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Agrobiodiversity—the variation within agricultural plants, ani-

mals, and practices—is often suggested as a way to mitigate

the negative impacts of climate change on crops [S. A. Wood

et al., Trends Ecol. Evol. 30, 531–539 (2015)]. Recently, increasing

research and attention has focused on exploiting the intraspecific

genetic variation within a crop [Hajjar et al., Agric. Ecosyst. Envi-

ron. 123, 261–270 (2008)], despite few relevant tests of how this

diversity modifies agricultural forecasts. Here, we quantify how

intraspecific diversity, via cultivars, changes global projections of

growing areas. We focus on a crop that spans diverse climates, has

the necessary records, and is clearly impacted by climate change:

winegrapes (predominantly Vitis vinifera subspecies vinifera). We

draw on long-term French records to extrapolate globally for 11

cultivars (varieties) with high diversity in a key trait for climate

change adaptation—phenology. We compared scenarios where

growers shift to more climatically suitable cultivars as the cli-

mate warms or do not change cultivars. We find that cultivar

diversity more than halved projected losses of current winegrow-

ing areas under a 2 ◦C warming scenario, decreasing areas lost

from 56 to 24%. These benefits are more muted at higher warm-

ing scenarios, reducing areas lost by a third at 4 ◦C (85% versus

58%). Our results support the potential of in situ shifting of cul-

tivars to adapt agriculture to climate change—including in major

winegrowing regions—as long as efforts to avoid higher warming

scenarios are successful.

agrobiodiversity | resilience | phenology | agriculture |

climate change adaptation

The potential adverse effects of climate change on agricul-
ture, including shifts in growing areas, decreased yields, and

crop failures (1–6), are a major concern to practitioners, poli-
cymakers, scientists, and consumers alike (7). Forecasts predict
a future where regional climates will become increasingly mis-
matched with crops currently cultivated in those regions (e.g.,
ref. 8), unless there are large shifts in agricultural practices.

Practices that increase the resilience of agricultural regions
would foster growing regions that can maintain normal processes
and function—including in yields and quality—despite increases
in stress or disturbance (9) from climate change. Research
has especially focused on exploiting intraspecific crop diversity
(10–15) because of its potential to increase resilience without
requiring agricultural regions or the crops they grow to shift.
As expansion of agriculture is one of the primary drivers of bio-
diversity loss, keeping agricultural regions in place and thereby
preventing natural lands from being lost to new agricultural
regions is a major international conservation goal (16, 17).

To increase resilience with climate change, intraspecific diver-
sity must link to the traits most needed to adapt to future

climate regimes (2). Such traits include a cultivar’s heat and
drought tolerance and its phenology—the timing of recurring
developmental stages, such as budburst and maturity. Varia-
tion in phenology may be a particularly important trait for
developing agricultural systems resilient to climate change, as
differences in cultivar phenology (e.g., an early versus late-
ripening cultivar) can translate to very different climatic con-
ditions during critical developmental phases, such as fruit
maturation.

Given enough variation in traits—such as phenology—across
cultivars, growers could select and plant cultivars suited to their
current climate, then shift to more appropriate cultivars over
time as the climate shifts, a process we refer to as “turnover.”
Cultivar turnover is expected to increase the resilience of agri-
cultural systems and thus lead to improved agricultural forecasts
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(18). Yet, this basic assumption, which underlies much of the
current research, has rarely been tested.

Here, focusing on winegrapes (Vitis vinifera subspecies
vinifera), we quantify how much in situ cultivar turnover affects
forecasts of suitable growing regions with climate change. We
selected winegrapes, given their high diversity and extensive
records, which make testing the importance of intraspecific
diversity to forecasts possible. Growers today plant over 1,100
different vinifera cultivars of winegrapes (19), called varieties,
which are geographically and morphologically diverse. Differ-
ent varieties possess important trait variation related to climate,
including variation in phenology of 6 to 10 wk across varieties
grown in the same climate (20).

Winegrape diversity is well documented, allowing us to com-
bine winegrape phenology and global variety-level planting data
with projections of daily temperature and precipitation from a
large ensemble of a state-of-the-art climate model (Community
Earth System Model [CESM]; SI Appendix, Fig. S5; ref. 21)
to forecast climatic suitability of 11 globally planted varieties
of winegrapes (Cabernet-Sauvignon, Chasselas, Chardonnay,
Grenache, Merlot, Monastrell [synonym Mourvèdre], Pinot noir,
Riesling, Sauvignon blanc, Syrah, and Ugni blanc). These varieties
make up 35% of the area planted globally, reaching 64 to 87%
in many important winegrowing countries (e.g., Australia, Chile,
France, New Zealand, Switzerland, and the United States; ref. 22).

Our approach to model future winegrowing regions provides
an important advance on previous efforts. Studies to date have
generally ignored intraspecific diversity (forecasting only one or
few varieties) and have used species-distribution models or sim-
ple linear phenological models, which fail to adequately include
nonlinear developmental responses to temperature (23). Instead,
our approach fits nonlinear process-based models for multiple

varieties, which can predict expected phenological delays due to
heat stress, and characterizes specific climatic conditions during
maturation. Using predominantly French long-term phenology
records (SI Appendix, Tables S1 and S2), we developed and vali-
dated models to forecast budbreak, flowering, and the onset of
ripening (veraison) in each region for two warming scenarios,
+2 ◦C and +4 ◦C, and a 0 ◦C reference scenario of no warm-
ing (SI Appendix, Fig. S5; see also Warming Scenarios for more
details). Next, using global data on winegrape variety plantings
(22), we predicted the climatic suitability of each region during
the ensuing maturation stage—a period that controls whether
a variety can be harvested in a particular region each year
(24–26)—for our reference and warming scenarios.

To quantify the change (including gains and losses) in areas
suitable for winegrowing, and resulting cultivar turnover, we
compare our results relative to: 1) current winegrowing regions,
and 2) areas identified as climatically suitable (estimated as
supporting at least one of the 11 cultivars modeled to matu-
rity in most model years) under our 0 ◦C reference scenario
(Calculating Climatic Suitability).

Results

Without cultivar turnover, our results predict major global gains
and losses in future winegrowing regions (Fig. 1). Under a
2 ◦C warming scenario, 51% of all areas we identified as climati-
cally suitable for winegrowing under our 0 ◦C reference scenario
would be lost. At 4 ◦C, losses reach 77% (SI Appendix, Fig. S14).
Losses were higher when focusing only on regions that currently
grow winegrapes: At 2 ◦C, 56% of current growing regions were
lost; at 4 ◦C 85% were lost (Fig. 2).

When we allowed turnover of cultivars, however, losses
declined by up to 57% (Fig. 2). With cultivar turnover included
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Fig. 1. Global maps of winegrowing. (A) Current winegrowing regions (see SI Appendix, Fig. S1 for more detail). (B) Modeled predictions of cultivar

diversity (total number of varieties) under our 0 ◦C reference scenario—all colored pixels show areas predicted as climatically suitable (Calculating Climatic

Suitability). (C–E) Predicted effects of climate change on cultivar diversity and distribution under 2 ◦C warming (C), 4 ◦C warming (D), and cultivar turnover

(E; cultivar gains and losses shown simultaneously via a bivariate color scale). See SI Appendix, Fig. S13 for 4 ◦C turnover.
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Fig. 2. Winegrape cultivar diversity can impact the loss of current wine-

growing regions (see SI Appendix, Fig. S14 for losses within all climatically

suitable areas). Predictions of loss are shown for scenarios of 2 ◦C warming

(yellow bars) and 4 ◦C warming (red bars) relative to a 0 ◦C reference sce-

nario. Shaded areas illustrate ±1 SD around the mean loss for each number

of cultivars, combining two sources of uncertainty: 1) variability according

to all possible combinations of n cultivars (e.g., at one cultivar, that culti-

var could be any of the 11 considered and each covers a different area),

and 2) modeled climatic suitability under each climate change scenario (e.g.,

one model member may predict suitability of an area, while another does

not). These results are based on climatic suitability calculated with all eight

climate variables (Modeling Maturity).

under the 2 ◦C warming scenario, our models predicted a loss
of 24% of current winegrowing regions (compared to 56% with-
out cultivar turnover, yielding: (56 − 24)/56 = 57% decline
in areas lost). Thus, exploiting cultivar diversity more than
halved the potential losses with warming. Similar improve-
ments were seen when considering all climatically suitable
areas (losses declined by a quarter to 38% under the 2 ◦C
warming scenario). However, the benefits of including cultivar
diversity were muted at higher warming: Under the 4 ◦C sce-
nario, loss of current winegrowing regions was 58%, including
turnover, an improvement of 32% over predictions without cul-
tivar turnover (considering all climatically suitable areas losses
declined to 64%).

The importance of using different varieties to maintaining
current winegrowing regions, versus expanding into new areas,
was related to variation in phenology. Many later-ripening
varieties—e.g. Grenache and Monastrell—were critical to main-
taining current growing areas (Fig. 3), while early ripening
varieties dominated new regions (Fig. 3); in particular, at 4 ◦C,
Pinot noir and Chasselas showed large increases (Fig. 3B) as they
moved far north into large Northern Hemisphere land masses
(Fig. 1D).

Geographical shifts were accompanied by phenological
advances of veraison, which changes the timing of the ripen-
ing period for grapes and is important for winegrape quality
potential (24–27). Early varieties—Pinot noir, Chasselas, and
Riesling—advanced veraison date by over 15 d under a 4 ◦C
warming scenario when averaged over all regions predicted as
climatically suitable (SI Appendix, Fig. S12). This change, how-
ever, was smaller than shifts that could occur within regions

if growers do not shift varieties. For example, at 4 ◦C warm-
ing, Pinot noir in the area including Burgundy was predicted
to advance 24 d (SI Appendix, Fig. S11). Advances were sim-
ilarly large for some later-ripening varieties (e.g., advance of
28 d for Cabernet-Sauvignon in the area including Bordeaux).
However, other late-ripening varieties showed delays of up to
10 d with 4 ◦C warming (SI Appendix, Fig. S12). Such delays
were generally caused by a nonlinear response to temperature:
While higher temperatures usually accelerate phenology, too-
high temperatures can produce heat stress and slow phenology
(SI Appendix, Fig. S22 and ref. 28). Advances and delays in
veraison date impacted the suitability of different cultivars by
changing the timing, and, thus, climate, of the veraison-maturity
window. These delays would likely impact wine quality, both
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Fig. 3. Predicted gains (turquoise) and losses (purple) of climatically suit-

able growing areas for each of the 11 studied winegrape varieties (cultivars)

under scenarios of 2 ◦C (A) and 4 ◦C (B) warming. To facilitate compari-

son of varieties and warming scenarios, we show gains and losses as the

proportional change for each variety with warming (i.e., the area predicted

with warming relative to the area predicted under our reference scenario

of 0 ◦C). Gains are shown relative to both current winegrowing regions

(darker turquoise) and all areas identified as climatically suitable under our

reference scenario (pale turquoise). Background shading and variety name

coloring differentiates red from white varieties; for each variety, we also

give the total hectares predicted to be climatically suitable under our refer-

ence scenario of 0 ◦C within current winegrowing regions parenthetically.

For a version of this figure showing gains and losses as absolute change in

hectares, see SI Appendix, Fig. S23.
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through the high temperatures that produce the delays (29)
and through later-season effects by changing the climate during
maturity (24).

Losses of climatic suitability across regions and varieties were
mainly due to shifting temperature regimes during the veraison-
maturity window (SI Appendix, Figs. S16 and S17), particularly
increases in minimum and maximum temperatures and greater
accumulations of temperatures above 25 ◦C. In the 4 ◦C warm-
ing scenario, the number of days above 40 ◦C was also commonly
related to the loss of climatic suitability. These results are in
accordance with increasing evidence that higher temperatures
can desynchronize the development of sugars, acid, and other
berry components important to quality during ripening (29). Pre-
dicted shifts in precipitation (maximum and/or summed precip-
itation) were less frequently associated with a loss of suitability
for winegrowing (SI Appendix, Figs. S16 and S17). Including pre-
cipitation in our predictions, however, did have an important
moderating effect: Models that excluded precipitation variables
yielded higher estimates of varieties lost and showed a reduced
capacity of cultivar turnover to buffer regions from such losses
(SI Appendix, Fig. S14 C and D). While our models integrate
over diverse winegrowing regions, we expect that effects of
precipitation may be particularly location-specific, as irrigation—
which can decouple a region from local precipitation regimes—
is prohibited in some winegrowing regions and widespread in
others. Even in irrigated areas, however, irrigating vines my
not be a sustainable practice due to increasingly scarce water
resources.

Discussion

Our results show that cultivar diversity can decrease the loss of
agricultural areas by over 50%—highlighting the critical role that
human decisions play in building agricultural systems resilient to
climate change. We show that cultivar turnover—if adopted by
growers locally—can reduce the negative outcomes of climate
change on winegrapes, with implications for other crops with
high diversity. However, we also find that the benefits of cultivar
turnover decline under greater warming. Without global efforts
to reduce emissions sufficiently to stabilize temperatures at or
below 2 ◦C, our results suggest that half of current global wine-
growing regions would become climatically unsuitable for today’s
major winegrapes.

These findings do not extend to all regions—in some regions,
we find that cultivar diversity alone may not be enough to pre-
vent declines. As seen in other studies (e.g., ref. 16), gains and
losses of varieties are distributed unequally across the globe
(Fig. 1), with warmer regions suffering the greatest losses and
cooler regions seeing higher gains. Currently, even if growers
exploit cultivar diversity, top-producing countries, particularly
in Southern Europe, are predicted to sustain major declines of
suitable winegrowing areas, with minimal gains (Fig. 1 C and
D). For example, Spain and Italy are expected to lose 65% and
68%, respectively, of climatically suitable areas, under a 2 ◦C
warming scenario (SI Appendix, Fig. S15), with gains of only
5% and 9% (respectively). France is projected to see balanced
losses (22%) and gains (25%; SI Appendix, Fig. S15). In con-
trast, wine-producing regions in the Pacific Northwest (United
States) or New Zealand expand in climatically suitable area
for the latest-ripening varieties by 20 to 100% and 15 to 60%,
respectively (SI Appendix, Fig. S15). Further, losses increase
dramatically under a 4 ◦C warming scenario (SI Appendix and
Figs. 1d and 2), while gains decrease. Losses at 4 ◦C are predicted
to be particularly high in countries that are already warm; this
includes losses reaching ∼90% in Spain and Italy (SI Appendix,
Fig. S15).

For regions where our results suggest that cultivar diver-
sity may be most critical, growers must choose to actively shift
varieties—which requires overcoming legal and cultural hurdles.

Currently, traditional practices, alongside regulations at local,
regional, and higher levels, limit how much and where growers
can shift varieties easily (19). This, coupled with other con-
siderations, such as the temporal and related financial cost of
replanting or regrafting a vineyard, may lead many growers to
prefer alternative options that keep a particular variety tied to
a region. For example, local management practices to reduce
microclimatic temperatures or adjust the pace of development
(e.g., shade cloth, reduced leaf area to fruit weight ratio, or
longer-cycle rootstocks)—may help some growers (30–32), but
generally work best for lower amounts of warming, especially
compared to changing varieties.

Growers who want to exploit cultivar diversity would benefit
from improved climate and crop-diversity data. For winegrapes,
an immediate need is data on a greater number of varieties at a
vineyard-relevant spatial scale. Our modeling approach requires
projected climatic data at a high temporal resolution (e.g., sim-
ulated daily temperature values), which are only available at a
low spatial resolution (e.g., circa 100 km

2 pixels), and thus can-
not capture the unique microclimates of many vineyards. Our
results could be expanded to finer spatial resolutions, given cli-
mate data downscaled with attention to the important climatic
attributes of a particular viticultural region (e.g., coastal influ-
ences and/or cold air pools in complex terrains). Additionally,
our approach requires sufficient phenological data, which we
obtained for 11 varieties from a narrow geographical range (i.e.,
mainly France). These varieties span a diversity of phenologies
(SI Appendix, Figs. S4 and S14E), yet they still represent less
than 1% of known winegrape diversity, suggesting that bene-
fits from cultivar diversity could be higher if more varieties were
included.

Our results apply clearly to winegrowing regions, but have
implications for many of the world’s agricultural regions. We
focused on winegrapes given their diversity and extensive data
resources: winegrape harvest dates are some of the longest writ-
ten records on earth (33); major repositories collect, preserve,
and document the crop’s diversity (20); and newly available data
describe the planted geographic distribution of winegrape vari-
eties across the globe (22). Such resources make winegrapes
an excellent crop to test how intraspecific diversity may help
agriculture adapt to a changing future, but many other crops
also harbor high genotypic and phenotypic (e.g., morphologi-
cal) diversity. Some of this diversity is obvious to consumers
(e.g., historical and new cultivars of apples; ref. 13), while other
diversity is hidden, present mainly in the wild or in research
collections (e.g., banana and orange; refs. 34 and 35, respec-
tively). Gathering sufficient data for tests similar to ours will
be critical to identifying the full potential of cultivar turnover,
but we expect that our results extend to many other crops, if
growers have the flexibility and resources to shift in step with
climate change.

Materials and Methods

Phenological Data for Parameterization and Validation. We assembled histori-

cal data for 50% budbreak, 50% flowering, and 50% veraison dates from 62,

mostly French, locations between 1956 and 2015 (see list of data sources in SI

Appendix, Table S1). Most observations are for the 1995 to 2007 period and,

secondarily, the 1975 to 1994 period. The dataset included 517 observations

of budbreak, 757 observations of flowering, and 688 veraison observations.

Requirements for phenological observations were as follows: Budbreak was

identified as stage 4 on the modified Eichhorn and Lorenz (E-L) scale (36);

flowering was identified as the 50% flowering date corresponding to stage

23 on the modified E-L scale; and veraison corresponded to stage 35 on the

modified E-L scale, where 50% of berries softened or changed from green

to translucent for white cultivars, or changed color for red cultivars. These

data represent a portion of the original database collected in ref. 37, which

was subsequently released for use within this project and includes matched

local meteorological data. To conduct an independent validation of our

phenological model predictions, we used further phenological observations
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from three locations in Europe and two in North America (SI Appendix,

Table S2).

Viticulture Data—The Geography of Winegrowing. To analyze climatic suit-

ability in current winegrowing regions, we digitized the global distribution

of the major winegrowing regions of the world according to a published

atlas of winegrowing (38). We considered our results within this limited

region (SI Appendix, Fig. S1) and, also, all areas that our models classified

as suitable (see below).

Climate Data. We used two different sources of climate data to build and

validate our models. First, meteorological local data from weather stations

(situated not more than 5 km away and not more than 100 m of dif-

ference in elevation from each vineyard), providing daily minimum and

maximum temperatures (SI Appendix, Table S1). The average daily temper-

ature was calculated as the arithmetic mean of the daily maximum and

minimum temperature. Second, a gridded reconstruction of daily minimum

and maximum land-surface air temperatures (Berkeley Earth Surface Tem-

peratures, BEST; http://berkeleyearth.org/data/), based on 37,000 climate

records spanning the period 1880 to 2013. We used both the BEST and

local climate data to parameterize the phenological models and to test for

any major parameter differences across the two datasets. We further used

the BEST data to test our phenological models against validation datasets

(see above in Phenological Data for Parameterization and validation), save

for one site (Davis, CA), where BEST did not provide overlapping years

and we instead used local station data (http://atm.ucdavis.edu/weather/uc-

davis-weather-climate-station/). BEST data are very strongly correlated with

weather-station data (r = 0.982; rms error [RMSE] = 1.829) and, where

biased, tend to underestimate warming trends (39).

Warming Scenarios. For our climate projections, we used output from the

National Center for Atmospheric Research Large Ensemble (LENS; ref. 21).

The LENS is a multimember ensemble of a single general circulation model

(GCM), the CESM. Each member starts from its own unique initial condition

in the atmosphere, and all members are simulated with the same scenario

of historical climate forcings (1920 to 2005) and a high-emissions/high-

warming scenario for the 21st century (2006 to 2100; Representative Con-

centration Pathway [RCP] 8.5). We chose this model and ensemble because

it provided some of the highest spatial-temporal resolution output avail-

able from climate models (∼ 1◦ latitude/longitude, daily projections), similar

to the resolution of the BEST data on which our models were ultimately

calibrated.

The LENS ensemble is also well-designed for our warming threshold

approach, allowing us to sample a large number of model-years (300) at

different warming levels above preindustrial temperatures to force our phe-

nology models: +2 ◦C (2039 to 2048) and +4 ◦C (2076 to 2085), in addition

to a 0 ◦C (1970 to 1979) reference scenario that corresponds to a recent

period where the temperature was the same as our preindustrial baseline

(SI Appendix, Fig. S5). The median estimates for the +2 ◦C/+4 ◦C warming

scenarios are +2.03/+3.99 ◦C, with interquartile ranges of 1.99 to 2.06 ◦C

and 3.97 to 4.04 ◦C, respectively. We used this temperature-based approach

because we believe that it is easier to interpret and link to current global

agreements on climate change and that it provides relevant information on

potential losses and gains of climatic suitability for winegrowing at differ-

ent plausible future warming levels, without tying those predictions to any

time horizon in the future. Our projections, therefore, do not depend on

any singular future greenhouse-gas forcing scenario and are not intended

to; however, we note that the +2 ◦C and +4 ◦C temperature thresholds we

use in this study correspond closely with the broad warming estimates (rel-

ative to preindustrial) in surface air temperature for the end of the 21st

century found for the RCP 4.5 (+2.55 K) and RCP 8.5 (+4.39 K) scenarios (40).

Data and Code Availability. Raw data were generated at several large-scale

facilities (see SI Appendix for details). Derived data supporting the findings

of this study are available from the corresponding author upon request.

Phenological parameterization and cross-validation was implemented with

the software PMP (Version 5.0; ref. 41). All other analyses utilized cus-

tom computer R code, freely available at GitHub, https://github.com/

MoralesCastilla/PhenoDiversity (42).

Phenological Modeling. We modeled winegrape phenology for each of the

11 varieties according to a phenological process-based sequential model,

considering only pixels where each 10-y scenario had no more than 2 d

below −20 ◦C or 1 d below −30 ◦C, which represent lower lethal temper-

atures for most winegrape buds (43, 44). Our approach combined model

estimates of three key stages of grapevine development: budbreak, flower-

ing, and veraison. After comparison against alternative models (SI Appendix,

Table S3), the budbreak stage was simulated by combining the Smoothed-

Utah model (45, 46), to simulate dormancy break (accumulating chilling

units), and the Wang and Engel model (47), to simulate the postdormancy

phase until budbreak. Then, the Wang and Engel model was also used to

simulate the accumulation of forcing units until flowering and from flow-

ering until veraison. The curvilinear structure of both the Smoothed-Utah

and Wang and Engel models reproduce the known effect of a develop-

mental slowdown at high temperatures (48). We fixed the minimum- and

maximum-temperature thresholds for development at 0 and 40 ◦C (respec-

tively), based on physiological thresholds well established in the literature

of winegrapes (49, 50) and other species (51, 52). We calculated a single

optimum temperature for each phenological stage and parameterized the

chilling and forcing units required to reach each stage for each variety. See

SI Appendix for equations and further details, including a discussion of our

40 ◦C maximum.

To evaluate model accuracy and performance, we calculated 1) the RMSE

as described by ref. 53 and 2) model efficiency; and 3) we performed a

leave-one-out cross-validation calculating RMSE of prediction (RMSEP) as

described by ref. 54 and 4) residual prediction deviation (RPD), which can

increase comparability of metrics such as RMSEP (55).

Following this validation, we further validated our phenological mod-

els against independent observations of winegrape phenology recorded

at other geographical locations (e.g., Germany, Portugal, Serbia, and the

United States; SI Appendix, Tables S2 and S8). Our analyses show good

accuracy of the fitted phenological models to other regions (SI Appendix,

Figs. S6–S9).

Modeling Maturity. We modeled the veraison to harvest phenophase using

bioclimatic envelope models (56, 57) based on a suite of bioclimatic variables

and the recorded climatic conditions experienced by each variety under

pre-climate change conditions. We selected eight bioclimatic variables rel-

evant to winegrape ripening (but necessarily excluded some potentially

relevant variables, see also SI Appendix, Diurnal Temperature Range); more

details on the selection of these variables and references are provided in

SI Appendix, Modeling Maturity. Bioclimatic envelope models are often

used to characterize the climatic niche or climatic conditions under which

a studied species can survive. We chose bioclimatic envelope models over

alternative algorithms—e.g., MaxEnt (58) or Random Forests (59)—because

they allow for direct traceability of which climatic variables are responsible

for changes in suitability, leading to either gains or losses as climate changes

(SI Appendix, Figs. S16 and S17), which was a goal of our analysis.

We fitted these models according to the climatic conditions recorded dur-

ing the veraison-harvest temporal window over a 30-y normal period (1950

to 1980), within existing winegrowing regions where each of the 11 mod-

eled varieties is cultivated (22). We chose a 30-y normal period for fitting our

models to capture a period before significant anthropogenic warming with

robust global climate data; this period is longer than our reference scenario

(0 ◦C), as a longer time series allows us to better characterize the climate

envelope for each winegrape variety.

Calculating Climatic Suitability. Our estimates of climatic suitability are the

outcome of a multistep process, characterized, first, by sequential pheno-

logical models (explained above and in detail in SI Appendix), ensuring

that veraison occurs within adequate dates—e.g., prior to October 1 in the

Northern Hemisphere (this cutoff had a negligible effect on suitability; SI

Appendix, Fig. S17); and, second, by comparison of the bioclimatic envelope

forecasted under climate change with the envelope fitted during the 30-y

normal period (1950 to 1979) for each variety (explained in detail above).

Then, third, we considered the percentage of model-years (using 30 mem-

bers from the CESM GCM, with 10 y each compiled into 300 model-years)

for each grid cell and warming scenario where our models predicted suit-

ability for a given variety (see also SI Appendix, Fig. S11). All figures and

calculations—unless otherwise noted—used a cutoff of 75% or more of

model-years predicting that a grid cell is climatically suitable for a given

variety. Thus, some regions we suggest as climatically suitable may be suit-

able in only some years, and other regions we suggest are not suitable may

be suitable, but in fewer model-years than this cutoff.

Our modeled estimates of climatically suitable winegrowing areas under

our reference scenario overlap substantially with current regions (76%), but

do not capture all growing regions, and include areas where winegrapes

are not currently grown. This is expected given our modeling framework

(e.g., we consider only 11 varieties) and its assumption that not all potential

growing areas will be—or are currently—exploited.
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37. A. K. Parker, I. Garcı́a De Cortázar-Atauri, C. van Leeuwen, I. Chuine, General pheno-

logical model to characterise the timing of flowering and veraison of Vitis vinifera L.

Aust. J. Grape Wine Res. 17, 206–216 (2011).

38. O. Clarke, Oz Clarke Wine Atlas: Wines and Wine Regions of the World (Anova Books,

London, UK, 2007).

39. R. G. Way, F. Oliva, A. E. Viau, Underestimated warming of northern Canada in the

Berkeley Earth temperature product. Int. J. Climatol. 37, 1746–1757 (2017).

40. A. P. Schurer, M. E. Mann, E. Hawkins, S. F. B. Tett, G. C. Hegerl, Importance of the

pre-industrial baseline for likelihood of exceeding Paris goals. Nat. Clim. Change 7,

563–567 (2017).
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Supporting Information Text

Data

Phenological data for parameterization & validation
We assembled historical data for 50% budbreak, 50% flowering and 50% veraison dates from 62, mostly French, locations
between 1956 and 2015 (see list of data sources in Table S1). Most observations are for the 1995-2007 period and secondarily
the 1975-1994 period. The dataset includes 517 observations of budbreak, 757 observations of flowering and 688 veraison
observations. Requirements for phenological observations were: budbreak was identified as stage 4 on the modified Eichhorn and
Lorenz (E-L) scale (1); flowering was identified as the 50% flowering date corresponding to stage 23 on the modified E-L scale;
veraison corresponded to stage 35 on the modified E-L scale where 50% of berries softened or changed from green to translucent
for white cultivars, or changed color for red cultivars. These data represent a portion of the the original database collected in
Parker et al. (2), which was subsequently released for use within this project, and include matched local meteorological data.

Our phenology dataset included data for 11 common winegrape cultivars (varieties): Cabernet-Sauvignon, Chardonnay,
Chasselas, Grenache, Merlot, Monastrell (syn. Mourvedre), Pinot noir, Riesling, Sauvignon blanc, Syrah and Ugni blanc. These
varieties were selected based on their widespread cultivation (all are globally planted and many are considered international
varieties, 3, 4), and ensuring that the set of selected varieties encompassed representative phenological diversity (Fig. S4). All
are 100% V. vinifera subsp. vinifera varieties.

The above-described phenology dataset was utilized to parameterize models designed to forecast phenology across space and
time, and then validate them via cross-validation methods (see Methods below). To further validate phenological models we
used data independent from the data used to parameterize the models. We assembled a validation dataset of phenological
observations from the following sources: (a) published articles on winegrape phenology containing observations for budbreak,
flowering and veraison (i.e., 5–7); (b) phenological observations extracted from a report sponsored by the Napa Valley Vintners
(8) (see https://napavintners.com/about/docs/nvv climate exec summary.pdf; data not publicly available); and (c) our own
phenological data collected at the University of California, Davis (9). These data sources comprise a dataset for five sites
(which we refer to as the ‘independent validation dataset’), containing all analyzed varieties except for Grenache, and included
observations from 1949 to 2016. Note that the dataset does not contain observations for all varieties and all years in each site
(see Table S2).

Finally, we also used phenological data from INRA Domaine de Vassal Grape Collection to put the phenology of our selected
cultivars into context by comparing them with a wider diversity of cultivars (130 others, selected to capture major varieties and
the phenological diversity of winegrapes). The Domaine de Vassal Grape Collection, currently located in Marseillan-plage
(France), is dedicated to the conservation, characterization and valorization of grapevine genetic resources. As such it grows
many varieties of Vitis vinifera subsp. vinifera and records phenology relative to a standard variety (Chasselas, 10). For
more information visit: INRA Vassal-Montpellier Grapevine Biological Resources Center at www6.montpellier.inra.fr/vassal and
French Network of Grapevine Repositories https://bioweb.supagro.inra.fr/collections vigne/Home.php?l=EN.

Viticulture data—The geography of winegrowing
To analyze climatic suitability in current winegrowing regions we digitized the global distribution of the major winegrowing
regions of the world according to a published atlas of winegrowing (11). We considered our results within this limited region
(Fig. S1) and, also, all areas our models found were climatically suitable (see below). The dataset on major winegrowing
regions is available at https://knb.ecoinformatics.org/view/doi:10.5063/F1SX6BH1 (12).

Climate data
See the main text Materials & Methods.

Data availability
Most data used in the paper are already published and publicly-available, including: climate projections (13), historical climate
data from BEST http://berkeleyearth.org/data/, winegrowing regions distributions (3, 12), phenological data (2, 5–9); these
data can be made available upon request of the authors of each publication. Derived data supporting the findings of this study
are available from the corresponding author upon request.

Methods

General workflow & rationale
To forecast winegrape phenology we followed a multi-step procedure. In our first step, using our phenological dataset (Table
S1) and BEST climate data, we parameterized phenological models for 11 winegrape varieties. (Note that we did not find
major differences between models based on BEST data compared to the meteorological observations, see Table S6.) We chose
BEST to parameterize the phenological models for several reasons. First, BEST is one of the few datasets that provide global,
gridded, and quality-controlled estimates of daily maximum and minimum temperatures—i.e. using daily temporal resolution is
a requirement for our phenological models. Second, the BEST data are gridded at a similar resolution to the LENS, facilitating
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Fig. S1. Maps of current major winegrowing regions of the world (digitized from (11)). The panels show the distribution of winegrowing regions globally (a), in

North America (b), Europe and Northern Africa (c), South America (d), Australia and New Zealand (e), Southern Africa (f), Southeast Europe, Middle East and

South Asia (g), and Eastern Asia (h). Winegrowing regions are shaded in purple. Note that the map is not comprehensive, it lacks regions developed after 2007 and

that some regions depicted only have marginal winegrape production (e.g., southeastern US, central Mexico, areas of Mongolia, north island of Japan).

1) straightforward bias correction of the model climate information and 2) re-gridding of the BEST datasets to the same spatial
resolution as the LENS climate projections. We fitted phenological models to estimate the dates at which budbreak, flowering
and veraison occur, sequentially—i.e. each phenological stage starts on the predicted date for the preceding stage. In our second
step, we validated the models by comparing results of observed vs. modeled winegrape phenology for each stage, variety and
region (using the independent validation dataset described above). In our third step, using the validated models, we projected
phenology through to veraison for all 11 varieties during our reference scenario (0➦C), and the two warming levels of 2➦C and
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4➦C (see Climate data; Fig. S5). Finally, we used bioclimatic niche models to predict the climatic suitability to reach maturity
of each variety in each region and during the 45 days following veraison (more details given below in Modeling maturity). Given
these results we could then compare predictions for the climatic suitability of each variety across sites and warming scenarios.

Modeling multiple varieties’ specific responses to future climate has two major advantages for growers. First, beyond forecasting
geographic shifts in climatic suitability for viticulture, which has already been done (e.g., 14, 15), it allows establishing which
particular regions will become most suitable to grow which variety. This information could guide a grower’s decisions by, for
example, focusing on a popular variety such as Pinot noir, and forecasting whether the grower’s land will present suitable
conditions to grow it under different warming scenarios (Figs. 1 and S13). While this approach has been done previously
for a single variety (e.g., 16), it is rarely done for more than one at a time (but see 17, for an example using growing season
mean temperatures). Second, having multiple variety-specific results allows us to build variety diversity maps (Figs. 1b and
S13b). These maps yield more explicit information of the potential of winegrape diversity with climate change: the more
varieties forecasted to reach maturity in a given region, the more resilient that region will be to losing climatic suitability
for viticulture. Finally, modeling multi-variety responses to climate change is required to quantify the adaptive potential of
within-crop agrobiodiversity.

Phenological modeling
We modeled winegrape phenology for each of the 11 varieties according to a phenological process-based model (which treated
each stage sequentially), considering only pixels where each 10-year scenario had no more than two days below -20➦C or one
day below -30➦C (18, 19). Freezing temperatures below -20➦C have been shown to generate tissue damage in grapevine (18),
and thus, these thresholds are necessary because as climate warms high latitude locations are predicted to start providing the
necessary heat during the growing season for winegrowing, but winters may still be too cold.

Our approach combined model estimates of three key stages of grapevine development: budbreak, flowering and veraison.
The budbreak stage was simulated using a process-based sequential model combining the Smooth-Utah model (20, 21), which
simulates dormancy break (accumulating chilling units) and the Wang and Engel model (22), which simulates the post-dormancy
phase until budbreak. Then, the Wang and Engel model was used to simulate the accumulation of forcing units until flowering,
and after flowering, it was used to simulate accumulation of forcing units until veraison. The curvilinear structure of both the
Smoothed-Utah and Wang and Engel models reproduce the known effect of a developmental slowdown at high temperatures (23).

The Smoothed-Utah model (20, 21) assumes that chilling can only occur within a given range of temperatures, and allows for
negative chilling in warm days:
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
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Where Tm1 is decrease in cold efficiency for bud endodormancy, Topt is the optimal mean daily temperature, Tn2 is the
temperature with half the efficiency of Topt to induce endodormancy, and min is the negative impact of high temperatures.
This model yields the amount of chill units based on daily temperatures (Td), which are accumulated until a threshold of
accumulated chilling action (C*) is reached defining the end of endodormancy.

The Wang and Engel model (22) belongs to the family of beta functions, is asymmetric and has four parameters:

fWang & Engel =







2(Td − Tmin)α(Topt − Tmin)α
− (Td − Tmin)2α

(Topt − Tmin)2α
if Tmin < Td < Tmax

0 if Td ≤ Tmin or Td ≥ Tmax

[2]

α =
ln(2)

ln( (Tmax−Tmin)
(Topt−Tmin)

)
[3]

Where Tmin, Topt, Tmax represent the minimum, optimum and maximum temperature values, respectively, that are included to
calculate the amount of forcing needed until a threshold of accumulated forcing units (F*), is reached for a given phenological
event—i.e., budbreak, flowering or veraison—to occur. Following many other crops and approaches in winegrapes (2, 24), we
consider Tmin, Topt, Tmax to be species-level characteristics and thus define one value for each parameter that is repeated across
varieties. This approach is consistent with the observation that the precocity hierarchy across varieties is generally constant
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within a site across years (as opposed to shifting as expected if Tmin, Topt, Tmax vary strongly across varieties), allows us to
compare varieties directly, and prioritizes robustness over precision given our data limitations (i.e., at high temperatures we have
very few observations for any one variety). Our estimated parameters (see Tables S4-S6) were in line with values estimated by
previous research (25). In our modeling approach here, the thresholds for minimum and maximum temperatures (Tmin at 0➦C
and Tmax at 40➦C for the Wang & Engel model) were fixed according to physiological thresholds well-established in the literature
of winegrapes (26, 27) and other species (24, 28). We set Tmax at 40➦C after comparison of model fit against models using
alternative Tmax values of 36, 37, 38, and 39➦C. Values of Tmax comprised between 35 and 40➦C are common in the literature
(26, 27, 29, 30), which often shows a drastic reduction in photosynthetic activity above 40 ➦C (31–33), and thus in phenological
development. We acknowledge that phenological models relying upon threshold parameters such as Tmin and Tmax may predict
different responses above and below the thresholds—e.g. in our example, forcing units are accumulated at Tmax of 39.9 but
not at 40.1➦C. However, research on winegrape physiology seems to support the existence of temperature thresholds above
which damage may be too high for further plant development (31–33). As new data becomes available it will be interesting to
see how phenological models accommodate uncertainty around their threshold parameters. While Tmin, Topt and Tmax were
fitted or set at the species level, the accumulated thresholds for chilling (C*) and forcing (F*) corresponding to each phe-
nological stage were parameterized at the variety-level (see Tables S5-S7), thus allowing for phenological variation across varieties.

To evaluate model accuracy and performance we calculated: 1) the root mean square error (RMSE, providing a classical
evaluation between observed and simulated values) as described by (34), 2) model efficiency and, 3) we performed a leave-out-one
cross-validation calculating RMSEP (root mean square error of prediction) as described by (35, 36):

NP S(i) = f(X(i), θ(i)) [4]

RMSE in our approach yields the number of days our predictions deviate from the average observed (thus RMSE = 0 would
correspond to a perfect fit).

RMSEP =

√

√

√

√

1

N

N
∑

i=1

(NP S(i) − NP O(i))2 [5]

RMSEP represents the quadratic distance between the observed (NP O) and the simulated (NP S) phenological stages (here,
budbreak, flowering and veraison). RMSEP and RMSE are calculated the same but the result of the former specifically informs
of the error of prediction in the cross-validation and the latter computes the calibration error; f represents the model (Smoothed
Utah or Wang and Engel) and X(i) and θ(i) are the vectors of the input data and parameters for the observation i. As with
RMSE, the lowest RMSEP are indicative of higher accuracy.

The model efficiency (37) can be defined as:

EF = 1 −

∑N

i=1
(NP O(i) − NP S(i))2

∑N

i=1
(NP O(i) − NP O)2

[6]

Where NP O is the mean value of the observed phenological stages.

Additional accuracy metrics have been proposed to standardize RMSE with respect to the standard deviation of observed
values. Here we calculated the Residual Prediction Deviation (RPD), defined as:

RP D =

√

1
N

∑N

i=1
(NP S(i) − NP O(i))2

RMSE
[7]

RPD is applicable to observed and predicted values that are normally distributed, and can increase comparability of metrics
such as RMSE. It is also fairly easy to interpret as prediction accuracy increases with increasing RPD (38).

The combination of the above models was selected after rigorous tests of alternative modelling approaches. The alternative
models tested for the dormancy phase were the BRIN model (39) and the Chuine model (40); alternative models for post-
dormancy included the Richardson model (20) both in its constrained and unconstrained version and the sigmoid model (41).
Our choice of the Smoothed Utah and Wang & Engel models for budbreak was made according to accuracy metrics (e.g.
RMSE, EF and AIC) showing that their combination outperformed alternative options in terms of fit and parsimony (see Table
S3). Although the Smoothed-Utah + Sigmoid combination performed similarly well, we favored the Wang & Engel model
as it is more realistic biologically—e.g. it does not accumulate forcing units at temperatures below 0➦C. The Wang & Engel
model has the additional benefits of reducing uncertainty (42), and being more realistic biologically for budbreak, flowering and
veraison by replicating the common plant biology of slowed development at higher temperatures (24, 42). We note that while
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this approach may not be perfectly accurate it provides a reasonable trade-off between prediction accuracy, strong physiological
foundations and simplicity to upscale computationally.

Following the above described validation metrics, we additionally validated our phenological models against independent
observations of winegrape phenology recorded at other geographical locations (e.g. California in the USA, Germany, Portugal,
Serbia, see Table S2 for data sources) from the locations where calibration data were extracted (e.g. predominantly France
in Table S1; see Tables S8-S9 for validation results). For locations in California, where we had raw data on phenological
observations—i.e. yearly values of any phenophase for a given variety—independent validation was straightforward—we
calculated the RPD and RMSE based on observed vs. the simulated values by our phenological models. For European locations
where we had only the mean ± standard deviation values of observed phenology, validation was restricted to comparing these
means and errors to those resulting from our predictions for each given period and dataset (see Table S8).

Our cross-validation and independent validation datasets provide estimates of model uncertainty for our global projections,
which encompass many regions for which we did not have phenological data. Our core validation method—cross validation
of our main dataset (Table S1)—show RMSE of 5.54 ± 1.64 days and RPD of 2.43 ± 0.84 for BEST climate data (all
estimates are mean ± SE unless otherwise noted). These values are well within margins generally considered a good fit
(2, 39, 43–45). While we note that growers would benefit from an even lower RMSE, these values are limited by how accurately
phenology can be observed, especially when integrating across diverse datasets, as we do here. Moreover, our additional
validation with independent observations from North American sites with high resolution data—i.e. yearly observations of each
phenophase—showed equal or reduced uncertainty (average RMSE of only 2.55 ± 1.04 days in Napa Valley, see Table S8, and
RMSE of 2.50 ± 0.71 days in Davis). Correlations between the phenology simulated by our models and independently observed
winegrape phenology were high for both the North American and European locations (R2 > 0.98; see Figs. S6-S8). Even for
European locations with low temporal resolution data—i.e. we had only mean and SD of phenology across a set of years—but
measuring the same phenophase (i.e., 5, 6), we found that our averaged predictions overlap with average observed values (see
Fig. S8). Our independent validation results are, however, inherently limited in their scope—i.e. they are generated for 5
locations where not all modelled cultivars are planted—given the current availability of phenological data across winegrowing
regions. Yet we argue that our validation analyses show that our fitted phenological models can predict phenology in other
regions accurately enough (Figs. S7-S6) to meet our research goals: compare phenological forecasts across cultivars, regions
and warming scenarios.

Modeling maturity
Phenological modeling of winegrape maturity is particularly challenging for several major reasons. First, date of harvest
responds to a mix of decisions related to the chemical composition of the berries—e.g. sugars, acids, phenolic content, aroma
precursors and aromas—that mainly develop during the veraison to harvest period. Thus, while measures of budbreak, flowering
and veraison are strongly related to physiological processes, harvest timing is often closely linked to growers and winemakers’
preferences in winestyle, or even historical and cultural determinants. Models of maturity are thus often based on sugar
measurements (e.g., 46), but data for such models are extremely limited, and recent studies suggest sugar may change separately
from acids and other juice compounds with warming (47, 48). Further, while temperature alone can suffice to model the
preceding phenological stages (49), more complex interactions among climatic variables, including those related to vine water
status (39, 50), are often needed to correctly characterize winegrape maturation.

Thus, we modeled the veraison to harvest phenophase using bioclimatic envelope models (51, 52) based on 8 bioclimatic
variables we expected were relevant globally to grape ripening (see also Diurnal Temperature Range below) and the recorded
climatic conditions experienced by each variety under pre-climate change conditions. Such models are often used to characterize
the climatic niche or climatic conditions under which a studied species can survive.

We used the following set of bioclimatic variables (indicators) known to be relevant for winegrowing:

1. Growing Degree Days (GDD) – defines the accumulation of temperatures during which active grapevine growth is
expected. Here we consider only temperatures above 10➦C, which is the classical threshold to define GDD in grapevines
(53, 54), and calculate it starting from the estimated veraison date.

2. Number of days on which maximum temperatures exceed 40➦C (temperature above 40➦C) – are generally assumed to
severely retard or stop photosynthesis, growth and developmental activity (26, 27, 29, 30).

3. Number of days on which minimum temperatures are below 10➦C (number of days below 10➦C) – as for the previous
indicators we consider there is less photosynthetic activity below 10➦C (29, 30).

4. Minimum daily temperatures – minimum temperatures during maturation period are used to describe night temperatures,
which are well related to good development of secondary compounds (e.g. aromas and color, 55). For each variety, we
recorded the distribution of minimum temperatures corresponding to each day within the 45-day period following veraison,
and across the 30-year normal period (1950-1980).
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5. Maximum daily temperatures – these values are related to sugar content, acidity degradation, physiological problems and
cooked fruit aromas (if temperatures are too high, 56, 57). For each variety, we recorded the distribution of maximum
temperatures corresponding to each day within the 45-day period following veraison, and across the 30-year normal
period (1950-1980).

6. Growing Degree Days above the optimal developmental temperatures. Here we consider 25➦C as the base temperature,
which is coherent with the optimal value of the phenological models (see Phenological modeling above; and (58)).

7. Total summed precipitation (mm) – this value has been often linked to impacts on the final yield, and is associated with
pests and diseases (59) but also with overall wine quality (50).

8. Maximum daily precipitation: similar information to total summed precipitation, but also helps differentiate between
high precipitation due to many smaller events versus one large precipitation event (calculated as the maximum daily
precipitation registered within the 45-day period for each year of the 30-year normal period we considered).

Some of these indicators are known to be collinear—i.e. to varying degrees across the different regions where cultivars are
planted—and yet we chose them because they can be linked to particular physiological and developmental processes which
are relevant for ripening (see above). We found collinearity to be higher for precipitation indicators (see Table S10) but even
so, their relative importance to determine loss of climatic suitability differed significantly for most cultivars (see Fig. S17).
We present results for all the variables (and an additional analysis where we include diurnal temperature range, see below)
as they are relevant to different aspects of the ripening process (e.g., GDD represents accumulated temperatures over the
ripening window while maximum and minimum temperature represent extremes). We note, however, that analyses using only a
subset of these variables may find different drivers of climatic suitability (e.g., an analysis with few temperature-related metrics
outside of GDD would likely find a greater importance of GDD to climatic suitability). The choice of threshold-based indicators
was robust to the specific thresholds used—e.g. the effects of the number of days above 40➦C on climatic suitability loss were
strongly correlated with the effects yielded by the number of days above 39➦C (R2 = 0.93).

The existing winegrowing regions for each of the 11 modeled varieties were extracted from (3) according to the following criteria:
1) a minimum of planted 100 ha, thus guaranteeing the ability of those regions to adequately support a given cultivar, 2) the
target variety represented at least 2.5% of the total area planted globally for that variety, and 3) to minimize prevalence effects
derived from certain varieties being distributed in more locations than others (60), we ensure that each variety was modeled
based on a minimum of 20 locations (except for Monastrell, for which n=10) and to avoid over-representation of most common
varieties—e.g. Cabernet-Sauvignon—we trimmed down the number of locations to a maximum of 120 (Fig. S10). Finally,
we cross-validated the models by re-running the models based on randomized subsampled training (70%) and testing (30%)
datasets, and comparing results against observations for the 30-year normal period (1950-1980). Selection of the geographical
distribution for each variety could, potentially, improve if quality criteria was utilized (i.e. considering only regions where a
given variety is known to produce high quality wines). Such data, however, are not available across all areas where each variety
is planted. Our approach is thus conservative in focusing on climatic criteria exclusively: it identifies where a given variety
would reach maturity regardless of production or quality criteria.

Our bioclimatic envelope approach characterized the distribution of each of the above climatic variables for each winegrape
variety over the 45 days following veraison, given estimates over our 30-year normal period. Certain varieties may show shorter
or longer ripening periods in different geographic locations, but a lack of available data prevented us from incorporating such
variation in our envelopes. Thus we assume a 45-day ripening period across varieties and regions, and tested the sensitivity of
our results to this assumption (Figs. S20-S21). Then, for each 16,000 land pixels of the world we characterized the forecasted
daily distribution of each climatic variable for each year within each warming period—e.g. 2➦C, and 4➦C—and our 0➦C reference
period. Finally, we classified each climatic variable as suitable or unsuitable for the target variety to reach maturity according
to whether or not forecasted values for that variety fell within the 90% quantiles of the distribution. We set a 75% threshold for
a given pixel to be classified as suitable, meaning that at least 6 out of the 8 climatic variables should have forecasted values
within their distribution over our 30-year normal period. This approach is rather permissive—i.e. high quantile allowance and
low threshold—in order to account for inter-year climatic variability and to reduce the amount of false negatives. Given the 30
ensemble members of our GCM we had a total of 300 estimates (300=30 GCM members x 10 years for each warming period) of
climatic suitability for each pixel and each warming scenario.

Climatic suitability
See the main text Materials & Methods for how we calculated climatic suitability.

Our models of climatic suitability overlap significantly with current growing areas but exclude some areas; such areas may use
unique practices to maintain vines, may use varieties very different than those we modelled (e.g., many areas in the southern
and mid-west United States use hybrid vines that are not 100% V. vinifera subsp. vinifera), and/or may be areas our models
suggested were suitable for winegrowing in too few years. Additionally, our estimates contain areas where winegrapes are not
currently grown, including areas that have been highlighted in other studies of winegrowing areas (e.g., 17). We quantify gains
and losses of climatic suitability for winegrowing by comparing the forecasted suitability under 2➦C and 4➦C with comparisons

I. Morales-Castilla et al. 7 of 40



to: (1) current growing regions and (2) areas our approach identified as climatically suitable under our 0➦C reference period.
Given that our models do not (and are not designed to) predict only areas currently growing winegrapes, estimates against
current winegrowing areas could under or over-estimate changes. Thus, our two comparisons (current winegrowing regions
and all climatically suitable regions under 0➦C reference) capture both change relevant to current areas, and to our particular
modeling approach.

Code availability and software used
Phenological parameterization and cross-validation was implemented with the software PMP v5.0 (61). All other analyses
utilized custom computer R code, freely available at https://github.com/MoralesCastilla/ under the GNU General Public License.

Additional simulations & tests

Sensitivity analyses of indicators included in bioclimatic niche models
To test for the sensitivity of our results to including precipitation variables—e.g. Total summed precipitation, Maximum
precipitation—in the maturation stage, we also modelled maturity based only on temperature variables (see above sec-
tion on Modeling maturity): Growing Degree Days, Number of days above 40➦C, Number of days below 10➦C, Minimum
daily temperatures, Maximum daily temperatures, Growing Degree Days above a threshold of 25➦C. The ability of culti-
var diversity to decrease the loss of climatically suitable regions holds when only temperature variables are accounted for
to model maturity, regardless whether all potentially suitable regions (see Fig. S14b), or current growing regions of the
world are considered (see Fig. S14d). Notably, by not accounting for precipitation variables in the models, the total amount
of regions loss for any one single variety is higher, reaching 70% of average losses under the 2➦C warming scenario (see Fig. S14d).

We also assessed whether our estimates of regions lost were sensitive to including minimum and maximum temperatures in our
models. We found that our absolute estimates of regions lost were sensitive to these two variables being included—predicted
losses are higher if minimum and maximum temperatures are considered (Fig. S14c)—however, our relative estimates were
not: the overall pattern of cultivar diversity decreasing the loss of climatically suitable regions by almost a half was robust to
whether these parameters were included in the model (Fig. S14).

Diurnal Temperature Range
Our bioclimatic niche models account for a wide array of indicators relevant for viticulture, but ignore additional potentially
important indicators such as the daily variation in temperature. Shifts in Diurnal Temperature Range (DTR), mostly during
the ripening phase, have been linked to major viticultural properties such as winegrape quality (62, 63), and berry development
and chemical characteristics (64). Evidence for consistent directional shifts in DTR with climate warming is, however, scarce.
Based in our future climate projections for a 2➦C warming scenario (see above Climate data) we found that, shifts in DTR with
2➦C of warming will not exceed 0.5➦C locally and may affect the world’s winegrowing regions unevenly—e.g. slight decreases
in central Europe vs. mild increases in Southern Europe (Fig. S2). Future work on winegrape phenology may benefit from
accounting for DTR in models and projections.

Although we do not include this variable in our bioclimatic niche models, we tested for the sensitivity of our results to dismissing
DTR. Specifically, we re-ran our bioclimatic niche models for maturity of all 11 cultivars globally, adding DTR to our set of
8 bioclimatic indicators (see Modelling maturity above) and projected shifts under a +2➦C warming scenario (results were
averaged across five randomly selected simulations of the LENS model—i.e. simulations 5,7,14,19 and 26). Results show that
DTR is less important for region loss than most other indicators, including precipitation variables (Fig. S18). Although low, the
influence of DTR in determining climatic suitability appears important and should be considered in future studies, especially
those at higher spatial resolutions or in regions known to be more influenced by DTR (e.g., 62).
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Fig. S2. Maps of Diurnal Temperature Range (DTR) measured globally for a 10-year period (2006-2015) representative of current climatic conditions (a), and the

10-year period (2039-2048) corresponding to the +2➦C warming scenario (b). Shifts in DTR are calculated as the difference between current and projected DTR (c).

The boxplot inset compares the distributions of DTR globally under both current and future climate, showing no significant differences in median DTR before and

after warming. Across locations, however, recorded DTR shifts range between +0.5➦C and -0.5➦C with respect to current climatic conditions. These results are for

one randomly selected GCM simulation of the LENS model.

Gains of climatic suitability
Our results identify a substantial impact of climate change in reducing the areas of both current winegrowing regions and
other regions where wine is not cultivated but where climate would allow so. However, previous research (e.g., 17) has also
highlighted that large extensions of territory may become suitable for winegrowing due to climate change. While gains of
climatic suitability due to climate change are considerably lower than losses under both 2➦C and 4➦C warming scenarios (Fig.
S14), these patterns are highly heterogeneous across geographic regions. For example, gains of climatic suitability were rather
limited in Southern European countries like Spain, France or Italy (Fig. S15), and only occurred for varieties with later
phenologies (e.g. Grenache, Monastrell or Ugni blanc, see Fig. S15). In contrast, gains of climatic suitability were highest in
New World regions such as the Pacific Northwest (USA), New Zealand or California, not only for late varieties but also for
earlier ones (e.g. Chardonnay, Riesling or Chasselas, see Fig. S15). Interestingly, gains of climatic suitability in the latter
regions are highest under a 4➦C warming scenario, but in European countries, most opportunities to gain climatic suitability
coincide with the 2➦C warming scenario. This information would be relevant for winegrowers from the regions with high
potential to increase their suitability, by informing them of the varieties that may be best adapted to grow there in years to come.

Cultivar turnover also has a detectable effect on gains of climatic suitability (Fig. S19). The potential for gains of climatic
suitability for any one variety is consistently higher under the 2➦C than under the 4➦C warming scenario (Fig. S19). Increasing
diversity—i.e., allowing for cultivar turnover—from one to 11 varieties increases the amount of gains by 19.8% (i.e. from 80.2%
of average gains when only one variety is considered to 100% gains when all are considered), under 2➦C of warming (Fig. S19).
A similar pattern, but showing a greater effect of turnover is found under 4➦C of warming, with 43.1% increase in climatic
suitability (i.e. from 56.9% of average gains when only one variety is consider to 100% gains when all are considered). These
results thus show that our modeled varieties will have a larger potential to occupy novel growing regions under the 2➦C scenario
(i.e. climate suitability gains for winegrowing are greater under less warming), and also that the relative effects of cultivar
turnover on suitability gains would be greater under 4➦C of warming scenario.
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Late-ripening composite (LRC) variety
To examine how including a much later-ripening cultivar impacts results, we parameterized and tested a hypothetical extremely
late variety, built by combining our models with information on several late-ripening varieties. Our subset of 11 varieties
captures significant phenological diversity (Fig. S4), but does not represent the full phenotypic variability existing within the
genetic diversity of Vitis vinifera subsp. vinifera. In particular, our range of varieties fails to represent the later maturation
exhibited by very late varieties (e.g. Nero amaro, Roditis or Maratheftiko). To include such phenotypic variability in our
analyses, we simulated a virtual variety in an analogous way to previous approaches (65). To compute the parameters of this
virtual variety, we find the maximum difference in C*, F*BB, F*Flo and F*Ver among the varieties included in our dataset, and
either sum it or subtract it to the value of the variety with either maximum or minimum values for the parameters, respectively.
Subsequently, for these set of parameters, we conducted all analyses, replicating the above described procedure for our 11
actual varieties.

The last step of our modeling workflow involves fitting bioclimatic envelopes to simulate maturity (see above), which requires
data on the geographic distribution of each variety in order to estimate the climatic niche or the environmental space occupied
by each variety over the 30-year normal period (1950-1980). Since we did not have distributional data for the hypothetical
Late-ripening composite variety (LRC), we utilized as a surrogate the following varieties for which we had comprehensive enough
distributional data, amongst those with the known later phenologies: Fogarina, Lambrusco Di Sorbara, Savatiano, Verdelho
Tinto, Brun Argente, Amaral, Uva Cao and Verdicchio Bianco. Overall we selected 51 localities where these varieties are dis-
tributed, across Greece, Italy, France and Portugal (Fig. S3), that were later used to fit bioclimatic envelopes for the LRC variety.

Fig. S3. Simulated geographical distribution of the Late-ripening composite (LRC) variety, based on the distribution of 8 varieties known to have late phenologies.

The 51 points utilized to fit a bioclimatic envelope for the LRC variety are marked with crosses. In the background current winegrowing regions are shaded in purple.

Overall, including the LRC has an almost negligible effect on our results. Analyses of loss of climatic suitability within current
winegrowing regions revealed that including the LRC decreased region loss by less than 1% (Fig. S14): under 2➦C of warming,
23.6% out of all global current winegrowing regions would lose their climatic suitability for winegrowing even after including our
simulated LRC. This figure does not represent a large improvement in comparison with the 24% that would be loss allowing for
turnover across the 11 varieties in our study. This result supports that cultivar diversity can buffer loss of agricultural regions
but such ability is not unlimited. However, modeling one virtual variety is a suboptimal option in comparison to modeling
one (or several) actual late-ripening variety (e.g. Maratheftiko), which may potentially have a tolerance to high temperatures.
Unfortunately, modeling further late-ripening varieties was unfeasible due to data limitations and thus, future work will benefit
from systematic collection of phenological data for less-known, Southern European varieties.

Sensitivity analyses based on veraison-harvest temporal window
Our models for maturity (see above section on Modeling maturity) assumed for all varieties a temporal window of 45 days
following veraison within which climatic variables were recorded to build the climatic envelopes. A 45-day period for winegrapes
to ripen is empirically supported for most varieties, however, certain varieties have ripening periods shorter or longer than 45
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days in some sites and years (25, 66). To provide some assessment of the effect that our choice of a 45-day veraison-harvest
period would have on estimates for gains and losses of winegrowing regions we re-fitted climatic envelopes for Chasselas, the
variety with the shortest veraison-harvest period in our dataset.

We first evaluated shifts in the distribution of the values of each climatic variable according to a 30-day period after veraison
against a 45-day period (Fig. S20). Results show an overall close match among the climatic distributions of each variable
regardless of whether the distribution is recorded over the 30 or the 45 days following the predicted veraison date. An exception
to this pattern was found for Summed precipitation and Growing Degree Days, which is expected given that more precipitation
and more Degree Days can accumulate in 45 than in 30 days.

In a second step we replicated our analyses quantifying climatic suitability to reach maturity for Chasselas within Europe
based on the 30 days following veraison instead of the 45-day window employed in our main analyses. Climatic suitability was
calculated under the same three scenarios that were used to estimate increases and decreases in suitable regions (by comparing
the amount of climatically suitable regions at 0➦C, with suitable regions at both 2➦C and 4➦C of warming). Results showed
similar trends, but magnified estimates of both gains and losses of suitable regions (Fig. S21). Thus, if climatic envelopes were
characterized across a shorter period, the proportion of climatic suitability loss would increase —e.g. from 71.2% to 81.9%
on average under 2➦C warming—and the proportion of current growing regions becoming more suitable to grow Chasselas
would decrease—e.g. from 15% to 0.2% on average under 2➦C warming— S21. These results confirm that our approach is
conservative in estimating both losses and gains.
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65. Duchêne E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to
climate change. Climate Research 41(3):193–204.

66. Yiou P, et al. (2012) Continental atmospheric circulation over Europe during the Little Ice Age inferred from grape harvest
dates. Climate of the Past 8(2):577–588.

67. Seguin B (2004) The phenoclim database for fruit trees and vine in france. Challenging Times p. 75.
68. Adelsheim D, et al. (2016) Climate change: Field reports from leading winemakers. Journal of Wine Economics 11(1):5–47.

I. Morales-Castilla et al. 13 of 40



Tables

Table S1. Summary of data used to parameterize phenological models. For each site for which we had data, we indicate its geographic
coordinates, the minimum and maximum year of observation, the phenological stage (BB for budbreak, FL for flowering, VER for verasison)
for which there was data (marked with x), and the winegrape varieties observed. Part of these data are from Phenoclim Database (INRA
Vassal, Colmar, Angers, Bordeaux, Pech Rouge - https://www6.inra.fr/soere-tempo/Ressources/Portail-de-donnees) - Seguin (2004).

Site Lon Lat Years minYear maxYear BB FL VER Varieties

1 4.58 48.05 4 1999 2002 x x x Chardonnay, Pinot noir
2 5.14 43.55 1 2003 2003 x x x Syrah
3 5.67 43.52 2 2006 2007 x x x Grenache
4 5.43 43.66 1 2006 2006 x x x Grenache
5 5.55 43.73 3 2005 2007 x x x Grenache
6 2.65 43.18 3 2000 2002 x x x Monastrell
7 4.99 47.27 2 2004 2005 x x x Chardonnay, Pinot noir
8 4.41 43.78 2 2004 2005 x x x Grenache, Syrah
9 4.56 44.30 5 1999 2003 x x x Monastrell
10 4.49 44.14 2 2001 2003 x x x Monastrell
11 4.68 43.94 4 1999 2003 x x x Monastrell
12 4.70 44.01 4 1999 2003 x x x Monastrell
13 4.56 43.88 5 1999 2003 x x x Monastrell
14 4.43 43.80 5 1999 2003 x x x Monastrell
15 -0.47 44.77 28 1974 2001 x x x Merlot, Cabernet-Sauvignon
16 -0.56 44.75 1 2004 2004 x x x Merlot
17 -0.16 44.89 4 2000 2003 x x x Merlot
18 -0.20 44.93 3 2001 2003 x x x Merlot
19 -0.19 44.92 12 1995 2006 x x x Merlot, Cabernet-Sauvignon
20 -0.77 45.21 15 1990 2004 x x x Sauvignon blanc
21 3.56 43.33 50 1956 2005 x x x Chasselas, Monastrell, Riesling, Pinot

noir, Chardonnay, Grenache, Sauvignon
blanc, Syrah, Ugni blanc, Cabernet-
Sauvignon , Tempranillo, Merlot

22 3.92 43.84 2 2004 2005 x x x Grenache, Syrah
23 3.17 43.27 3 1997 1999 x x x Cabernet-Sauvignon
24 3.17 43.61 1 2005 2005 x x x Chardonnay, Syrah
25 3.32 43.34 3 1997 2006 x x x Riesling, Chardonnay
26 3.10 43.58 1 2005 2005 x x x Chardonnay, Syrah
27 2.91 43.56 1 2005 2005 x x x Chardonnay, Syrah
28 3.42 43.46 8 1999 2006 x x x Merlot, Monastrell, Chardonnay, Ries-

ling
29 3.14 43.44 2 2003 2004 x x x Grenache
30 3.28 43.48 6 2001 2006 x x x Syrah, Merlot
31 3.04 43.37 5 2002 2006 x x x Merlot, Syrah
32 3.20 43.52 1 2003 2003 x x x Monastrell
33 3.03 43.50 1 2002 2002 x x x Monastrell
34 3.87 43.80 3 2003 2005 x x x Syrah
35 -0.16 47.13 22 1981 2005 x x x Chasselas, Riesling, Grenache, Sauvi-

gnon blanc, Syrah, Ugni blanc,
Cabernet-Sauvignon

36 3.95 49.05 7 1998 2004 x x x Chardonnay, Pinot noir
37 3.98 49.02 6 1999 2004 x x x Chardonnay, Pinot noir
38 7.36 48.20 40 1976 2015 x x x Cabernet-Sauvignon , Chardonnay,

Chasselas, Merlot, Pinot noir, Riesling,
Syrah, Ugni blanc, Grenache, Sauvignon
blanc

39 6.23 43.14 4 2002 2007 x x x Grenache
40 6.07 43.24 1 1999 1999 x x x Monastrell
41 6.53 43.25 3 2005 2007 x x x Grenache
42 6.12 43.47 3 2005 2007 x x x Grenache
43 5.78 43.20 1 2007 2007 x x x Grenache
44 4.76 44.18 1 2004 2004 x x x Grenache, Syrah
45 4.94 43.93 8 1997 2004 x x x Grenache, Syrah
46 5.13 44.27 4 2000 2003 x x x Grenache
47 5.06 44.08 8 1998 2005 x x x Grenache, Syrah
48 4.96 44.16 4 1999 2002 x x x Monastrell
49 4.80 44.21 4 2000 2003 x x x Monastrell
50 5.07 44.17 4 1999 2002 x x x Monastrell
51 5.24 43.86 4 2000 2003 x x x Monastrell
52 5.06 43.86 4 1999 2003 x x x Monastrell
53 4.81 44.08 4 1999 2003 x x x Monastrell
54 4.93 44.23 3 1999 2001 x x x Monastrell
55 4.93 44.23 2 2000 2002 x x x Monastrell
56 5.05 44.09 2 2006 2007 x x x Grenache
57 4.83 44.06 3 2005 2007 x x x Syrah, Grenache
58 5.15 43.89 1 2006 2006 x x x Grenache
59 4.93 43.96 3 2005 2007 x x x Grenache, Syrah
60 5.18 44.12 3 2005 2007 x x x Grenache, Syrah
61 5.05 43.80 2 2006 2007 x x x Grenache
62 7.97 49.98 40 1974 2013 x x x Pinot noir
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Table S2. Summary of European and North American sources used to validate phenological models with independent observational data.
For each site, we indicate its geographic coordinates, the minimum and maximum year of observation, the phenological stage for which
there was data (marked with x), and the winegrape varieties observed. Data for European locations comes from published work (i.e. Bock
et al. (2013); Malheiro et al. (2013); Ruml et al. (2015)) and reports means and standard deviations of the observations. Data for North
American locations comes from a data report (Cayan et al. (2010) for Napa Valley) and own-collected data (Wolkovich et al. 2017), and
includes raw observations of yearly timing of each phenological stage (i.e. BB for budbreak, FL for flowering, VER for veraison) for each
variety.

Site.ID Lon Lat Years minYear maxYear BB FL VER Varieties

Bock 9.87 49.83 38 1968 2010 x x x Riesling
Malheiro -9.20 39.00 22 1990 2011 x x x Chasselas
Ruml 20.17 45.17 25 1986 2011 x x x Cabernet Sauvignon, Pinot noir, Merlot,

Chardonnay, Riesling
Napa -122.29 38.30 19 1985 2007 x x x Cabernet Sauvignon, Merlot, Chardon-

nay, Sauvignon blanc
Davis -121.74 38.54 4 2013 2016 x x x Cabernet Sauvignon, Chardonnay, Chas-

selas, Merlot, Monastrell, Pinot noir,
Riesling, Sauvignon blanc, Syrah, Ugni
blanc
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Table S3. Comparison of combined dormancy-post-dormancy models for budbreak. Compared alternatives include the Smoothed-Utah
(Richardson 1974), BRIN (Garćıa de Cortázar-Atauri et al 2009) and Chuine (Chuine et al. 1999) models for dormancy and the Richardson
(Richardson 1974), sigmoid (Hanninen et al. 1990) and Wang-Engel (Wang & Engel 1998) models for the post-dormancy phase. Model
accuracy was calculated through the Root Mean Square Error (RMSE), the Efficiency (EF) and the Akaike Information Criterion (AIC;
Anderson et al. 1994). The number of fitted parameters is shown for the dormancy (Dorm.) and Post-dormancy (Post-dorm.).

Model n Dorm. Post-dorm. RMSE EF AIC

BRIN + Richardson 482 2 1 7.58 0.74 1958.70

Smoothed-Utah + Richardson 482 5 1 7.40 0.76 1941.21

Smoothed-Utah + Wang-Engel 482 5 2 7.19 0.77 1916.25

Smoothed-Utah + Sigmoid 482 5 3 7.16 0.77 1914.30

Chuine + Richardson 482 4 1 7.50 0.75 1953.03

Chuine + Richardson (free parameter) 482 4 3 7.44 0.75 1948.44

Chuine + Sigmoid 482 4 3 7.29 0.76 1929.01

Chuine + Wang-Engel 482 4 2 7.41 0.75 1943.16

Table S4. Parameterization of winegrapes to sequential phenological models from dormancy to budbreak (Smoothed-Utah model, SU), to
flowering and veraison (Wang and Engel, WE). The SU model includes four parameters: 1) Tm1 or decrease in cold efficiency for bud
endodormancy, 2) Topt optimal mean daily temperature, 3) Tn2 the temperature with half the efficiency of Topt to induce endodormancy,
and 4) min the negative impact of high temperatures. The WE model includes three parameters: 1) Tmin, 2) Topt.1, and 3) Tmax,
representing the minimum, optimum and maximum temperature values to calculate the amount of forcing, respectively (for details see
Methods section above). The units for all parameters are in ➦C. Fitted parameters are identical across varieties.

SU.params SU.values WE.params BB.values BB.FL.values FL.VER.values

Tm1 -6.70 Tmin 0 0 0

Topt 7.94 Topt.1 26.1 29.34 21.84

Tn2 40.58 Tmax 40 40 40

min -0.17

Table S5. Chilling (C*) and forcing (F*) parameters, used as thresholds above which a given phenological stage from dormancy to budbreak
(C* BB and F* BB), from budbreak to flowering (F* BB-FL) and from flowering to veraison (F* FL-VER) is reached. The units are in
number of days for all parameters.

Variety C* BB F* BB F* BB-FL F* FL-VER

Cabernet-Sauvignon 166.02 20.24 23.61 65.30

Chardonnay 199.01 12.50 22.26 63.28

Chasselas 196.68 12.40 24.46 53.40

Grenache 197.68 14.02 24.71 66.90

Merlot 152.14 19.91 24.96 64.45

Monastrell 216.56 7.64 28.04 62.07

Pinot noir 198.53 12.98 21.85 59.50

Riesling 185.38 14.08 22.13 64.63

Sauvignon blanc 203.48 13.06 25.34 59.27

Syrah 198.63 13.55 23.91 59.99

Ugni blanc 199.74 17.80 24.41 67.36

Late-ripening composite 232.67 23.39 29.59 70.85
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Table S6. Comparison between the parameterization of winegrapes in Table S4, based on gridded climate data extracted from BEST
(Berkley Earth Surface Temperatures) and a parameterization resulting from using local weather station data. As in Table S4 the models
cover sequential phenological stages from dormancy to budbreak (Smoothed-Utah model, SU), to flowering and veraison (Wang and Engel,
WE). Note that fitted parameters are identical across varieties. The units for all parameters are ➦C. Note that the Tmin and Tmax
parameters were fixed at 0 and 40➦C, respectively, for both climatic datasets. Values of Tmax of 40➦C were selected after comparison
against alternative values (e.g. 36, 37, 38, 39➦C).

SU.params SU.values WE.params BB.values BB.FL.values FL.VER.values

Tm1 local weather -10.83 Tmin local weather 0 0 0

Topt local weather 11.13 Topt.1 local weather 28 30.92 25.08

Tn2 local weather 29.67 Tmax local weather 40 40 40

min local weather -0.32

Tm1 BEST data -6.70 Tmin BEST data 0 0 0

Topt BEST data 7.94 Topt.1 BEST data 26.1 29.34 21.84

Tn2 BEST data 40.58 Tmax BEST data 40 40 40

min BEST data -0.17
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Table S7. Comparison between the parameterization of winegrapes in Table S5, based on gridded climate data extracted from BEST
(Berkley Earth Surface Temperatures; http://berkeleyearth.org/data/) and a parameterization resulting from using local weather station
data. As in Table S5 the (C*) and forcing (F*) parameters, used as thresholds above which a given phenological stage from dormancy
to budbreak (C* BB and F* BB), from budbreak to flowering (F* BB-FL) and from flowering to veraison (F* FL-VER) is reached. The
phenological stages parameterized are BB (budbreak), FL (flowering) and VER (veraison). The units for all parameters are the number of
days.

Variety C* BB F* BB F* BB-FL F* FL-VER

Cabernet-Sauvignon Weather data 158.34 16.09 16.56 60.84

Cabernet-Sauvignon BEST data 166.02 20.24 23.61 65.30

Chardonnay Weather data 189.44 9.86 15.35 58.98

Chardonnay BEST data 199.01 12.50 22.26 63.28

Chasselas Weather data 193.20 10.14 17.24 49.53

Chasselas BEST data 196.68 12.40 24.46 53.40

Grenache Weather data 187.40 11.44 17.49 63.98

Grenache BEST data 197.68 14.02 24.71 66.90

Merlot Weather data 144.72 16.16 17.28 60.35

Merlot BEST data 152.14 19.91 24.96 64.45

Monastrell Weather data 171.13 15.42 20.34 60.43

Monastrell BEST data 216.56 7.64 28.04 62.07

Pinot noir Weather data 194.18 10.27 15.29 54.53

Pinot noir BEST data 198.53 12.98 21.85 59.50

Riesling Weather data 190.22 10.32 15.50 59.88

Riesling BEST data 185.38 14.08 22.13 64.63

Sauvignon blanc Weather data 192.22 10.26 17.76 55.16

Sauvignon blanc BEST data 203.48 13.06 25.34 59.27

Syrah Weather data 191.43 11.05 16.88 57.19

Syrah BEST data 198.63 13.55 23.91 59.99

Ugni blanc Weather data 216.88 10.18 17.23 62.47

Ugni blanc BEST data 199.74 17.80 24.41 67.36

18 of 40 I. Morales-Castilla et al.

http://berkeleyearth.org/data/


Table S8. Validation of phenological modeling results against independent observations of winegrape phenology corresponding to dates
of budbreak (BB), flowering (FL) and veraison (VER). Independent observations are extracted from Bock et al. (2011), Malheiro et al.
(2013) and Ruml et al. (2015) in Europe, where only means and standard deviations of observations are provided. And from Cayan et
al. (2010) in North America, where full yearly observations of each phenophase were available. Results are for Riesling (Rsl), Chasselas
(Chs), Pinot noir (Pn), Cabernet-Sauvignon (C-S), Merlot (Mrl), Chardonnay (Chr) and Sauvignon blanc (S-b). Model predictions and
observations from Bock et al. (2011) and Malheiro et al. (2013) for flowering and veraison were for when 50% of clusters were at stages
BBCH 65 and 81, respectively (these correspond to modified Eichorn-Lorenz of 23 and 35); for Ruml et al. (2015), observations are for the
beginning of these stages (while our model estimates are for the mid-point—thus our model would not be expected to accurately predict
these observations). Budburst is defined as green shoot tips visible for all observations and model predictions. Values shown correspond to
averages and associated confidence intervals (95%) across observations and model predictions over the period for which phenological data
were available. RPD and RMSE values could be computed only for Napa, as it was the only dataset where yearly observations matched
yearly predictions. For European data validation is restricted to comparison of means of observed and predicted values. Note that data from
Davis in Wolkovich et al. (2017) was not evaluated here due to lack of long enough temporal resolution—i.e. 4 years of observations—but
see Fig. S6.

Dataset Phenophase Observed Predicted RPD RMSE
Bock (Rsl) BB 122.00 ± 10.00 175.00 ± 9.00
Bock (Rsl) FL 236.00 ± 12.00 118.57 ± 16.50
Bock (Rsl) VER 177.10 ± 16.20 246.62 ± 18.20
Malheiro (Chs) BB 73.00 ± 8.00 140.00 ± 9.00
Malheiro (Chs) FL 208.00 ± 11.00 80.25 ± 7.20
Malheiro (Chs) VER 139.50 ± 13.20 195.06 ± 13.30
Ruml (Pn) BB 99.00 ± 10.50 148.00 ± 7.80
Ruml (Pn) FL 203.00 ± 9.70 108.07 ± 14.50
Ruml (Pn) VER 158.20 ± 11.50 219.87 ± 11.00
Ruml (C-S) BB 108.00 ± 6.70 151.00 ± 7.60
Ruml (C-S) FL 212.00 ± 8.50 114.67 ± 17.00
Ruml (C-S) VER 164.20 ± 11.90 231.83 ± 12.10
Ruml (Mrl) BB 104.00 ± 8.30 149.00 ± 8.10
Ruml (Mrl) FL 212.00 ± 10.50 112.52 ± 19.70
Ruml (Mrl) VER 165.50 ± 12.70 232.16 ± 12.90
Ruml (Chr) BB 97.00 ± 10.70 146.00 ± 8.30
Ruml (Chr) FL 205.00 ± 8.90 107.24 ± 14.80
Ruml (Chr) VER 158.50 ± 11.30 224.08 ± 10.90
Ruml (Rsl) BB 102.00 ± 9.30 149.00 ± 7.40
Ruml (Rsl) FL 211.00 ± 10.20 106.18 ± 16.00
Ruml (Rsl) VER 157.74 ± 12.20 224.86 ± 11.80
Napa (C-S) BB 90.27 ± 13.58 84.69 ± 15.91 1.06 2.26
Napa (C-S) FL 143.86 ± 15.27 150.29 ± 15.23 0.97 2.37
Napa (C-S) VER 214.66 ± 17.14 218.03 ± 15.61 1.68 1.40
Napa (Chr) BB 81.16 ± 12.96 87.99 ± 13.27 0.72 2.54
Napa (Chr) FL 135.85 ± 21.62 148.82 ± 15.32 0.43 4.90
Napa (Chr) VER 208.51 ± 25.10 214.65 ± 15.63 0.69 3.02
Napa (Mrl) BB 87.35 ± 16.62 76.24 ± 14.96 0.67 2.78
Napa (Mrl) FL 143.27 ± 19.36 149.28 ± 15.25 0.95 2.00
Napa (Mrl) VER 218.77 ± 19.52 216.20 ± 15.20 2.36 0.80
Napa (S-b) BB 86.86 ± 13.13 92.33 ± 13.34 0.82 2.08
Napa (S-b) FL 145.40 ± 16.71 157.16 ± 14.69 0.55 3.43
Napa (S-b) VER 208.72 ± 18.63 218.42 ± 14.89 0.63 3.01
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Table S9. Results of uncertainty, accuracy and cross-validation relative to calibrated parameters. Uncertainty around fitted parameters
is measured as lower and upper 95% Confidence Intervals (CI). Accuracy of each calibration is shown by the RMSE and EF metrics.
Cross-validation results following a leave-one-out procedure (analogous to that in Chuine et al. 2016) are shown by RMSEP. EF, RMSE
and RMSEP are defined above in ‘Phenological Modeling’ section. Values for C* and F* are in the chilling and forcing units, respectively,
necessary for a phenological event to occur. The units of threshold parameters (C*, F*) and RMSE and RMSEP are in days. RPD is
included for parameters obtained with BEST to allow comparability with other validation results. Abbreviations are used for Cabernet
Sauvignon (C-S), Chardonnay (Chr), Chasselas (Chs), Grenache (Gre), Merlot (Mrl), Monastrell (Mon), Pinot noir (P-n), Riesling (Rsl),
Sauvignon blanc (S-b) and Ugni blanc (U-b). Weather or BEST indicate what climatic data was used to parameterize the data and BB,
FL and VER indicate the phenological stage of budbreak, flowering and veraison, respectively.

Variety Data Stage C* C* CI.low C* CI.up F* F* CI.low F* CI.up RMSE EF RMSEP RPD
C-S BEST BB 166.02 157.91 180.47 20.24 17.86 21.50 5.70 0.91 6.38 3.35
C-S BEST FL 23.61 22.64 24.62 4.60 0.90 4.73 3.12
C-S BEST VER 65.30 63.95 66.62 5.36 0.86 5.44 2.36
C-S Weather BB 158.34 149.33 166.34 16.09 14.79 16.95 5.96 0.90 7.42
C-S Weather FL 16.56 15.88 17.26 4.51 0.90 4.70
C-S Weather VER 60.84 59.60 62.01 5.24 0.86 5.31
Chr BEST BB 199.01 192.02 203.51 12.50 11.59 13.73 7.92 0.53 8.21 1.46
Chr BEST FL 22.26 21.55 22.95 4.05 0.85 4.19 2.61
Chr BEST VER 63.28 61.30 65.35 7.46 0.82 7.60 2.37
Chr Weather BB 189.44 187.17 195.42 9.86 9.26 10.22 6.85 0.65 7.53
Chr Weather FL 15.35 14.90 15.82 3.78 0.87 3.90
Chr Weather VER 58.98 57.45 60.50 5.92 0.89 6.07
Chs BEST BB 196.68 192.24 205.71 12.40 11.14 14.11 6.15 0.55 7.72 1.49
Chs BEST FL 24.46 23.74 25.22 3.62 0.86 3.72 2.68
Chs BEST VER 53.40 52.07 54.77 5.12 0.92 5.21 3.44
Chs Weather BB 193.20 189.64 195.10 10.14 9.76 10.59 5.02 0.70 5.35
Chs Weather FL 17.24 16.77 17.72 3.19 0.89 3.28
Chs Weather VER 49.53 48.47 50.55 4.25 0.94 4.32
Gre BEST BB 197.68 195.36 205.78 14.02 12.45 14.67 7.21 0.79 8.00 2.18
Gre BEST FL 24.71 24.18 25.34 3.64 0.94 3.71 4.21
Gre BEST VER 66.90 65.20 68.52 7.77 0.81 7.88 2.29
Gre Weather BB 187.40 162.40 191.70 11.44 10.57 15.14 7.24 0.79 8.89
Gre Weather FL 17.49 17.06 17.92 3.45 0.95 3.50
Gre Weather VER 63.98 62.72 65.21 6.26 0.88 6.36
Mrl BEST BB 152.14 146.83 169.62 19.91 16.92 21.10 8.96 0.73 9.42 1.91
Mrl BEST FL 24.96 24.26 25.60 5.04 0.83 5.13 2.46
Mrl BEST VER 64.45 63.19 65.75 5.91 0.83 5.98 2.44
Mrl Weather BB 144.72 142.54 147.71 16.16 15.75 16.65 7.59 0.80 7.71
Mrl Weather FL 17.28 16.84 17.73 4.50 0.87 4.56
Mrl Weather VER 60.35 59.19 61.46 5.50 0.86 5.56
Mon BEST BB 216.56 205.56 217.77 7.64 6.66 12.11 6.67 0.09 6.89 1.05
Mon BEST FL 28.04 27.49 28.67 3.18 0.43 3.24 1.32
Mon BEST VER 62.07 58.81 65.29 3.97 0.39 4.52 1.28
Mon Weather BB 171.13 167.90 184.08 15.42 13.08 16.18 5.65 0.34 6.23
Mon Weather FL 20.34 19.91 20.80 3.01 0.49 3.08
Mon Weather VER 60.43 57.03 63.78 3.58 0.50 4.06
P-n BEST BB 198.53 197.54 221.51 12.98 8.09 13.49 6.28 0.32 7.51 1.22
P-n BEST FL 21.85 21.44 22.17 3.33 0.83 3.39 2.39
P-n BEST VER 59.50 58.17 60.86 7.11 0.77 7.17 2.07
P-n Weather BB 194.18 190.97 197.06 10.27 9.92 10.68 5.02 0.57 5.18
P-n Weather FL 15.29 15.03 15.58 3.35 0.82 3.39
P-n Weather VER 54.53 53.28 55.78 7.06 0.77 7.09
Rsl BEST BB 185.38 181.37 194.30 14.08 13.10 14.89 6.13 0.74 7.01 1.97
Rsl BEST FL 22.13 21.59 22.66 3.62 0.91 3.72 3.39
Rsl BEST VER 64.63 62.54 66.47 7.96 0.69 8.16 1.79
Rsl Weather BB 190.22 183.23 191.45 10.32 10.10 10.95 4.90 0.83 5.53
Rsl Weather FL 15.50 15.13 15.88 3.30 0.92 3.49
Rsl Weather VER 59.88 58.58 61.15 5.34 0.85 7.99
S-b BEST BB 203.48 199.19 207.29 13.06 12.17 14.53 4.22 0.92 4.78 3.62
S-b BEST FL 25.34 24.47 26.03 3.41 0.94 3.56 4.04
S-b BEST VER 59.27 57.93 60.56 4.80 0.90 4.90 3.16
S-b Weather BB 192.22 188.24 195.34 10.26 9.37 11.06 4.97 0.89 6.21
S-b Weather FL 17.76 16.17 19.20 3.20 0.95 3.34
S-b Weather VER 55.16 53.97 56.42 4.77 0.90 4.84
Syr BEST BB 198.63 192.34 204.42 13.55 12.61 14.75 7.22 0.70 7.54 1.83
Syr BEST FL 23.91 23.25 24.56 3.79 0.91 3.85 3.40
Syr BEST VER 59.99 58.53 61.39 6.55 0.84 6.65 2.52
Syr Weather BB 191.43 185.55 196.34 11.05 10.41 12.05 6.68 0.75 7.14
Syr Weather FL 16.88 16.42 17.34 3.55 0.92 3.64
Syr Weather VER 57.19 56.20 58.18 4.77 0.92 4.87
U-b BEST BB 199.74 196.64 219.76 17.80 12.83 18.60 5.33 0.52 6.66 1.45
U-b BEST FL 24.41 23.17 25.36 3.80 0.84 4.05 2.46
U-b BEST VER 67.36 65.40 69.48 6.80 0.88 6.96 2.92
U-b Weather BB 216.88 201.96 230.47 10.18 6.87 13.40 5.39 0.51 8.06
U-b Weather FL 17.23 16.66 17.87 3.19 0.88 3.41
U-b Weather VER 62.47 61.01 63.80 5.07 0.93 5.28
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Table S10. Correlations amongst indicators used to fit bioclimatic envelopes. Results show the average ± standard deviation of cor-
relations computed across 30 GCMs, 30 years (1951-1980), and 11 cultivars at locations utilized to fit their envelopes (see above).
Precipitation variables are highly collinear, and yet they differ in their relative importance to determine loss of climatic suitability (see Fig.
S17). Temperature-related indicators are not strongly collinear except for minimum and maximum temperatures, but each variable affects
winegrape maturation differently.

Days<10➦C Days>40➦C GDD GDD>25➦C MaxTemp MinTemp MaxPrec SumPrec

Days<10➦C 1.00 ± 0.00 0.01 ± 0.04 -0.61 ± 0.08 -0.16 ± 0.07 -0.61 ± 0.10 -0.79 ± 0.10 0.21 ± 0.25 0.25 ± 0.23

Days>40➦C 0.01 ± 0.04 1.00 ± 0.00 0.01 ± 0.03 0.01 ± 0.02 0.00 ± 0.04 -0.00 ± 0.03 0.01 ± 0.06 0.01 ± 0.07

GDD -0.61 ± 0.08 0.01 ± 0.03 1.00 ± 0.00 0.05 ± 0.01 0.69 ± 0.16 0.68 ± 0.16 -0.14 ± 0.15 -0.19 ± 0.15

GDD>25➦C -0.16 ± 0.07 0.01 ± 0.02 0.05 ± 0.01 1.00 ± 0.00 0.45 ± 0.19 0.55 ± 0.16 -0.12 ± 0.14 -0.19 ± 0.16

MaxTemp -0.61 ± 0.10 0.00 ± 0.04 0.69 ± 0.16 0.45 ± 0.19 1.00 ± 0.00 0.74 ± 0.11 -0.39 ± 0.17 -0.44 ± 0.17

MinTemp -0.79 ± 0.10 -0.00 ± 0.03 0.68 ± 0.16 0.55 ± 0.16 0.74 ± 0.11 1.00 ± 0.00 -0.23 ± 0.19 -0.30 ± 0.17

MaxPrec 0.21 ± 0.25 0.01 ± 0.06 -0.14 ± 0.15 -0.12 ± 0.14 -0.39 ± 0.17 -0.23 ± 0.19 1.00 ± 0.00 0.96 ± 0.02

SumPrec 0.25 ± 0.23 0.01 ± 0.07 -0.19 ± 0.15 -0.19 ± 0.16 -0.44 ± 0.17 -0.30 ± 0.17 0.96 ± 0.02 1.00 ± 0.00
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Additional Supplemental Figures

Fig. S4. We selected 11 winegrape cultivars (varieties), ensuring that they span enough diversity in their phenologies. Histograms depict the temporal distribution of

the three modeled phenological stages—e.g. budbreak (green), flowering (yellow) and veraison (red)—across 130 varieties included in the Domaine de Vassal collection

(lighter colors) and across the 11 varieties analyzed in this study (67). To illustrate the large differences in the phenologies among early and late varieties, we mark

the average dates of each phenological stage for two characteristic winegrape varieties known to have either early—Chasselas—or late—Monastrell—phenologies. For

more information see Phenological data for parameterization & validation.
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Fig. S5. Evolution of the anomalies in global average temperatures through time. The figure shows global anomalies in temperatures based on 1700 simulations for

the pre-industrial era, prior to 1850 (black line), the global average in temperature anomalies for the 1850-1920 period based on one GCM simulation (purple line),

and 30 simulated global averages in temperature anomalies for the 1921-2100 period based on 30 GCM simulations (light pink to dark purple lines). We examined

two major warming scenarios: 2➦C (2039-2048 in RCP 8.5, yellow), 4➦C (2076-2085 in RCP 8.5, pink) against a 0➦C reference period (1970-1979 in RCP 8.5, blue).

Histograms in the right-hand panel show non-overlapping distributions of temperature anomalies across 300 simulations corresponding to each 10 year period and

each of the 300 GCM simulations. Dotted lines on top of the histograms represent median values of each distribution of temperatures. The median estimates for the

+2➦C/+4➦C warming scenarios are +2.03/+3.99➦C, with interquartile ranges of 1.99-2.06➦C and 3.97-4.04➦C, respectively.
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Fig. S6. Phenological modeling validation results comparing simulated dates of phenological stages budbreak (green), flowering (yellow) and veraison (red) for two

locations in California (USA), Napa Valley (circles, light colors) and Davis (triangles, dark colors), against independent observations of the phenology therein (8, 9).

Observations and simulations comprise the 1985 to 2007 period for Cabernet-Sauvignon, Sauvignon blanc, Chardonnay and Merlot in Napa and the 2014 to 2016 in

Davis for all cultivars except for Grenache. Overall regression R
2 are noted for each location across phases and RMSE values for each phenophase and location are

marked next to the corresponding cloud of points. Note that error values are rather low, particularly for the Napa dataset.

Fig. S7. Example of model validation with independent observations comparing our projections of the phenological stages budbreak (green), flowering (yellow)

and veraison (red) for Napa Valley (California, USA) against independent observations therein (8, 9). Results in this example are for Cabernet-Sauvignon (a) and

Chardonnay (b). Although projections are based on models calibrated with European data (see above), and thus there are notable differences between climate in the

calibration and validation regions, phenological projections (solid lines) closely match the observed phenology (light lines)(r = 0.994 for Cabernet-Sauvignon; r =

0.983 for Chardonnay), and fall within 95% confident intervals for the variation of the observed phenology (shaded areas).
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Fig. S8. Phenological modeling validation results comparing our projections of the phenological stages budbreak (green), flowering (yellow) and veraison (red) against

independent phenological observations in (5) (light-colored circles), (6) (dark-colored circles), and (7) (light-colored triangles). The different symbol used for the

Ruml et al. (2016) data stems from it reporting an earlier phenological stage than we modeled. Results show an overall strong correlation between observed phenology

and the phenology simulated by phenological models. Error bars represent 95% CI around the mean.
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Fig. S9. Phenological modeling validation results comparing our projections of the phenological stages budbreak (green), flowering (yellow) and veraison (red)

against independent observations in published work (5–7). The histograms summarize our phenological projections across the time period during which independent

observations were recorded. The circles and triangles above the histograms represent the means and their error intervals represent the 95% confident intervals of

observed phenology. Note that our projections for winegrape phenology consistently predict later than observed phenology for the Ruml et al. (2016) dataset, given

that their results are for earlier stages than those parameterized by our models. This is the reason for the use of triangles instead of circles. Results in this example

are for Riesling (a,g), Chasselas (b), Pinot noir (c), Cabernet-Sauvignon (d), Merlot (e), Chardonnay (f).
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Fig. S10. Geographical locations utilized to model maturity for each of the 11 winegrape varieties analyzed in this study. Locations are marked by red dots and were

extracted from (3), see also Modeling maturity.
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Fig. S11. Estimated climatic suitability for regions including Bordeaux and Burgundy under our 0➦C reference scenario, 2➦C, and 4➦C warming scenarios. Our metric

of suitability incorporates uncertainty in the climate that determines whether a location is good for growing a particular variety every year. Thus, suitability below

100%, in part, highlights that every year is not always ideal for a variety in a region (68). See also Calculating climatic suitability.
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Fig. S12. Variation in the predicted shifts in phenology across the 11 winegrape varieties in our dataset. Shifts in phenology are shown for two warming scenarios:

2➦C (yellow) and 4➦C (red), and are calculated by comparing predicted veraison dates under these scenarios against predicted veraison during the 0➦ reference scenario.

Winegrape varieties are ranked according to the magnitude of the veraison shifts.
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Fig. S13. Predicted effects of climate change on cultivar (variety) distribution. Panel (a) depicts the predicted areas suitable to grow Pinot noir under different

levels of climatic suitability (over 50% and 75%) and areas of the globe our model predicts are climatically suitable for the remaining varieties, for a 2➦C warming

scenario. Similarly, panel (b) shows predicted suitable areas for Pinot noir vs. other varieties under the 4➦C warming scenario. Panel (c) shows in a bivariate color

scale simultaneously variety gains (white to green) and losses (white to purple) predicted under 4➦C of warming. Climatic suitability is defined as the percentage of

model-years (i.e., 300 years: 10 years x 30 ensemble members) when our modeling approach suggested a variety would reach maturity in a region (see above for

details). Note that both gains and losses of climatic suitability (c) are calculated with respect to areas projected to be suitable under the 0➦C, and thus, do not refer

to current growing regions (see Fig. S1).
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Fig. S14. Alternative analyses of the proportion of climatic suitability losses versus winegrape cultivar diversity (see also main text Fig. 2). Panels show decrease

in loss of suitable regions with increasing diversity for both a scenario of 2➦C warming (yellow bars) and one of 4➦C warming (red bars) for: (a) all global regions

potentially suitable for winegrowing using all 8 climatic variables, (b) all global regions potentially suitable for winegrowing using temperature variables only, (c)

current growing regions excluding maximum and minimum temperatures, (d) current growing regions using temperature variables only and, (e) current growing

regions using all 8 climatic variables and including the Late-ripening composite variety and thus, 12 winegrape varieties. Shaded areas illustrate ±1 standard deviation

around the mean climatic suitability loss for the corresponding number of sampled varieties.
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Fig. S15. Shifts in predicted climatic suitability for 11 studied varieties within 8 popular winegrowing regions (see also main text Fig. 3), including Spain (a), France

(b), Italy (c), Germany (d), Pacific Northwest (USA) (e), California (USA) (f), South Eastern Australia (g) and New Zealand (h). Increases in suitability are

represented by light turquoise (2➦C warming) and dark turquoise (4➦C degree warming) colors, and suitability decreases by light red (2➦C warming) and dark red (4➦C

warming). Winegrape varieties are ranked according to their phenological order, following (2). Note that these estimates are based on modelled suitability and thus

we may show low suitability for some varieties already grown in some regions (see Calculating climatic suitability in main text for more information).
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Fig. S16. Drivers of loss of climatic suitability within current winegrowing regions. Results for all eight climatic variables included as predictors in the bioclimatic

envelopes (see Modeling maturity). Estimates were calculated as a proportion of losses for all varieties under scenarios of warming of 2➦C (yellow bars) and 4➦C (red

bars). Error bars show variation in the proportion of losses due to each climatic variable across GCMs and years.
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Fig. S17. Drivers of loss of climatic suitability within current winegrowing regions. Results for all eight climatic variables included as predictors in the bioclimatic

envelopes to model climatic suitability to reach maturity. Estimates were calculated as a proportion of losses for each of the 11 studied varieties under scenarios of

warming of 2➦C (yellow bars) and 4➦C (red bars). Error bars show variation in the proportion of losses due to each climatic variable across GCMs and years. Note that

we do not show loss due to the veraison date cut-off, as no regions were lost due to this at 2➦C, and at 4➦C less than 1% of regions were lost for all varieties, except

for Ugni blanc, which lost 2% of regions to veraison after October 1.

34 of 40 I. Morales-Castilla et al.



Fig. S18. Sensitivity analysis of the drivers of loss of climatic suitability within current winegrowing regions, including the influence of Diurnal Temperature Range

amongst the temperature-related predictors (red bars). Results for all nine climatic variables included as predictors in the bioclimatic envelopes (see Modeling maturity

and Sensitivity analysis for Diurnal Temperature Range). Estimates were calculated as a proportion of losses for all varieties under scenarios of warming of 2➦C. Error

bars show variation in the proportion of losses due to each climatic variable across 5 randomly selected GCM simulations (see above) and the 10 years corresponding

to each 0➦C and 2➦C scenario for which region loss is computed.
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Fig. S19. Proportion of climatic suitability gains calculated across all potential climatically suitable regions of the world (a) and within current winegrowing regions

(b), versus winegrape cultivar diversity, out of maximum suitability gains by the 11 varieties. Predictions of climatic suitability gains are shown for both a scenario

of 2➦C warming (green bars) and one of 4➦C warming (blue bars). Depicted uncertainty shows variability in climatic suitability losses according to all possible

combinations of n varieties, and their modelled suitability under each climate change scenario. Shaded areas illustrate +/- 1 standard deviation around the mean

climatic suitability gains for each number of varieties.
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Fig. S20. Density plots comparing the distribution of values corresponding to each of the eight climatic variables utilized to fit climatic envelopes, recorded either over

a 45-day period after veraison (blue) or over a 30-day period after veraison (red) for Chasselas across the 19 locations selected to fit the envelopes for this variety.
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Fig. S21. Shifts in predicted climatic suitability for Chasselas in Europe (see also main text Fig. 3), according to climatic envelopes computed over either a 45-day

period after veraison (left) or a 30-day period after veraison (right). Increases in suitability across all of Europe are represented by light green boxes, increases within

current growing regions (see Fig. S1) are represented by dark green boxes, and decrease in climatic suitability within those regions are represented by dark red boxes.

Both estimates of suitability gains and losses are presented for two warming scenarios, 2➦C warming (above) and 4➦C warming (below).
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Fig. S22. Drivers of phenological advances and delays. Our analyses show that some winegrape cultivars with late phenology (e.g., Monastrell and Grenache; see Fig.

S12) have delays in veraison under warming scenarios. In our non-linear phenological models, delays are expected when the temperatures experienced during a

given phenological stage are above the optimal parameterized temperature for that stage (Topt, shown here as dashed lines). The panels illustrate average daily

temperatures for two example countries, Australia (a,b) and Spain (d,e), under the two warming scenarios of 2➦C (yellow; a,d) and 4➦C (red; b,e). Dates of predicted

phenology are shown for budbreak (BB, green), flowering (FL, yellow) and veraison (VER, red) for Pinot noir, a variety with early phenology (lighter colors) and a

variety with late phenology, Monastrell (darker colors), which often shows delayed phenology in our higher warming scenario (4➦C). Delays are expected only when

temperatures are above the parameterized optimum values (dashed lines). Thus, in both countries (c,f) the period between budbreak and flowering shortens as

climate warms (BB-FL) because warming increases temperatures, but (in these cases) never beyond the parameterized optimum values (dashed lines). In contrast,

the period of flowering to veraison (FL-VER) lengthens as climate goes from 0➦C to 4➦C warming (c,f), and temperatures are often higher than the fitted optimums-

this leads to delaying phenology. This is seen in our models most commonly for late varieties such as Monastrell and Grenache because they take longer to move

through phenological stages (because of their high requirements of forcing accumulation, F*) – and thus experience the higher temperatures longer than early-ripening

varieties.
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Fig. S23. Predicted gains (turquoise) and losses (purple) of climatically suitable growing areas for each of the 11 studied winegrape varieties (cultivars) under

scenarios of (a, b) 2➦C and (c, d) 4➦C warming. We show gains and losses as absolute values (in hectares) for each variety with warming (i.e., the area predicted with

warming relative to the area predicted under our reference scenario of 0➦C). Both gains and losses are calculated relative to areas identified as climatically suitable

under our reference scenario both globally (a, c) and within current winegrowing regions (b, d). Values in parenthesis in the x-axes report the amount of hectares with

suitable climate to grow each variety under the 0➦C reference scenario. These values differ among panels as suitable hectares are computed either across all the world

(a, c) or within current growing regions (b, d). Note that both gains and losses computed for global suitable areas (a, c) should not be interpreted as actual gains or

losses of suitability for winegrowing but as potential ones if winegrapes had been planted in all climatically suitable regions of the planet in our reference scenario of

0➦C. Background shading and variety name coloring differentiates red from white varieties.
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