner or later fall into a strongly connected component of the

state space from which it cannot escape, and so will have to be content

thereafter learning only about that component.

3.2 TESTS. A test is an element of AP, that is, an action followed by a

predicate. We let T denote the set of tests AP. We say that a test t = ap

succeeds at state q if qt = q(ap) = qap = (qa)p is true. Otherwise, we say that t

fails at q. The letzgth It/of a test t is the number of basic actions and predicates

it contains.

We say that ~ is reduced if every pair of states can be distinguished by

executing some test:

(Vq I= Q)(VT = Q)(q + r - (3t = T)qt + rt) (3)

We assume henceforth that % is reduced.

We say that a robot has a pe$ect model of its environment if it can predict

perfectly what sensations would result from any desired sequence of basic

actions, that is, if it knows the value of every test in the current state. The goal

DiuersiQ-Based Inference of Finite Automata 559

of our inference procedures is to build a perfect model of the given environ-

ment.

3.3 EQUIVALENCE OF TESTS AND DIVERSITY. A central notion in our devel-

opment is that of test equil)alence.

We say that tests t,and t2are equivalent, written t,= t2,if

(Vq ● Q)(qt~ = qt~); (4)

that is, from any state the two tests yield the same result.

The equivalence relation on tests partitions the set T of tests into equiva-

lence classes. The equivalence class containing a test t will be denoted [t].

The diuersio of the environment %, denoted D(%), is the number of

equivalence classes of tests of %:

D(%) = I{[t]lt G T}l. (5)

The following theorem demonstrates that the diversity of a finite-state

automaton is always finite, but is only loosely related to the size (i.e., number

of states) of the automaton.

THEOREM 1. For any reduced finite-state automaton E = (Q, B, P, q., 8, y),

lg(lQl) < D(%) < 21~1.

PROOF. The first inequality lg(lQl) s D(%), or equivalently IQI s 2~(g),

holds because a state is uniquely identified by the set of (equivalence classes

of) tests which are true at that state, since ~ is reduced. The second inequality

holds because the equivalence class that a test belongs to is uniquely defined

by the set of states at which that test succeeds. ❑

THEOREM 2. The lower and upper bounds on D(Z) giuen in Theorenl 1 are

the best possible.

PROOF. For the lower bound, consider an environment where the states are

n-bit words, and, for 1 L i s n, there is a predicate p, which tests whether the

ith bit is one. The set B consists of a single action, which is the identity

operation (no state change). Then D(%) = n but IQI = 2 ‘2. (Although the state

space in this example is disconnected, a similar but connected example that

nearly achieves the same bound is given in Section 3.8.1.)

For the upper bound, consider an automaton whose states are represented

by an element x, which is either an n-bit vector (xl,..., x.) or the special

value hit; there are 1 + 2“ states. The only predicate tests whether x = hit.

The following actions are available:

—For each i = {1,. . . . n}, an action which flips x, if x + hit, and leaves x

alone otherwise.

—An action which sets x to hit if x is the all-zero vector O“, and leaves x

alone otherwise.

Using these actions, for any subset X of the it-bit vectors, it is possible to

construct a test that is true if and only if the initial state begins with x ● X or

x = hit initially. (Selective complementation can bring x into the all-zero state

iff it was originally in some particular n-bit state y; this state can then be

transformed to hit; otherwise, the original state can be restored by undoing the

560 R. L. RIVEST AND R. E. SCHAPIRE

selective complementation. This can be repeated for each y G X.) Actually,

this environment only comes within a factor of two of the upper bound; its

diversity is 2 IQ -1.

However, the following alternative environment does achieve the upper

bound, although its set of basic actions is enormous. The environment consists

of n states numbered O through n – 1, and has a single predicate p that

succeeds only at state O. For each subset X of the states, there is an action b ~

that moves state .x to state O if .x G X, or to state 1 otherwise. Thus, the test

bxp is true iff we are in one of the states in X. Hence, D(%) = 21~1. ❑

We propose that the notion of diversity is more suitable than that of size for

many natural applications. To support this viewpoint, we will demonstrate that

there exists a natural encoding of a finite-state autonlaton, whose size is polynomial

in the diLersity of the automaton. Furthermore, it is straightforward to use this

representation (called the update graph) to simulate the behavior of the

automaton.

3.4 THE UPDATE GRAPH. As a convenient means of representing the test

classes, we may build a directed graph in which each vertex is an equivalence

class, and an edge labeled b e B is directed from test class [t]to [t’]iff t = M’.

We call this the Zipdate graph of the environment.

Since there is one vertex for each equivalence class, the size of the update

graph is precisely the diversity of %. Also, for b E B, every vertex has exactly

one b-edge directed into it, since if t = t’then bt - bt’.

For any test t = up where p is a predicate and a = bl b? . ~. b,, is a sequence

of basic actions, there is a path in the update graph along which vertex [p] can

be reached from [t]by following the edges labeled b,, bz,. . . . b.. Put another

way, we can find t‘s equivalence class in the update graph by tracing backward

from [p] along the unique path b,,, . . ., b,. Thus, the set of tests equivalent to t

consists exactly of those tests ap for which there is a path from [t] to [p]

labeled with the basic actions of a.

We associate with each vertex [t]the value of t at the current state q. (This

value is well defined since if t = t’,then by definition of equivalence, qt = qtr.)

When action b is executed, the test [t’]gets its value from [t], where t = bt’,

yielding the new value of each test in state qb. Thus, the update graph may be

used to simulate the automaton, as we prove in the following theorem.

An example update graph is described in Section 3.8.

3.5 THE SIMULATION THEOREM

THEOREM 3. To simulate E (i.e., to hale Q petfect model of %), it sujfices to

know:

(1) The update graph.

(2) For each equivalence class [t], the [’alue qt at the current state q.

PROOF. Suppose the automaton moves from state q to state qb, for some

b = B. We need to compute (qb)t = q(bt) for each equivalence class [t].

However, the test bt belongs to that (unique) equivalence class [s] for which an

edge labeled b is directed from [s] to [t]in the update graph. By assumption,

we know qs; this is the desired value of (qb)t. ❑

DiL’ersity-Based Inference of Finite Automata 561

3.6 SIMPLE-ASSIGNMENT AUTOMATA. We may regard the test equivalence

classes as (local) state variables each of which is updated under the execution of

some basic action with the value of one other (or the same) variable. We call

such a structure a simple-assignment automaton (SAA). The output of an SAA

consists of the current values of one or more of its variables—in this case, the

equivalence classes of the predicates.

If we regard the current state of an SAA as the assignment of values to all

the variables, then it is clear that every SAA is deterministic and finite state,

and so can be simulated by some FSA. Conversely, our construction and the

simulation theorem show that every FSA can be simulated by some SAA (the

one we have constructed being the smallest). Thus, we have proved:

THEOREM 4. E1’ery SAA can be simulated by an FSA, and eueq FSA can be

simulated by an SAA.

We will return to the topic of simple assignment automata in greater detail

in Section 5.

3.7 CHARACTERIZING DIVERSITY AND THE UPDATE GRAPH. Angluin [1987b]

and Neal Young (private communication) have independently pointed out the

following relationship between the update graph of an environment with a

single predicate, and the original automaton.

Let % be an environment with a single predicate, (Q, B, {p}, qO, 6, y), and

let %’ = (Q’j B, {p’}, q~, 8’, y’) be defined as follows:

–Q = {[t]lt● T}

+J = [p]

—i3’([t],b} = [bt], for [t]G q’, b = B

—y’([tl, p’) = qt, t, for [t]= Q’.

In this construction, Q is just the vertex set of %’s update graph so that

IQ’ \ = D(g). Furthermore, by the definition of 8’, we see that the transition

graph of ~’ is exactly this update graph with all of the edges reversed in

direction.

THEOREM 5. Let E and & be as described abooe. Then for any action

a E A, qOap = q; aRp’ where aR is the rel’erse of a.

PROOF. Let a = bl “”” b,,, where each b, = B. Then by the definition of 8’,

we have:

q~aR = [plb~b,, -, b,, -~ -“” bl

= [b,, p]b~_lb,Z_2 ““” b,

= [b, ““” b~p]

= [ap].

Thus, q~aRp’ = y(q&aR, p’) = -y([ap], p’) = qOap. ❑

The language L(%) accepted by automaton % is the set of actions a = A

which move % from its starting state to an “accepting” state in which the

562 R. L. RIVEST AND R. E. SCHAPIRE

environment’s only predicate is true. That is, L(%) = {a ● ,4 Iqu ap = true}.

Theorem 5 shows that the diversity of % is exactly the state size of the

minimum FSA that accepts the reverse of L(%).

When % = (Q, B, {p}, qO, 8, y) is a permutation environment with a single

predicate, the diversity and update graph can be characterized in a different

manner based on group theory. In this case, the set of basic actions generates a

permutation group G on the states of %. Let H be the subgroup of G which

stabilizes the accepting states of %. That is, H consists of those group elements

a of G for which qp = qap for all q = Q. (Equivalently, G is the permutation

group on the test equivalence classes of S, and H is the subgroup of G which

stabilizes [p].)

We define the le~t coset graph of H as follows: The vertices of the graph are

left cosets of H, and an edge labeled b is directed from aH to a’11 iff

UH = ba’11. (Here, ali = {ah:h e H}.)

Then, the following theorem shows that the diversity of % is exactly the

index of H in G (i.e., the number of left cosets of H):

THEOREM 6. Let Z = (Q, B,{ p}, qO, 8, y) be a permutation environment, let

G be the group generated by the basic actions of ~, and let H be the subgroup of G

that stabilizes the accepting states of G. Then tile update graph of % is isomorphic

to the left coset graph of H.

PROOF. For any two tests xp and yp, we have:

The generalization of both these characterizations to environments with

multiple predicates is straightforward.

3.8 Two EXAMPLE ENVIRONMENTS. The motivation for the introduction of

the notion of diversity was the realization that many interesting “robot envi-

ronments” can be modeled as finite automata that, although they have a large

number of states, have low diversity. In this section, we make this point explicit

by describing two particular small “robot environments.”

3.8.1 The fz-bit Register World. In this environment, the robot is able to read

the leftmost bit of an n-bit register, such as the 10-bit register depicted in

Figure 1. Its actions allow it to rotate the register left or right (with wraparound)

or to flip the bit it sees.

Clearly, this automaton consists of 2“ global states, but its diversity is only 2n

since there is one test for each bit, and one for the complement of each bit. We

note that the register world is a permutation automaton.

The update graph of this environment for n = 3 is depicted in Figure 2. The

name “ 1“ in the figure refers to the predicate that returns true if the leftmost

bit is a 1, and “L,” and “R,” and “F” refer to the actions that rotate left and

right, and which flip the leftmost bit. In the current state, the register contains

Diuei-sity-Based Inference of Finite Automata 563

FIG. 1. The lo-bit Register World.

FIG. 2. Update graph of 3-bit Register World.

the values 101. We have darkened the borders of the tests which are true in the

current state (namely, 1, RI, and LF’1). If the register is rotated left (i.e., if

action L is executed), then in the resulting state, tests F’1, Ll, and RI will be

true.

So, for example, in this environment, the tests LFRR1 and R1 are equivalent

as can be deduced from the update graph. Informally, the two tests are

equivalent because, regardless of the current state, the result of executing

either test is to return the value of the bit one step to the right. Thus, the two

tests will always return the same value despite the fact that the tests’ effect on

the global state may be quite different (one test flips a bit, the other does not).

3.8.2 The n X n G-id World. Consider a robot on an n X n square grid

(with “wraparound,” so that is is topologically a torus), (see Figure 3). The

robot is on one of the squares and is facing in one of the four possible

directions. Each square (except the one it currently occupies) is either red,

green, or blue. The robot can sense the color of the square it is facing. (This

corresponds to the predicates of our previous development.)

The following actions are available to the robot: It can paint the square it

faces red, green, or blue. The robot can turn left or right by 90 degrees, or step

forward one square in the direction it is facing. Stepping ahead has the curious

side effect of causing the square it previously occupied to be painted the color

of the square it has just moved to, so moving around causes the coloring to get

scrambled up.

564 R. L. RIVEST AND R. E. SCHAPIRE

FIG. 3. The 5 x 5 Gr]d World

This environment is a finite-state automaton that, even after reducing by

factoring out some obvious symmetries, has an exponentially large (3’”- 1)

number of states.

However, the ditersity of this environment is only 0(n z). The state of this

environment is completely characterized by knowing the color of each square

(using a robot-relative coordinate system). It is not hard to devise a set of

0(n?) tests whose results give all the desired information. (For example, the

square behind the robot is red if and only if the test “turn- left turn– left

see– red” is true.)

Given this information, it is easy to see how to predict the state of the

environment after a given sequence of actions. In fact, it becomes clear that

this is the “natural” representation of this environment, and that the intuitive

representation and simulation procedure one would use for this environment

are captured almost exactly by the diversity-based representation and simula-

tion procedure given in the previous section.

We note that because of the “paint” operations, this environment is not a

permutation environment.

4. Our Inference Procedure

The inference procedure tries to construct a perfect model of its environment

by meeting the two requirements of the simulation theorem (Theorem 3). That

is, the procedure first infers the structure of the update graph, and then

maneuvers itself into a state q where it knows the value qt for every

equivalence class [t].

We will see that the first problem of constructing the update graph is by far

the harder of the two. We therefore begin with the second problem of

determining the associated value of each test equivalence class.

4.1 INFERRING THE VALUES OF THE TEST EQUIVALENCE CLASSES. Suppose

then that the update graph’s structure is entirely known, and we now wish to

determine the value associated with each vertex (equivalence class) of the

graph.

Assign to each vertex a variable xl which will stand for the value of that

vertex in the starting state. Since the execution of any action causes each vertex

Dilersity-Based Inference of Finite Automata 565

Input:

P - set of predicates

B - set of basic actions

Oracle for testing if s z t for any tests .s and t

output:

V set of equivalence classes

x :V x B - V such that X([t],b)= [bt]

Procedure:

v+{~]lpc P}

while y([t],b) is undefined for some [t] E v, b E B do

if bt a s for some [.s] ~ V then

~l~:([d, b)– [s]

v+ Vu{[bt]}

X([t]I b) – [b~l
endif

end

FIG. 4. An inference algorithm using an oracle for equivalence of tests.

to be updated with the value of one of the other vertices, we see that the value

of each vertex in every future state will just be one of these variables x,. Our

goal is to reach a state in which all of the variables still in existence are known.

(Some variables may disappear, but this is of no consequence since, for perfect

predictability, we only need to know the values of those that still exist.)

Initially, all of the variables are unknown. We can “solve” for a particular

variable x, by causing one of the predicates p to be updated with the value x,.

In this state, x, is the value of p, which is directly observable.

If all of the existing variables are known, then we are done. Otherwise, there

must be a vertex [t],where t = ap, with unknown value x,. Then, by executing

action a, we move the value of t to predicate p, and thus we learn the value of

variable xl. Repeating this process, we solve for all existing variables.

Note that the executed action sequence a above need not be longer than the

size of the update graph D(%). Further, each iteration of this loop decreases

the number of unknown variables by one. Since there are initially only D(%)

variables, we see that this part of the inference problem can be solved in

0(D(8)z) time.

We focus for the remainder of this section on the problem of inferring the

structure of the update graph.

4.2 AN INFERENCE PROCEDURE USING AN ORACLE FOR EQUIVALENCE. We

begin by supposing that we have an oracle available that can tell us whether

two tests s and t are equivalent.

Our algorithm (Figure 4) builds up the update graph, adding one edge at a

time and creating new vertices when necessary, until no more edges can be

added. Here, the program variable v represents the current set of vertices

(equivalence classes). We assume that the predicates are inequivalent to one

another, so initially v consists of one equivalence class for each of the

predicates.

The edges of the graph are represented by the functions x: For each

equivalence class [t],and each basic action b, the program computes the vertex

566 R. L. RIVEST AND R. E. SCHAPIRE

at the tail of the unique b-edge directed into [t], so that x([tl, b) = [btl. If this

is a vertex already in V, then an edge is simply added; otherwise, a new vertex

[bt] is first created and added to v before noting the new edge.

Since Ivl is bounded by D(%), we see that the procedure must halt, and in

particular, makes no more than

IBI” IV12 < IBI”D(%)2

calls to the equivalence-testing oracle.

4.3 DETERMINING IF Two TESTS ARE EQUIVALENT. We now turn our

attention to the problem of determining whether or not two tests are equka-

lent. The inference procedure can proue that tests s and t are inequivalent if it

can find a state q where qs # qt; a single counterexample to the conjecture

s = t suffices.

We wish to experiment with the available automaton % in order to prove

s # t. There are two problems we face:

(1) (Inaccessibility of Counterexamples): It maybe difficult or impossible to get

the automaton into a state q where qs # qt, even if such states exist.

(2) (Irrel’ersibili~ of Actions): Even if we can get the automaton into such a

state q, once we run test ,s, we are generally unable to “back up” so as to

be able to run test t.

Let us define two tests to be compatible if the action sequence of one is a

prefix of the action sequence of the other. (For example, in the Register World

environment of Section 3.8.1, the tests LLRF1 and LL1 are compatible.) We

note that irreversibility of actions is not a problem when testing the equiva-

lence of two compatible tests since they can be executed simultaneously. In

particular, a predicate is compatible with all other tests.

We present solutions to these difficulties for the special class of permutation

environments, and then discuss progress toward a solution in the general case.

4.4 DETERMINING TEST EQUIVALENCE IN PERMUTATION ENVIRONMENTS.

Assume then that ~ is a permutation environment, that is, one in which each

action permutes the global states of the environment. It is not hard to show

that % is a permutation environment if and only if every action permutes the

test equivalence classes so that

(Ys G l“)(Vt= T)(Vb =~)(S = t ~bs -bt). (6)

4.4.1 Overcoming Irrel’ersibility of Actions. We show first how the problem

of irreversibility of actions can be overcome by modifying the control structure

of the basic algorithm so that any test can effectively be made compatible to

any other test (Figure 5). This is essentially the same algorithm as in Figure 4;

every new equivalence class is being compared against (nearly) all the known

equivalence classes. However, the order in which these comparisons are made

has been altered to ensure that every test in v can later be made compatible to

any other test.

The following theorem shows that no equivalence class is added twice to v by

this algorithm, and furthermore that the inner loop is guaranteed to halt:

THEOREM 7. Let [t] be a lertex in the progratn lwriable V, b a basic action in

B, and n a positil’e integer such that for all ~s] = v and all 1 < i < n we hale

s $ b’t. Then the tests bt, bzt, bn - 1t are pairwise inequil’alent,

Dil)er@y-Based Inference of Finite Automata 567

Input:

F’ - set of predicates

B - set of basic actions

Oracle for testing if s z t for any tests s and t

output:

V - set of equivalence classes

y:vx B - V such that y([t], b) = [bt]

Procedure:

v-{~]lpe P}

while ,y([t], b) is undefined for some [t] ~ V, b 6 B do

n-l

while (V[s] E V)bnt + s do

n-n+l

forl~t<n

v – VU {[b’t]}

y([b’-it], b) – [b’t]

~([bn-’t], b) – [s] {where s z b’f .nd [s] c V}

end

FIG. 5. A modified inference algorithm for permutation environments.

PROOF. Suppose to the contraty that b’t - blt for some i, j, 1 s i < j < n.

Then by (6), t E b~ -‘t contradicting the hypothesis since 1< j – i < n but

[t] E v. ❑

Essentially, the preceding theorem shows that the modified algorithm of

Figure 5 is “just as good” as that of Figure 4 in the sense that both will

correctly infer the update graph in roughly the same number of calls to the

equivalence testing subroutine. Both algorithms also share the property that, at

all times, the value of any equivalence class [t]in v can be “read” directly

simply be executing t.That is, if t = up, a c A, p ● P, then by executing a, we

pass the current value of t to the predicate p where it can be observed directly.

The following theorem shows that the modified version of the algorithm has

the additional property that the value of any [t] in v can be not only “read,”

but “set up” as well. The theorem states that a path a can always be found in

the current state of the update graph from some predicate class [p] to [t].

Thus, be executing a, we pass the observable value of [p] to [t]. This property

is crucial to the equivalence testing subroutine presented below.

THEOREM 8. At the beginning of each iteration of the outer loop of Figure 5, if

[t] is any vertex in v then a path exists in the current state of the update graph from

some predicate’s equil)alence class to [t].

PROOF. By induction on the number of iterations of the outer loop.

Initially, v consists only of predicate equivalence classes, and so the property

holds trivially.

Suppose the theorem’s statement holds at the top of one iteration of the

loop. Consider the end of this iteration. We need to show there is a path from

some predicate to each new [b’ t], 1 s i < n, added to V. We have b“ t = s, for

some [s] 6 V, and therefore, by the inductive hypothesis, we know of some

a = A,p e P for which a is a path from [p] to [s]. Thus, p = as - abut =

(abn-’)b’t. In other words, ah”-’ is a path to [b’t] from the predicate

equivalence class [p]. ❑

568 R. L. RIVEST AND R. E. SCHAPIRE

Theorem 8 is used by the equivalence testing subroutine below. Although

this procedure could be generalized for testing the equivalence of any two tests

t and s, we assume here that the equivalence class of one of the tests, s, is

already represented by a vertex [s] in V. Then, there is a path a from some

predicate equivalence class [p] to [,s]; that is, p = as. By (6) then, t - s if and

only if at - as = p. Note that p, being a predicate, is compatible to at, and so

the values of the two tests in a given state can be compared directly by

executing both simultaneously.

Here is the algorithm for testing if s and t are equivalent:

(1) Find a path a in the update graph from some predicate’s equivalence class

[p] to [s1.

(2) Get the environment into some random state q.

(3) Execute p and at (simultaneously) to find their values in q: If gp # qat,

then halt and conclude s % t.

(4) Repeat steps (2) and (3) until confident that s - t.

Thus, we have overcome the problem of irreversibility of actions in permuta-

tion environments by applying knowledge already gathered about the structure

of the update graph to effectively force the compatibility of any two tests that

we might be interested in comparing for equivalence. Still missing from this

algorithm are a method of effectively randomizing the environment (step (2)),

and a corresponding bound on the number of iterations of steps (2) and (3)

necessary to confidently conclude that s = t.These concerns are addressed in

the next section.

4.4.2 Overcoming Inaccessibility of Counterexarnples. To rigorously prove

that two tests are equivalent, we would have to show that their values are the

same at each of the global states. In general, this is infeasible (one reason

being that the state space may be enormous). Essentially, the preceding

algorithm overcomes this difficulty be selecting a random sample from the

state space. If at a single state the tests have different values, then the

inference procedure may conclude with absolute certainty that the tests are

inequivalent. Otherwise, the procedure concludes, with some possibility of

error, that the tests are equivalent. We show below how this probability of

error can be made vanishingly small. We prove that, in permutation environ-

ments, we have an adequate chance of finding a state in which the values of

two inequivalent tests differ simply by taking an appropriate random walk.

We begin with a discussion of random walks on directed graphs and of

certain properties of point-symmetric graphs (defined below). Here we are

concerned with properties of graphs in general. Later, we will see how these

general results can be applied in proving a probabilistic upper bound on the

running time of our algorithm.

4.4.3 Randonl Walks on Directed Graphs. We are concerned with random

walks on a strongly connected directed graph G that has n vertices and that is

regular of degree d in the sense that every vertex has in-degree and out-degree

equal to d. The graph G may have self-loops and multiple edges between

vertices. Let A = (a,,) denote the adjacency matrix of G, so that a,, is the

number of edges directed from vertex i to vertex j. Note that because G is

regular of degree d, the sum of the elements in any row or any column A is

equal to d.

Dioersity-Basecl Inference of Finite Automata 569

The random walk we are concerned with has the following form. We begin at

an arbitra~ vertex. At each step, we first flip a fair coin. If we see “heads,”

then we stay at the current vertex; otherwise, we pick one of the d outgoing

edges uniformly at random and traverse it.

This random walk defines a finite Markov chain with transition matrix

(7)

where I is the n X n identity matrix. Note that b is doubly stochastic, meaning

that it is nonnegative (i.e., all its elements are nonnegative), and the sum of the

elements in any row or column is equal to 1.

Let p, denote the row vector whose ith component is the probability of the

Markov chain being in state i (i.e., at vertex i) at time t.Then we have the

recurrence:

Pt+l ‘Pf B. (8)

The initial vector pO has a 1 in the position of the starting vertex, and O in all

other positions.

Let m=~l-t(l,l,..., 1). We will see that rr is the stationa~ distribution for

our Markov chain. Thus, as we take more and more steps in our random walk,

the probability vector p, converges to m; we lose track of where we began and

are more or less equally likely to be at any vertex.

In the next theorem, we prove a strong upper bound on the rate at which the

Markov chain converges to its stationary distribution.

THEOREM 9. Let A be the adjacency matrix of a strongly connected directed

graph G on n L’ertices that is regular of degree d. Let B, pf and n- be as aboLJe.

Then, for t >0,

(9)

where II . II is the ordina}y Euclidean norm.

PROOF. Let B = (b:j) and let ~ = (h,,) = BB~ where BT is the transpose

of matrix B. In prowng this theorem, we will be especially interested in

properties of this matrix H. Clearly, H is real and symmetric since H = HT.

Also, H is doubly stochastic since B is.

Let Al,..., A,, be the eigenvalues of H. Since H is real and symmetric, all of

its eigenvalues A, are real, and moreover, there exists a set of corresponding

eigenvectors u,, ..., Ll,l that are real and mutually orthogonal (see, for inStanCe,

Section 4.7 of Franklin [1968]). Without loss of generality, we also assume the

U1’s have unit length, IIu, II = 1.

We observe that H is primitive, meaning that all the elements of H~ are

positive for some m >0. To see that this is so, for any pair of vertices i and j,

leti=il, iz,. ... i(= j be a path in G from i to j. Such a path of length 1 < n

must exist since G is strongly connected. Let Zl+ I = il+ Z = 00” = i,, = ~. BY

definition of matrix multiplication, and since B is nonnegative, we have that

570 R. L. RIVEST AND R. E. SCHAPIRE

where H’” = (h~;)). Moreover, by definition of B in terms of the graph G, this

latter quantity must be positive. Thus, Hn-’ has all positive elements, and H

is primitive.

Since H is doubly stochastic, its largest (in magnitude) eigenvalue is 1. Since

H is primitive, 1 is strictly greater in magnitude than all other eigenvalues (see,

for instance, Theorems 2.1.7 and 2.5.3 of Berman and Plemmons [1979]). Thus,

rearranging H’s eigenvalues by magnitude, we can write

It is easily verified that ~),, the unit eigenvector corresponding to At, is simply

n - I’z “ (1, 1,...,1) since H is doubly stochastic.

The following lemma shows that the rate of convergence of p, to m- is

controlled by Aj, the second largest eigenvalue of H. When this paper was

about to go to press, we became aware of a paper by Fill [1991] that contains a

result similar to Lemma 1 about the convergence time of Markov chains based

on H’s second largest eigenvalue; had we known of his work, we could instead

have used his results to obtain (slightly weaker) polynomial-time bounds.

LEMMA 1. Fort >0,

Ilpf+, - d’ <IA21“Ilpt - 7i112.

PROOF. Let x = p, – n.

As noted above, u ~, ~1,1are orthogonal unit vectors. Therefore, we can

write

}1

x = ~ C,ut
~=1

for some real numbers cl, c..

Let (r, s) = rs~ denote the inner product of real row vectors r and s. Then,

because the LI,’s are orthonormal.

IIX112= (x,x) = fit;,

We have that pt+l – w =p, B – v = (p, – T)B =.xB since nB = m-. Note

that

IIxB112 = xBBTx’ = xfh’ = (di?,x).

Since the u, are eigenvectors,

(xH, x) = ~ ~,C~.

1=1

Since both p, and T are probability distributions, the sum of the elements of

either is equal to 1, which implies that (p,, ~11) = (n-, Ul) = n– 1iz. Therefore

c1 = (x, u,) = (pt, [’l) – (7, L11) = o.

Dilersity-Based Inference of Finite Automata 571

Combining these facts, we have that

Ilpt+, -T112=(XH, X)< :lALlc; <l A21:c:= lA,l”llpt-m112.
1=2 ,=2

This proves the lemma. ❑

Next, we show that IAz I can be bounded in terms of the size and degree of G.

LEMMA 2. IA21 s 1 – 4/dnz.

PROOF. We first note that A2 >0, since

To upper bound A2, we apply Theorem 3.2 of Fiedler

that

Azsl–

where K(17) is the “measure of

/J(H) =

2(1 – cos(%-/n))p(H)

irreducibility” of matrix

~~x$v,~x ~v_xhll.min

[1972], which implies

(10)

H. Specifically,

We argue now that K(H) > l/2d. Let X be any nonempty, proper subset

of P’. Since G is strongly connected, there must be edges passing in either

direction between X and its complement. That is, G must contain edges (il, jl)

and (jz, iz) where il, i2 G X and jl, jz E v – X. Clearly, bl,j, z l/2d and

b,,,, > l\2d. Thus, since B and H are nonnegative, and by H’s definition,

Therefore, P(H) > l/2d.

Since cos(m/n) <1 – 4/nz for n >2, Eq. (10) thus implies that AZ ~ 1 –

4/dn2. ❑

Combining Lemmas 1 and 2, and since IIPO– T112s L wehavebyanew
induction argument that

()
t

llp,-d12<l A21’< 1-+ s exp(– 4t/dnz)

completing the proof of Theorem 9. ❑

The next corollary follows immediately:

COROLLARY 1. After t = dnz in(n) steps, we have a chance of at least l/2n of

being at any giuen LIertex.

We will later apply this corollary to a graph whose size is polynomial in the

diversity D.

4.4.4 Point-Symmetric Graphs. Next, we turn to a discussion of point-sym-

metric graphs, and prove a lemma needed in proving Theorem 10 below.

572 R, L. RIVEST AND R. E. SCHAPIRE

We say that a graph G is point-symmetric if for all pairs of vertices t, w in G,

there exists an automorphism on G that maps L’ to w. A bipartite graph G is

bipartite point-synzmetric if for all pairs of vertices t, w on the same side of the

graph, there exists an automorphism on G that maps L’ to w,

It is easy to see that all vertices have the same degree in a point-symmetric

graph, and likewise for all vertices on the same side of a bipartite point-sym-

metric graph.

The proof of the following lemma is due in large part to Satish Rae. This

lemma, at least for the nonbipartite case, has also been proved in other places,

such as in Loviisz [1979].

LEMMA 3. Let G = (V, E) be an undirected, connected point-symmetric or

bipartite point-symmetric graph with degree at least d at eLery Lerte.x. Let m be the

minimum number of edges that must be rentoL~ed to separate G into tvt’o nonempty

pieces. Then m > d.

PROOF. For arbitrary subsets S, T of vertices, let D(S, T) be the number of

edges connecting points in S to points in T, and let C(S) be the number of

edges cut in separating S from the rest of the graph:

D(S, T) = I{{s, t} ● EIS ● S>t ~ T}l.

C(S) =D(S, V– S).

Then m = min{C(S)10 + S g V}.

Suppose, contrary to the theorem’s statement, that m < d, and let S be the

smallest nonempty subset of V for which C(S) = nz.

Since C(S) >0, S contains some bounda~ point j, that is, a vertex j con-

nected to some vertex outside of S.

We claim S contains an interior point i as well, that is, a vertex not on the

boundary. If this were not the case, then all k = IS I vertices in S are boundary

points so that k s m. The number of edges between pairs of vertices in S is at

least

dk – m dk–d d(k – 1) k(k – 1)

2> 2=222”

(1kThis is a contradiction since it is clearly impossible for more than ~ edges to

connect k points.

In the case that G is only bipartite point-symmetric, we claim that we can

assume without loss of generality that i and j are on the same side of the

graph. For suppose, to the contrary. that all of the k, vertices of S on one side

of the graph are interior, and all of the kz vertices of S on the other side are

boundaty points. Then, k2 s m, and so the number of interior edges is at most

k] kz < k} m < kl d, a contradiction since the kl vertices on the first side are

interior.

Therefore, in either case, we may conclude that there is an automorphism u

on G mapping i to j. Let S’ be the image of S under m. Then, IS I == IS’ I and

C(S’) = C(S) = m. Also, since j’s neighbors are the image of i’s neighbors

under m, and since i is an interior point of S, it follows that j is an interior

point of S’. Therefore, since j is a boundary point of S but an interior point of

S’, it cannot be the case that S = S’.

Diversity-Based Inference of Finite Automata 573

Let I= SnS’, X= S–l, X’=S’– l,and Z= V–(Su S’)(Figure 6).

Since j = 1, 1 is not empty. The sets X and X’ are also nonempty since S and

S’ are unequal sets of the same size. Therefore, O < 1X1 < IS I and so C(X) > m

by our choice of S. Similarly, C(X’) > m.

We have:

C(S) = D(X, Z) + D(X, X’) +D(I, X’) + D(I, Z)

C(Y) =D(X’, Z) +D(X’, X) +D(I, X) +D(I, Z)

C(X) =D(X, Z) +D(X, X’) + D(X, I)

C(X’) =D(X’, Z) + D(X’, X) +D(X’,1).

(Note that D(X, 1) = D(Z, X) since G is undirected.)

Thus, we have the following contradiction:

2nz = C(S) + C(S’)

= C(X) + C(X’) + 2D(I, Z)

2 c(x) + C(x’)

> 2nl. ❑

4.4.5 Finding Countere.xamples with Random Walks. With these results, we

are finally able to prove:

THEOREM 10. Let s and t be two inequil)alent tests of a permutation environ-

ment E of diuersi~ D. We take a random walk in E of length 2 IB IDd in(D)

beginning at an arbitrary start state. At each step, with equal probability, we either

do nothing, or we execute a uniformly and randomly chosen basic action from B.

Then, the probability that the values ofs and t differ at the state where we complete

this walk is at least l/2D.

PROOF. Consider the graph P = (VP, EP) defined as follows: The vertices

of P are all ordered pairs ([as], [at]) for all a G A, and an edge b is directed

from vertex ([sl], [t,])to ([s,], [tz]) iff SI = bsz and t,= btz. Clearly, 1’ has no

more than D(D – 1) s Dz” vertices. Further, as with the update graph, the

vertices are permuted by each basic action, so there is exactly one ingoing and

one outgoing edge for each basic action at each vertex. (Alternatively, P can be

viewed as the left coset graph of the subgroup that stabilizes both [s] and [t 1.)

Let a =bl .“. b,, be the chosen random sequence of basic actions, and let q

be the starting state. When a is executed, the environment moves to state qa

where s and t have the values qas and qat. In other words, s and t are updated

with the values of as and at in state q. The tests as and at have different

values at q if and only if s and t have different values at the completion of a.

Thus, we can regard the reverse of the random walk a as an equally random

walk through P; at each step, we move from vertex ([b,+, .”0 b. s], [b, + 1 . c” b,, t 1)

to ([b,b, +l “o” b,, s], [b, b,+l “o” b,, t]) by traversing the reversed edge b,, finally

arriving at ([as], [at 1).

Since, we are taking a random walk of just the form and length described in

the hypothesis of Corollary 1 for a graph such as P with at most Dz vertices,

and both indegree and outdegree equal to IB I at each vertex, we see that our

(reversed) random walk has a roughly equal chance of finishing at any of the

vertices of P; that is, the probability we finish at any given vertex is at least

1/2171.

574 R. L. RIVEST AND R. E. SCHAPIRE

FiG. 6. ConstructIon for Lemma 3.

We now argue that, for at least IVP l/D of the vertices ([s’], [t’]) of P, we

have qs’ # qt’. This, combined with the preceding arguments, will prove the

lower bound of l/2D on the probability of finding a counterexample.

Let the orbit of any test u be the set 0,, = {[au]la = A}.

Consider the graph C = (Vc, Ec) defined as follows: The vertex set Vc of C

is the union 0, U Or, and an (unlabeled) edge is directed from [,s’] to [t’] if

([s’], [t’]) is a vertex of P—that is, if s’ = as and t’= at for some action a = A.

Thus, I-Ecl = IVPI.

We argue first that C is (bipartite) point-symmetric. If [sl 1 and [sz 1 are in 0,,

then there is some action a for which Sz = asl: By definition of orbits, there

exist actions al and az such that S1 - als and Sz = azs. Setting a = az,al– 1, it

follows that Sz - asl. (Here, a-‘ denotes the inverse of action a, that 1s, that

action for which qaa– 1 = q for all q ● Q.)

Let o- be the permutation mapping each vertex [LL] to [au]. Then m maps

[sl 1 to [s,] and furthermore defines an automorphism on C since if ([s’], [t’]) is

an edge, then so is (o([s’]), o([t’])) = ([as’], [at’]). Similarly, for any two tests

in Ot, there is an automorphism on C mapping the first to the second.

By the definition of orbits, we have that 0, and 0, are either equal or

disjoint. In the former case, the preceding argument shows that C is point-sym-

metric. In the other case, C is a bipartite point-symmetric graph.

In either case, let d, be the outdegree of each vertex in 0, (necessarily the

same at each vertex by the preceding argument) and similarly define df as the

indegree of each vertex in Ot. Then the number of edges in C is exactly

IECI = d,lO,l = dtlOJ. Let d = min{d,, d,}. Since 10,,1 s D for any u, it follows

that d > lEcl/D.

Let X be the set of vertices [u] of C for which qu is true. Then each edge

connecting (in either direction) a vertex in X with a vertex in the complement

of X corresponds to a vertex ([s’], [t’]) in P for which qs’ # qt’. We therefore

would like to show that at least IVP l/D = IEc I/I) of the edges of C connect X

to its complement. This will be the case if we can find at least d such edges.

Since s # t,there is at least one such edge. Let C’ be the subcomponent of

C connected to this edge. The graph C’ is still (bipartite) point-symmetric.

Therefore, simply regarding the edges of C’ as undirected, and applying

Lemma 3 to it, we see that at least d edges are cut in separating X from its

complement in C, as desired.

This completes the theorem. ❑

Di[ersi&Based Inference of Finite Automata 575

Using this result, we can show the following theorem, the main result of this

section.

THEOREM 11. Let %’ be a permutation environment with diversity D. Giuen

6>0, our algorithm infers the structure of Z in time

0(’B’2D7104%”10g(D))(11)

with probability of error less than 8.

PROOF. The preceding theorem states that the probability of distinguishing

two inequivalent tests, having taken an appropriate random walk, is at least

l\211. Thus, the probability of failing to do so after n trials is at most

(1 – l/2D)n < exp(– rL/2D). This error probability is bounded by a parame-

ter ~ if we choose n > 2D ln(l/~).

As many as 1 = IB IDz inequivalence tests may be made in the course of

inferring the automaton. Setting e = 8/1, we see then that the overall chance

of failing to distinguish any inequivalent pair of tests is at most 8.

Hence, our procedure requires 1 inequivalence tests. Each of these requires

up to 2D ln(1/8) experiments, each of which can involve a random walk of

length 2 IB ID41n(D). (The time to run the actual experiment, or to determine

which experiment is to be performed next is negligible.) We thus arrive at the

running time stated in the theorem. ❑

Thus, we have completed our algorithm by exhibiting an effective random

walk technique. Note that, implicitly, we have assumed that the diversity, or an

upper bound Dmax on the diversity, has been given to the inference procedure

since the diversity must be known to calculate the length and number of

random walks needed. If no such bound is available, the algorithm can be

executed repeatedly with Dnzax = 1,2,4,8, If Dmax is smaller than the

true diversity D, then either the algorithm will be unable to build a small

enough update graph, or it will construct an incorrect update graph that will

sooner or later make a wrong prediction. When either of these occur, we

double Dmax and run the inference procedure again.

The bounds stated in the preceding theorems have been tightened signifi-

cantly since our original presentation of the algorithm. Empirically, however,

we have found that much shorter random walks and far fewer experiments are

sufficient, and we therefore conjecture that the bounds are still not tight. Also,

we have more recently described a new algorithm for this problem that

achieves a superior time bound [Rivest and Schapire, 1989; Schapire, 1992].

This procedure is based on the use of homing sequences and on some of the

techniques developed in Section 5.

4.5 DETERMINING TEST EQUIVALENCE IN GENERAL. We discuss now the

general case in which % is not necessarily a permutation environment. We

describe some heuristic techniques that, although not provably effective for all

automata, seem to perform reasonably well in practice. In the most general

case, there is no rigorous way of handling the first difficulty of finding a state in

which two inequivalent tests can be distinguished, even if we assume that i%’ is

strongly connected. (It is not hard to show that the family of “combination

lock” environments described in the proof of Theorem 18 cannot be inferred in

576 R. L. RIVEST AND R. E. SCHAPIRE

subexponential time.) Nonetheless, in practice this may often not be a concern;

if two tests s and t are inequivalent, then there are usually many easily reached

states q such that qs # qt.

We now propose a technique for handling the irreversibility of actions in

general environments.

We need to figure out how to get % into a state q where we know the value

of the test qt, even though we have not run test t yet, so that we can run test s

instead.

Let t = ap; here a is the action part of test t and p is the predicate.

Suppose we run action a repeatedly. Eventually the predicate p will exhibit

periodic behavior. Once we know that this periodic behavior has been estab-

lished, and once we know the period m of this behavior, we can figure out the

value of qt for the current state q without having to run the test t.

We have to address the problem that, for general finite-state automata, it is

well known that the eventual period can be as large as IQl, the number of

states of the automaton. This would be a serious problem for our proposed

approach since the number of states can be an exponential function of the

diversity. However, the following theorem shows that the period is no larger

than the diversity.

THEOREM 12. Let D = D(%). If we mn uction o repeatedly, then the behaLlior

of predicate p will exhibit transient behauior for no more than D steps, and then

will settle down into pen’odic behauior with period at most D.

PROOF. This follows easily from our simulation theorem (Theorem 3).

Consider the sequence of tests p, ap, azp,..., aDp. Since there are only D test

equivalence classes, by the pigeon-hole principle, at least two of these test are

equivalent. Say a’p = alp where i < j. Recall that p is passed its value from

akp under action a ~. Therefore, p will exhibit transient behavior for at most

the first i executions of a, and will then settle into periodic behavior with

period j – i (or rather, a divisor of j – i). ❑

To complete the description of our inference procedure, we suppose as

above that an upper bound Dmax is available on the diversity D(%) of the

automaton being inferred.

To run the algorithm of Figure 4, we need to test s and t = ap for

inequivalence. The following procedure is suggested by the previous theorem:

—Get the environment into some random state.

—Run action a for Dmax steps. (This is to eliminate transient behavior of p.)

—Run action a for 2Dma.x steps, keeping track of qp for each state q

reached.

—Use the information gathered in the previous step to determine the period

of predicate p under action a. Use this information to determine whether qt

is true or false in the current state q (without running test t).

—Run test s to determine qs.

—If qs # qt,then s # t.

—Repeat until confident that s - t.

As before, this is a one-sided test: A report that s ~ t is certainly correct,

but a report that s = t may be erroneous.

DiL’ersi~-Based Inference of Finite Automata 577

The test must be rerun a number of times before concluding that s = t.To

make the trials as independent as possible, we may:

—take a “random walk in %“ between each trial, by executing some randomly

chosen sequence of actions.

—repeatedly execute an action ab instead of just a in each trial, where b is an

arbitrarily chosen action in A.

These heuristics may not help to find a counterexample in all cases, but are

reasonably effective in practice.

Also, for efficiency, we are in many instances able to force compatibilities as

in the permutation environment case, and can often compare many tests

against many other tests in single experiments. These heuristics lead to

many-fold improvements of our experimental running times.

As for permutation automata, the theoretical results for inferring general

automata have recently been extended using homing sequence techniques

[Rivest and Schapire, 1989; Schapire, 1992]. In particular, we have described a

provably effective, diversity-based algorithm for handling any automaton, as-

suming the presence of a “teacher” that can provide counterexamples to

incorrect conjectures of the identity of the unknown automaton.

4.6 EXPERIMENTAL RESULTS

4.6.1 Three More Toy Erulironments. Consider the following permutation

environment based on “Rubik’s Cube” (Figure 7). The robot is allowed to see

only three of the fifty-four tiles: a corner tile, an edge tile, and a center tile, all

on the front face. Each of these three senses can indicate any one of six colors.

The robot may rotate the front face, and may turn the whole cube about the x

and y axes. (By reorienting the cube, he can thus turn the cube to bring any

tile into view.)

As another example environment, consider a “Little Prince” robot [de

Saint-Exup&y, 1943] exploring his home planet (an asteroid, really). This

planet has a rose and a volcano, which the Little Prince can see when he is

next to them; the available sense values are “See Volcano” and “See Rose.”

The planet is very small—it takes only four steps to go all the way around it.

The basic actions available are “Step Forward,” “Step Backward,” and “Turn

Around” (see Figure 8). In the state shown, the Little prince has no sensations

but he will see the volcano if he takes a step forward, and will see the rose if he

takes a step backward (or turns around and takes a step forward).

In the final example, micro-world, the robot can fiddle with the controls of a

car radio (see Figure 9) and can detect what kind of music is being played.

There are three distinctive stations that define the robot’s sensations: rock,

classical, and news. The robot can use the auto-tune to dial the next station to

the left or right (with wrap-around), or can select one of the two programmed

stations, or can set one of these two program buttons to the current station.

Unlike the last two environments, the Car Radio World is not a permutation

environment because of the robot’s ability to program stations.

4.6.2 Summay of Results. Table I summarizes how our procedures handled

these environments, as well as the 5 x 5 Grid World environment and the

32-bit Register environment described in Section 3.8.

578 R. L. RIVEST AND R. E. SCHAPIRE

tG whole cube

whole cube

o

&

[lles

[lace only

FIG. 7. The Rubik’s Cube World

@

. \\\\. ...//,,, ,,, ,,,. \\.\\,
7 ////.,.. /,, ,,, ,,

. \.\.\\.
// ././.., ,,, ,,, ,

. \\\\\\\\\ .\ \\\\\

/.,.//,/. ./ /,/,,,,

. .\.\\\..\ \.\.\\\
. ..////./ ,,, ,,, ,,

. \\\\\\\
. ...//.// ,,, ,., ,,

\\.\\\.\\. \\\\\\

./ /.//./, /., ,,, . .
. \.\\\\..\ .\ \\\.\

// //.//./ /., ,,, ,,

.\\. \\\\\\\
.. /,/,.,/ /, ./,,,,

\\\..\\\\. \\..\\\

,. ///,/// /., ,,, ,,
\ \\\\\\\.\ \.\\\\\

// /.,,,,, ,, .,,,,,,

\ \\\\\.\.\ \...\\.

./ ..././. ,,, ,,, .,

. ..\\\\\\\ \\\\\\

. .././,., .,, ,,,

.\\

~z...,,,,, ,,, ,
. ...\\\\.\ \\

., //,/,,. ,,

*

Sk’

FIG.8. The Little Prmce’s Planet.

The most complicated environment (Rubik’s Cube) took less than two

minutes of CPU time to master—we consider this very encouraging.

Rubik’s Cube, the Little Prince, and the 32-bit Register Worlds were

explored with an implementation (version “P”) that exploits the special proper-

ties of permutation environments, but that only compares one pair of tests at a

time. All worlds were explored as well by version “M”, which tries to compare

many tests against many other tests in a single experiment. The run times given

Dit’emi&Based Inference of Finite Automata 579

NiL2i
class lcal rock news

98.7 select station

~ - ~D
❑ m 0

auto-tune set station ~~[- @

FIG. 9. The Car Radio World.

TABLE I. EXPERIMENTAL RESULTS

D~ver- Global Ver- Experi-

Enwronment Slty States lB\ IPI Slon Time Moves Senses ments

Little Prince 4 4 3 2 P 01 303 102 51

M 02 900 622 50

Car Radio 9
27

6 1 M J ; 2:,;;: , p; 1,146

Grid World 27 % lo” 6 1 M ‘., 9,403

Rubik’s 54 z lol~ 3 3 P 1263 58,311 4,.592 2,296

Cube \f 4013 188,405 79,008 2,874

32-bit 64 z 10” 3 1 P 298 270,771 10,914 5,457

Register kf 183 52,436 29884 300

are in seconds. The last three columns give the number of basic actions taken

by the robot, the number of sense values asked for, and the number of

experiments performed. (An experiment is defined loosely as a sequence of

actions and senses from which the robot deduces a conclusion about equiva-

lence between tests. Information about several tests may be obtained in a

single experiment, and the same sequence of actions and senses may be

repeated several times, each repetition counting as one experiment. Also, we

have generalized the notion of a test here to allow the function y to map

Q x P into an arbitra~ set of sensations, not necessarily the set {true, false}.

For example, in the Grid World, a single predicate gives the color (red, green,

or blue) of the square faced by the robot.) These implementations were done in

C on a DEC MicroVax II workstation.

5. Inference of Visible Simple-Assignment Automata with Planned Experiments

In this section, we focus on the problem of planning experiments when trying

to infer the structure of a finite automaton by experimentation. In the

preceding sections, we were concerned with the same general problem. How-

ever, our focus was on the identification of hidden state t’ariables, rather than

on the planning of experiments.

The experimental technique used in the preceding sections was a simple one

based on the properties of random walks. As a consequence, we could only

prove our techniques to be effective for a restricted class of automata (permu-

tation automata). The key difficulty in extending our proof is that random

580 R. L. RIVEST AND R. E. SCHAPIRE

walks are not in general guaranteed to get the automaton into a desired state

(or set of states) with sufficiently high probability. For the general case, it

seems clear that experiments have to be planned carefully.

This section does not address the issue of hidden state variables; we assun?e

that all state uariables are uisible to the obseruer. TVe make this simplification to

bring to the foreground the issues regarding the planning of experiments. Of

course, at some point we would like to merge the techniques developed here

with those for identifying hidden state variables; in fact, the techniques

described in this section have already proved to be of value as important

components of some of the later algorithms we have described for handling

environments with hidden state [Rivest and Schapire, 1989; Schapire, 1992].

Aside from this difference in the visibility of state variables, the automata we

study are structurally identical to those studied up to this point. Recall from

Section 3.6 that every finite-state deterministic system can be represented as a

simple-assignment automaton in which each variable stands for one test

equivalence class. In this section, to simplify our discussion, we drop the

equivalence class terminology, and instead formally redefine an environment as

a simple-assignment automaton.

5.1 DEFINITIONS. we define a simple-assignment automaton to be a tuple

(V, B, 8, qO) where

—V = {xl, ..., x.} is a finite non empty set of n binary state uariables,

—B is a finite nonempty set of input symbols, also called basic actions,

—8 is a function from {1,..., n} X B into {1,..., n}; 6 is called the update

jimction, and

—q[l (the initial state of the automaton) is a function mapping v into {o, 1}.

The (global) state of the automaton is an assignment of a binary value to

each variable in I? As before, we let Q denote the set of all global states q

reachable from the initial state qO of the automaton.

On input a = B, the automaton makes a transition from its current state

X =(X1>..., x,,) to the state x’ = (.x:, x~,) where

each variable is simultaneously updated by a simple-assignment from the value

of some other variable (or possibly the same variable).

In Section 3.6, we argued that every finite-state binary output Moore

automaton is equivalent to a simple-assignment automaton where one or more

of the state variables specifies the output. The number of state variables in the

smallest corresponding simple-assignment automaton is just the diversity of the

original finite-state automaton.

We say that a simple-assignment automaton is L’isible if all of its local state

variables are observable.

We assume henceforth that we are dealing with a particular visible simple-

assignment automaton % = (V, B, 8, qt,), which we call the enllironment of the

learning procedure.

We assume that ~ is reduced in the sense that, for each pair of distinct

variables x,, x~ = V, there is a state q G Q such that x, # Xk at q. (This

assumption is made for simplicity here to avoid degenerate but easily handled

cases where variables are indistinguishable.)

Dillersity-Based Inference of Finite Automata 581

x,
X3 X5 X7 X9

X2 X,q ‘6 X8 % o

Fm. 10. The effect of action p in our example simple-assignment automaton.

We let A = B* denote the set of all sequences of zero or more basic actions

in the environment %’; A is the set of actions possible in the environment %,

including the null action A

We extend S to the domain {1,..., n} x A in the natural way: 8(i, A) = i

and 8(i, ba) = 8(8(i, a), b) for i = {1,. ... n}, b e B, a = A. Thus, 8(i, a) iden-

tifies the variable whose value x, takes under action a; eq. (12) now holds for

any a =A.

Finally, we assume that % is strongly connected: It is possible to get from any

state in Q to any other. (Otherwise, it maybe impossible to infer % completely,

since % will get stuck in one of its several strongly connected components.)

5.2 EXAMPLE. To make things concrete, consider the simple-assignment

automaton % illustrated in Figure 10.

Here, % has IZ binary state variables {xl, ..., x,,}, where n is even. We think

of the values of these variables as being drawn from the set {Red, Green} (or

{R, G} in the figure).

We imagine the n variables as being divided into n/2 “columns,” where

xzl_, and Xz, are in the same column, for i = 1,...,n/2.

There are four input symbols, or “basic actions”: p, q, r,s. On any input, the

variables in the ith column are updated in some way from the variables in the

i – 1st column. (We assume that the variables in the first column never change

values—xl is always Red and Xz is always Green.) Since each of Xz,. 1 and X21

can be assigned one of xz,_j or .xzl_ ~ in two ways, there are a total of four

distinct ways in which the variables in column i can depend upon those in

column i – 1. Each input symbol is associated with one of these possibilities,

but in a manner that is arbitrary and caries from column to column. Figure 10

illustrates the effect of action p, and a typical state of the automaton; the

other three actions could be illustrated with similar diagrams.

It is important to note that two of the four possibilities are guaranteed to

give a column a monotone coloration, independent of whether the column to

the left has a monotone or a mixed coloration.

This automaton has a number of states which is exponential in n—it is easy

to see that every column except the first can independently be made all Red or

all Green. And there are many other states where columns other than the first

have a mixed coloration.

However, it is easy to see that in order for a column to receive a mixed

coloration, its neighbor to the left must have had a mixed coloration on the

previous step. Furthermore, mixed colorations are easily destroyed as the

582 R. L. RIVEST AND R. E. SCHAPIRE

column colorations move rightwards. Once a column has a monotone col-

oration, this coloration propagates to the right unchanged with each input. It

should be clear that a random string of input will have a small chance of giving

a mixed coloration to any columns except a few of the leftmost columns.

We now observe that in order for an inference algorithm to figure out how

the later columns are wired together, the algorithm must propagate the mixed

colorations all the way down to the right. This can only be accomplished by

careful planning and execution of experiments, and not by random walk

techniques.

We view this example as a fancy kind of “combination lock,” since the

algorithm must figure out a correct “combination” for giving column i – 1 a

mixed coloration before it can figure out a correct combination for column i.

(Of course, there are many correct combinations, but there are many more

incorrect ones.)

It is not too hard to figure out how to approach this particular example,

given all of the “side information” stated above. However, we must remember

that the inference algorithm we seek is only told that it is to infer a simple-as-

signment automaton where all local state variables are visible—it is not told

such things as that the variables are paired up into columns, each column is

updated from the one to the left, etc. (Indeed, the unknown automaton may

not have these properties.) In the absence of such side information, the general

problem can be challenging.

5.3 OUR INFERENCE PROCEDURE. We now present a procedure for infer-

ring % by systematic experimentation. Our procedure is given as input V, Z3,

and the ability to experiment with % by executing basic actions (i.e., giving the

automaton inputs) and observing the state changes. Our procedure outputs the

unknown function 6, in time polynomial in n = IV I and IB 1.

The algorithm maintains, as its fundamental data structure, a candidate set

C(i, b) of possible values for the update function 8(i, b), for each variable x,

and each b = B. Initially C(i, b) = V for all i and b.

Our basic strategy is to repeatedly plan and execute experiments that cause

at least one C’(i, b) to shrink. If no such experiment is possible, then C(i, b) =

{~(i, b)} for all i and b, so 8 has been identified.

We say b = B is an immediate~ useful experiment if there exist i, j, k such

that j and k are both in C’(i, b), and x, + x~.

If we execute the immediately useful experiment b then either j or k is

removed from C(i, b) (e.g., j is removed if the new value for xl differs from the

old value for xl).

Finding an Immediately useful experiment (if one exists) is easy since it

requires knowledge of C’ but not of 8. But what shall we do if there are no

immediately useful experiments to do?

In such a case, there may exist some “setup action” a G A that will make

b = B an immediately useful experiment. We call the combined action ab a

“useful experiment.” More precisely, we call u = ab a useji{l experiment if

there exist i, j, k such that X5(,, ~, + xa(~, .J and j and k are both in C(i, b).

The trouble with this notion is that to tell if ab is a useful experiment

requires knowing the unknown function 8, in order to predict the effect of

setup action a. We need an effectiue way of finding useful experiments.

We introduce the notion of a “plausible experiment” to remedy this defect.

Diversi&Based Inference of Finite Automata 583

First, as with the function 8, we extend C to the domain (1,..., n} X

A: C(i, A) = {i} and C(i, ba) = UJGc(,, a)C(j, b) for i = {1,..., n}, a ●A,b 6

B. We call u G A a plausible experiment if there exist i, j, k such that j and k

are both in C(i, u), and xl + x~. Note that knowledge of C, but not 8, is all

that is required to find plausible experiments.

Note that all useful experiments are plausible since 8(i, a) ~ C(i, a) always.

However, not all plausible experiments are useful. Our inference procedure

depends on the following critical theorem.

THEOREM 13. The shortest plausible experiment is also the shortest useful

experiment.

PROOF. Because every useful experiment is plausible, we need only show

that the shortest plausible experiment is useful.

Let m = ab, a e A, b 6 B be the shortest plausible experiment. Let j, k be

members of C(i, m) for which x, # x~. Then there exist r,s ~ C(i, b) for

which j = C(r, a) and k = C’(S, a). Since m is the shortest plausible experi-

ment, and because Ial < Iu 1, all the variables in C(r, a) must have the same

value. In particular, Xafp, ~J = XJ, and likewlse, X8(7,., = x~. Therefore X8{,, ,[) #

X5(S.a)> so that u is useful. ❑

Not only is the shortest plausible experiment useful, but there always exists a

plausible experiment up until the point when the inference task is finished.

THEOREM 14. If there exists an i and b such that IC(i, b)l > 1, then there exists

a plausible experiment (and thus a shortest plausible experiment).

PROOF. Let x, and x, be two distinct variables in C’(i, b). By assumption,

there exists a global state q for which x, and x, obtain differing values, and

such a state q is reachable from the current state (via some action a). Then

u = ab is a useful (and therefore plausible) experiment. ❑

5.3.1 The Basic Inference Algorithm. We now give a high-level description of

our inference procedure, assuming the availability of a subroutine that plans

the shortest useful experiment.

Initially, each C(i, b) = V. Our procedure then repeatedly finds and executes

useful experiments, each of which eliminates at least one variable from at least

one candidate set.

How many experiments are performed before each candidate set is a

singleton? Since there are IB In candidate sets, each initially of size n, at most

IBlnz experiments are performed. The following theorem gives a tighter bound.

THEOREM 15. Ajler no more than IB In usejid experiments are petformed, each

candidate set will be a singleton set.

PROOF. An easy induction shows that, between each experiment, for fixed

b = B, two candidate sets C(i, b) and C(j, b) must either be disjoint or

identical. (Two such sets will be identical if and only if x, = x, in every global

state seen so far. When a state is first observed for which x, # XJ, the common

set C(i, b) = C(j, b) is split into two disjoint nonempty blocks, one of which

becomes the new C(i, b) and one of which becomes the new C(j, b).) Thus,

each set C(i, b) is a block of a partition S~ of a subset of V into pairwise-dis-

joint, nonernpty subsets. Initially, S~ = {V}: there is only one block. Each

useful experiment ending in b causes at least one set C(i, b) to shrink, and so

584 R. L. RIVEST AND R. E. SCHAPIRE

causes one or more of the blocks in Sb to either split or shrink. After n such

operations, each block of Sh (and therefore each candidate set C(i, b) as well)

will be a singleton. Thus, at most n experiments are performed ending in each

of the IBI basic actions. ❑

The proof of this theorem suggests an efficient representation of the candi-

date sets. Rather than storing the sets explicitly, we maintain the partition Sb,

and represent each C’(i, b) as a pointer to one of the blocks in S~. This allows

faster updating of the candidate sets between each experiment.

Figure 11 gives a high-level description of our procedure (less the assumed

experiment planning subroutine PLAN-EXP).

Observe that each step of the main while loop takes O(~Z) time, except

possibly for the execution of the experiment returned by PLAN-EXP whose

length we discuss below.

5.3.2 The Experiment Planning subroutine. The subroutine PLAN-EXP is

given the candidate sets and the current state, and is asked to find the shortest

useful experiment. By Theorem 13, this experiment is also the shortest plausi-

ble experiment.

We can find the shortest plausible experiment by searching the space of

unordered pairs of variables {j, k}, both in some set C’(i, o), until we find one

for which ~, # x~. More precisely, we do a breadth-first search of the forest of

trees in which the root of each search tree is a pair {i, i}, and the b-children of

each node {j, k} are the pairs {j’, k’} for which j’ ● C’(j, b), k’ ● C(k, b). When

a pair {j, k} is found for which x~ + XL, we return the experiment that is the

path from the node {j, k} to the root of its tree,

Since we search a forest of O(nz) vertices, each vertex of degree 0(lBln2),

this experiment planning subroutine runs in time 0(IB Ind), Furthermore, the

length of the experiment returned is bounded by the size of the search space,

nz. Thus, the entire inference algorithm will run in time 0(11? 2n5), having

executed IB In 3 basic actions.

We now improve these bounds with a more efficient subroutine (Figure 12)

that maintains equivalence classes of variables using a “weighted union and

collapsing find” data structure (see Tarjan [1975] or Cormen et al. [1990]).

Initially, all the elements of each candidate set (or equivalently, of each

partition block) are merged into the same equivalence class. To merge a pair

{j, k}, we check that the two are in the same equivalence class; if they are not,

their equivalence classes are UNIONed and the pair is placed on a queue.

Thus, a UNION operation is always coupled with an addition to the queue.

When the pair {j, k} is dequeued, the members of C(j, b) are merged with

those of C(k, b) for all the basic actions b, and the process continues.

The subroutine is constructed so that if {{j, k}, cr) is on the queue, then

~, k ~ C(i, a) for some i. Thus, if x, + x ~, then o- is a plausible experiment.

During the execution of the subroutine, if ({j, k}, v) was the last pair

enqueued, then the current search depth is defined to be Im 1.It is clear that the

search depth increases incrementally.

The next theorem is useful in analyzing and seeing the correctness of the

subroutine.

THEOREM 16. SLtppose j, k = C(i, v). Then the subroutine of Figure 12 (if not

intenwpted to return an answer) will merge j and k into the same equivalence class

before the search depth exceeds Iv 1.

Divemi&Based Inference of Finite Automata 585

Input: V, B, and access to the environment t = (t’, B. 6, qo).

output: 6

Procedure:

forb GB

.$6 ‘-- {V}

for i~ {1,..., rs}: C(i, b)- V.

while PLAN-EXP can find a useful experiment a = ab do

Execute a. Let (zl, Zn) be the resulting state.

Execute b. Let (x{, z:) be the resulting state.

for s ~ sb {ss {1,..., n} a block of .$b}

Let rr(s, O)= {i< s I x, = O}.

Let ~(s,l)= {Z6S Iz, = 1}.

for z E {1,..., n}: C(z, b) - rr(C(~, b),.r{)

56- Ute{I, .n){~(~,b)}
forz~{l,..., rr}, b~ll

output “c$(t, b) = z“. where C’(t. b) = {z}

FIG. 11. The basic inference algorithm.

/rrPut. c(z,b)for~c {1, . ..n}. bE Band rl. .z”

Output: a useful experiment o

Procedu m

fort E{l n): Place I in an equivalence class by itself.

for bEB, sE St,

Let] be an arbitrary member of s.

J- FIND(j)

fork~s -{j}

Ii – FIND(k)

ifJ + Ii then

J – UNION(.I, I()

enqueue ({]. k}, tr)

while queue not empty do

dequeue ({1. L-}.0)

if ~, # 1A then return o

forb~B

let)’ be an arbitrary meiilber of C(]. b)

let k’ be an arbitrary member of C’(k, b)

J – FIYD(j’), ii - FIND(U)

if J # 1~”then

UNION(J, Ii)

enqueue ({j’. k’}. ba)

return FAIL

FIG. 12. The experiment planning subroutine PLAN-EXP.

PROOF. By induction on I~ 1. If Iul = 1, then j, k = C(i, b) for some

b = B, and j and k are merged into the same equivalence class during the

initialization phase when the search depth is exactly one.

Let h > 1 and suppose that the theorem’s statement holds when Iu I < h.

Given j, k e C(i, u), where Iu I = h, we wish to show that j and k are merged

before the search depth exceeds h.

586 R. L. RIVEST AND R. E. SCHAPIRE

Let u = ba, b c B, a ● A and let r, s be such that r, s c c(i, a) and j G

C’(r, b), k = C(s, b). Since Ial = h – 1, Y and s have been merged by the time

the search depth reaches h, by our inductive hypothesis. Thus, there must have

been a series of UNION operations performed to bring this about. Since each

UNION operation is coupled with an addition to the queue, there must have

been a series of enqueuings of the form:

({l’m,l’m+,=s}! %,).

When ({rx, rl + ~}, m,) is dequeued, the members of the candidate sets C(rZ, b)

and C(rX+ ~, b) are merged into one equivalence class, so that, transitively, the

sets C(r, b) and C(s, b) are merged into one. In particular, j and k‘s equiva-

lence classes are merged. Since each ICX,I < h, this happens before the search

depth exceeds h. ❑

COROLLARY 2. The jirst plausible experiment discollered by the subroutine (i.e.,

the one returned) will also be the shortest plausible experiment.

COROLLARY 3. If there exists a plausible experiment, then the subroutine will

discoler it. That is, a return of FAIL by the procedure will be correct.

Clearly, the running time of the procedure is bounded by the number of

UNION-FIND operations. Since we begin with n equivalence classes, no more

than n UNIONS can be performed. Therefore, n bounds the total number of

enqueuings, and so the search depth as well. Based on this fact and the fact

that Sh is a partition of at most n elements, we see that 0(IBin) FIND

operations are performed, yielding a running time for the subroutine of

0(IBln “ a(l Bin)), where a is an extremely slow growing functional inverse of

Ackerman’s function (see Tarjan [1975]). Finally, the length of the experiment

constructed cannot exceed the maximum search depth of n. Thus, we have:

THEORE~ 17. Our inference algorithm con-ect(~ infers the environment $7 in

time 0(IB I‘n% (IB In)), hauing executed no more than IB In2 basic actions.

5.4 OPTIMALITY. In this section, we prove that the upper bound on the

number of basic actions executed by our inference algorithm is (within a

constant factor of) the best possible.

THEOREM 1S. There exists a constant e >0 such that, for all n >4, m >3,

there exists a simple-assignment automaton ~ for which IB I = nl and IV I = n,

and which cannot be inferred by any algorithm which executes fewer than e ~B ~n2

basic actions.

PROOF. Consider the following “combination lock” environment %, similar

to the example described in Section 5.2: n = IV I > 4, IB I > 3. B contains a

special “clear” symbol c. The “lock’s combination” is the sequence ala, . . .

a..z where al = c and al e B – {c} for 1 < i < n – 1. The update functi;n 8

Diuersity-Based Inference of Finite Automata 587

is defined as follows:

—8(1, b) = 1 for b = B,

—8(n, b) = n for b G B,

—iS(i, al_l)=i-lforl<i <n,

—8(i, b)=nfor l<i<n, b= B-{a,-1}.

Initially, only xl is true.

It is easy to veri~ that xl is always true, x. is always false, and no more than

one variable at a time (other than xl) can be true. If 1 < i < n, the variable xl

will be true if and only if the action sequence al az “”” a,_ 1 was just executed.

Consider the set P of pairs (i, b) where 2< i < n, b ● B – {c} and 8(i, b)
—– n (i.e., b # al_,). To positively identify %, an inference algorithm must, for

each such pair in P, eliminate the possibility that ~(i, b) = i – 1. It is not hard

to see that the only experiment that will do this is the sequence ~,, b = caz as

..” a,_zb. Let E = {crl, ~l(i, b) = P}. Clearly, IEI = IPI. At some time, each
experiment in E must be executed; however, no two of these experiments can

overlap by our construction. Thus, the number of basic actions executed must

be at least

~ 1~1 = z (IBI - 2)(i - 1) = fl(lBln2). ❑

ueE 2<1<n

6. Conclusions and Open Problems

We have presented a new representation for finite-state systems (environ-

ments), and proposed a new procedure for inferring a finite state environment

from its input/output behavior.

In the case of permutation environments, our procedure can infer the

structure of the environment in expected time polynomial in the diversity of

the environment, and log(l /8), where 8 is an arbitrary positive upper bound

given on the probability that our procedure will return an incorrect result.

For general environments our procedure appears to work well in practice,

although we do not have a proof to this effect.

When the environment has lots of “structure,” the diversity will typically be

many orders or magnitude smaller than the number of global states of the

environment; in these cases, our procedure can offer many orders of magni-

tude improvement in running time over previous methods.

Finally, we have shown how to infer any visible simple-assignment automaton

in time polynomial in the number of variables and basic actions in that

automaton, and have shown that our procedure is optimal to within a constant

factor in terms of the number of basic actions executed.

Future work should be directed toward methods of handling, or handling

better, a broader class of environments. Environments apparently not handled

well by our current techniques include those with:

—actions with conditional effects (such as a Grid World with boundaries, so

that the “step ahead” action has no effect if the robot is facing and up

against the boundary).

—dependence on global state variables or control variables (e.g., an “on-off”

switch in the Car Radio World).

588 R. L. RIVEST AND R. E. SCHAPIRE

—states that are difficult to reach (consider the “combination lock” environ-

ment of Section 5 that is almost always in a locked state, and is unlikely to

be unlocked by trying random combinations).

—actions with probabilistic effects (such as a “spin” operator in the Grid

World, which leaves the robot facing in a random direction).

—actions or sensations which are subject to noise, and so may have unreliable

effects or be providing unreliable information. (Progress on this problem was

recently made by Dean et al. [1992]).

—environments that are infinitely large (such as an infinitely long Register

World).

ACKNOWLEDGMENTS. Thanks to Dana Artgluin and Neal Young for their

contribution to Theorem 5, and to Satish Rao for his help in proving Lemma 3.

Thanks also to Glenn Iba and Franz Pichler for bringing some related previous

work to our attention, and to two anonymous referees for careful reading and

thoughtful comments.

REFERENCES

ANGLUIN, D. 1978, On the complexity of mmlmum inference of regular sets. Z~zf. Cont. 39,

337-350.

ANGLUIN, D. 1982. Inference of reversible languages. J. ACM 29, 3 (July) 741-765.

ANGLUIN, D. 1987a. Learning regular sets from queries and counterexamples. Inf. Computufton

75. (Nov), 87-106.

ANGLUIN, D. 1987b. A note on dwersity. Unpublished manuscript.

BAINBRIDGE, E. S. 1977. The fundamental duality of system theory. In Systems: Approaches,

Theories, Apphcatlons, W. E. Hartnett, Ed. Reidel, Dordrecht, Holland, pp. 45-61

BERMAN, A. .AND PLEMMONS, R. J. 1979. Non?legatur b{cztrices m the Mathematical Sctences.

Academic Press, Orlando, Fla.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990, Introdact~o/z to Algorithms. MIT

Press, Cambridge, Mass.

DEAN, T., ANGLLTIN, D., BASYE, K., ENGELSON, S., KAELBLJNG, L., KOICKEVIS, E., AND MARON, O.

1992. Inferring finite automata with stochastic output functions and an application to map

learning. In Proceedings of the IOth Ncztlonal Conferetlce on .4rt@zal I,ztelllgence (July), MIT

Press, Cambridge, Mass., pp. ‘.?08-214.

DRESCHER, G. L. 1986. Genetic AI—trmslating Piaget into Lisp, Tech, Rep. 890. MIT Artiflclal

Intelhgence Laboratory, Cambridge, Mass., Feb.

DRESCHER, G. L. 1987. A mechanism for early Plagetian learning. In Procee&zgs of AAAI-87:

Sz.xtlz Natzmzal Co?zfe~ence on Art~ficzal Intellige/zce (Seattle, Wash., July). Morgan-Kaufmann, San

Mateo, Calif., pp. 290-294.

FIEDLER, M. 1972. Bounds for elgenvalues of doubly stochastic matrices. Lmz. .41g Appl. 5, 3

(July), 299-310.

FTLL, J. A. 1991. Eigenvalue bounds on convergence to stationarity for nonreversible Markov

chains. with an application to the exclusion process ,4rzn Apphed Prob 1, 1, 62–87

FRANKLIN, J. N. 1968. Matmr Theom. Prentice-Hall, Englewood Chffs, N.J.

GOLD, E. M. 1967. Language identification in the limit. Ztzf. Conr. 10, 447-474.

GOLD, E. M. 1972. System identification via state characterization. Automattca, 8, 621–636.

GOLD, E. M. 1978. Complexity of automaton identification from given data. In~. Cont. 37,

30’. -320.

HARTMANIS, J., AND STEARNS, R. E. 1966. Algebrazc Structure Theon of Sequential Machines.

Prentice-Hall, Englewood Cliffs, N. J.

KEARNS, M., AND VALIANT, L. G. 1994. Cryptographic limitations on learning Boolean formulae

and finite automata. J. ACM 41, 1 (Jan), 67–95.

KOHAVI. Z. 1978. Swttchmg arzd Fwzzte Automata Theo~y. McGraw-Hill, New York.

Lov.&sz, L. 1979. Combmatorial Problems and Exerczses. North-Holland, Amsterdam, The

Netherlands.

Dilersi&Based Inference of Finite Automata 589

Prm, L. 1989. Inductive inference, DFAs, and computational complexity. In Proceedings of the

1989 International Workshop on Analogical and Inductite Inference. Lecture Notes in Computer

Science. Springer-Verlag, New York.

Prm, L., AND WARMUTH, M. K. 1993. The minimum consistent DFA problem cannot be

approximated within any polynomial. J. ACM 40, 1 (Jan.), 95–142.

PITT, L., AND WARMUTH, M. K. 1990. Prediction-preserving reducibility. ~. Comput. Syst. Sci. 41,

3 (Dec.), 430-467.

RIVEST R. L., AND SCHAPIRE, R. E. 1989. Inference of finite automata using homing sequences.

ln Proceedings of the 21st AnnualACM Symposium on Theoty of Computing, Inf. Comput. ACM,

New York. Also Inf. Comput. 103 (Apr.), 299-347.

DE SAINT-EXUP&RY, A. 1943. The Little Prince. Harcourt, Brace, & World, New York.

SCHAPIRE, R. E. 1992. The DesLgn and Analysis of Eficient Learning A[gorlthrrzs. MIT Press,

(kmbridge, Mass.

TARJAN, R. E. 1975. Efficiency of a good but not linear set union algorithm. J. ACM 22, 2 (Apr),

215–225.

TRAKHTENBROT, B. A., AND BARZDIN’, YA. M. 1973. Finite Automata: Beh(lL’LOL’ and Synthesis.

North-Holland, Amsterdam, The Netherlands.

RECEIVED SEPTEMBER 1990; REVISED JANUARY 1993; ACCEPTED FEBRUARY 1993

Journal of the Amoclatton for Computtng Mdch,.cry, Vol 41, No 3, Mdy I W.!

