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Abstract: Soybean (Glycine max) is a native field crop in Northeast Asia. The National Agrobiodiver-
sity Center (NAC) in Korea has conserved approximately 26,000 soybean germplasm and distributed
them to researchers and growers. The phenotype traits of soybean were investigated during periodic
multiplication. However, it is time-consuming to collect sufficient data, especially on the width
and height of seeds. During the last decade, the development of phenomics efficiently assisted the
analysis of high-throughput phenotyping seed morphology. This study collected and analyzed seed
morphological traits of 589 germplasm (53,909 seeds) from diverse origins using a digital camera and
a computer-based seed phenotyping program. Measured traits included size and shape, 100-seed
weight, height, width, perimeter, area, aspect ratio (AR), solidity, circularity, and roundness. The di-
versity of soybean germplasm seeds was analyzed based on 8-seed morphological traits and 100-seed
weight, as determined by image phenotyping and direct weighting, respectively. The data obtained
from 589 soybean germplasm were divided into five clusters by k-means clustering. Orthogonal
projections to latent structures discriminant analysis (OPLS-DA) were performed to compare clusters.
The major differences between clusters were in the order of area, perimeter, 100-seed weight, width,
and height. Based on cultivar origins, the seed size of US origin was the largest, followed by Korea
and China. We classified size, shape, and color according to the International Union for the Protection
of New Varieties of Plants (UPOV) guidelines. In particular, we postulated that shape could be
distinguished based on the AR and roundness values as secondary parameters. High-throughput
phenotyping could make a decisive contribution to resolving the phenotyping bottleneck. In addition,
rapid and accurate analysis of a large number of seed phenotypes will assist breeders and enhance
agricultural competitiveness.

Keywords: soybean; germplasm; image; high-throughput phenotyping; diversity

1. Introduction

Soybean (Glycine max) is an important protein and oil crop with a long history of use
as a major food crop in the Asian continent, especially in Korea as well as China. Soybean
was domesticated about 5000 years ago from Glycine soja, a wild-type soybean distributed
throughout East Asia, including China, Japan, and Korea [1]. Due to domestication fol-
lowing improved breeding and crop systems, soybean is one of the most cultivated and
utilized crops worldwide with production increasing by more than 200 million tonnes from
the 1970s [2]. Germplasm contain useful traits such as high content of useful ingredients,
disease resistance, and adaptability to climate change. Hence, they can be used as materials
for breeding new cultivars. For this reason, genebanks are doing their best to secure the
diversity of germplasm. Recognizing the importance of seed phenotype, international
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genebanks have continued to collect and conserve soybean germplasm. China and Korea
have conserved the largest number of soybean germplasm, with 26,000 accessions at the
Chinese Academy of Agricultural Sciences (CAAS) and 26,000 accessions at the National
Agrobiodiversity Center (NAC) in Korea [3], followed by 17,000 accessions at the US
Department of Agriculture (USDA) [4].

With the breakthrough of the next-generation sequencing technology, as the genome
information increases, the need for a phenotype database is also required [5]. Nevertheless,
the speed at which phenotyping data were built did not keep up with the speed at which
genotyping data were built, resulting in the phenotyping bottleneck [6]. In all ancient
countries, recognizing the importance of seed phenotypes, seed classification was selected
as a way to increase the production and quality of crops [7], and it is presumed to be the
oldest trait among agricultural characteristics. In particular, seed morphological traits
including size and shape are important agricultural characters as they directly affect
consumer preferences and market prices. As a result, traditional breeders have regarded
high yields including grain size and shape as their ultimate goal. In rice, the long-grain
shape is preferred [8], whereas large spherical grain in wheat is preferred as it is suitable for
the milling process [9]. In general, vernier calipers are used to measure the seed phenotype,
including length, width, and thickness. However, collecting phenotypic data is tedious
and requires a lot of patience [10]. During the last decade, the fantastic development of
phenomics has made it possible to analyze phenotypes by using two-dimensional (2D) [11]
and three-dimensional (3D) images [12]. The images are made of cameras and scanners [13],
magnetic resonance imaging (MRI) [14], and computed tomography (CT) [15], respectively.
In spite of this advantage, the method of constructing a 3D image was limited in application
to large amounts of germplasm because the method of constructing a 3D image not only
damaged seeds by emitting strong energy but also required enormous costs [16]. On the
other hand, the 2D image phenotyping is an accurate, non-destructive, and inexpensive
method, making it an optimal method to use for a large number of germplasm [17]. The
seed phenomics based on 2D image phenotyping has been conducted based on the needs
of breeders and consumers. Herridge et al. [18] used a scanner and open source software to
analyze the area of Arabidopsis (Arabidopsis thaliana) seeds and identified only the area of
the seed, not the parameters of the seeds. Takanari et al. [19] developed a software called
Smartgrain to measure seed size including the length, width, area, and perimeter of rice
(Oryza sativa). Baek et al. [20] developed software to analyze the shape as well as the size
of soybean (Glycine max) seeds, but studies related to the analysis of germplasm diversity
are rare.

Seed morphological traits are important in agriculture to segregate them for a variety
of purposes as well for purpose-based selection during initial sowing. The yield per unit
area is a function of the number of plants per unit area, number of seeds per plant, and
weight of 100 seeds. 100-seed weight is directly affected by the seed size, which is gauged
in height, width, and thickness [21]. Despite this importance, it is difficult to measure the
morphological traits using individual seeds, and there is a limit to applying them to a large
number of germplasm. In this study, a high-throughput method was applied to a large
number (589) of soybean germplasms (53,909 seeds) to conduct a diversity characterization
using the seed morphological traits (size and shape including 100-seed weight, height,
width, perimeter, area, AR, solidity, circularity, and roundness). In this study, it was possible
to obtain image measurements similar to the actual measurement in a simple way with a
large number of seeds. In addition, the seed phenotype information will be provided to
breeders so that they can be utilized for breeding programs.

2. Materials and Methods
2.1. Soybean Germplasm

Soybean germplasms (589) were obtained from the NAC of the Rural Development
Administration (RDA), Korea. The germplasms were derived from accessions of three
countries: China (n = 264), the US (n = 263), and Korea (n = 62). To compare the seed
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morphological traits between cultivars, 183, 151, and 62 germplasms were randomly
selected from the Chinese, US, and Korean collections. The seed morphological traits of 183
Chinese cultivars and 29 landraces were also compared. Furthermore, 164 germplasms with
unknown status originating from China and the US were randomly selected for analysis.

2.2. High-Throughput Phenotyping and Morphological Indicators of Seed

High-throughput seed phenotyping was performed, including data preprocessing,
processing, and analysis steps. Images were acquired according to Baek et al. [12]. In brief,
a macro lens (SEL30M35 E30 mm F3.5 Macro; Sony, Tokyo, Japan) was mounted on the
body of the camera (α-6000; Sony). The camera luminance was set to 1/8 (F11 ISO 125). The
camera was set at a height of 43.5 cm. A CN-T96 light (ProDean; 832 lux) and VILTRONX
light (VL-D85T; 2521 lux) were used to remove shadows from the seeds. Four images were
acquired, each of one row of 25 seeds (100 seeds per germplasm). To isolate individual
seeds in 2D images, we constructed a soybean seed phenotyping program (Korea Copyright
Commission No: C-2020-0499644 [22]) using the Python programing language. By applying
crop and scale functions, only the area with seeds in the 2D image was enlarged. Noise was
then removed, and hue saturation value (HSV) and binary values were obtained to check
whether the object (seed) and background were adequately separated. Images of individual
seeds were saved. The hue aspect of HSV was used to differentiate soybeans with various
seed coat colors from the background (e.g., hue of 5–24 for yellow seeds, 8–28 for black
seeds, and 15–24 for green and brown seeds).

Data on the seed size parameters (height, width, perimeter, and area) were directly
collected from processed images of single seeds. The area was the sum of each pixel of
the seed in the 2D image. Secondary parameters such as the AR, solidity, circularity, and
roundness were analyzed using formulas implemented in ImageJ [23]. The secondary
parameters were based on the values of the seed size parameters [24]. The AR is the
ratio of width to height. Solidity describes the hardness. Circularity values closer to
1.0 equate to more circular seeds, whereas values closer to 0.0 indicate a more elongated seed
shape [24] (Figure 1). Thickness was measured with the soybean seeds placed in a sideways
position. However, as the background and seed hilum could not be fully distinguished,
seed thickness was directly measured using vernier calipers for all 53,909 seeds.

2.3. Primary Parameters Measurement of Selected Soybean Germplasm Seeds

To determine whether the seed morphological traits were measured accurately, 10 germplasms
were randomly selected. The height and width of 30 grains were measured with vernier
calipers, and the AR was calculated.

2.4. The UPOV Guideline Classification Criteria

For classification according to the UPOV guidelines [25], the 100-seed weight, thick-
ness, and seed coat color of 589 germplasms were measured. The size classes were large
(>24 g), medium (13–24 g), and small (<13 g), based on the 100-seed weight. Seed shape was
classified as spherical (width/height ratio ≥0.90), elongated (width/height ratio ≤0.89),
flattened (thickness/width ratio <0.84) or non-flattened. There were eight seed coat color
classes, including yellow, yellow-green, brown, and black, based on the UPOV guidelines.
Purple was excluded because it was not observed in any of our germplasm.

2.5. Statistical Analyses

We checked the Bartlett sphericity test to see whether each variable was independent
from the others. In addition, a Kaiser−Meyer−Olkin (KMO) test was performed to confirm
the rationality of the data structure. A total of nine seed traits (eight morphological seed
traits and 100-seed weight) were measured. Principal component analysis (PCA) was
performed, with dimension reduction of the components. Two principal components with
eigenvalues ≥1, and explaining ≥87.6% of the total variance, were selected, and k-means
cluster analysis was performed. Orthogonal projections to latent structures discriminant



Agronomy 2022, 12, 1004 4 of 13

analysis (OPLS-DA) were performed using SIMCA software analysis (ver. 13.3, Umetrics,
Umeå, Sweden) to compare the clusters. Duncan’s multiple range test was performed to
compare the means of five seed trait clusters.
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Figure 1. Pipeline for high-throughput phenotyping and soybean seed morphological indicators [20,23].
In the case of the image sample, the seed phenotype was extracted by data creation, preprocessing,
processing, and image extraction with germplasm (IT153948). The measured values of the primary
parameter were directly extracted from the seed, and the measured value of the secondary parameter
was extracted by applying the formula of ImageJ (all data adapted from imageJ).

3. Results
3.1. Variability of Seed Morphological Traits

In total, 589 soybean germplasms were analyzed in terms of the nine seed morphologi-
cal traits. Except for 100-seed weight, all seed traits were measured using a high-throughput
2D image phenotyping platform. All traits showed significant variation among soybean
germplasms (Figure 2). The 100-seed weight ranged from 5.04 to 40.52 g, with a mean of
19.06 g. The top 10 germplasms weighed over 30.57 g, whereas the bottom 10 weighed
less than 5.04 g. The highest and lowest 100-seed weights were observed in IT269675 and
IT267342, respectively (both from the US). IT269675 is a cultivar, whereas IT267342 is of
unknown status. Seed height ranged from 4.74 to 10.50 mm, with a mean of 7.51 mm.
Of all germplasms, 222 were between 7.04 and 7.62 mm, and 152 were between 7.62 and
8.20 mm; 63.5% of the germplasm had a seed height between 7.04 and 8.20 mm. The top
10 germplasms had a height >9.03 mm, whereas the bottom 10 were <5.51 mm in height.
The greatest seed height was observed in IT208245, which originated from China. The
lowest height was recorded for IT211812, originating from Korea. The germplasm status of
accession IT208245 is unknown, while IT211812 is a cultivar. The seed width ranged from
3.10 to 7.80 mm, with a mean of 5.68 mm, and 204 (34.6%) germplasms were distributed
between 5.45 and 5.92 mm. The top 10 germplasms had a width >6.86 mm, whereas the
bottom 10 were <3.57 mm. The greatest seed width was observed in IT284568, which
originated from China, and the lowest was in IT267342, which originated from the US.
IT284568 is a landrace, whereas IT267342 is of unknown status. The perimeter size ranged
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from 14.66 to 29.93 mm, with a mean of 22.19 mm, and 360 (61.1%) germplasms were dis-
tributed between 20.77 and 23.82 mm. The top 10 accessions had a perimeter >26.70 mm,
whereas the perimeter of the bottom 10 germplasms was <16.15 mm. The largest perimeter
was observed in IT208245, which originated from China and the US, and the smallest
was that of IT211812, which originated from Korea. Regarding germplasm status, that of
IT208245 is unknown, while IT211812 is a cultivar. The area ranged from 13.69 to 55.31 mm,
with a mean of 33.53 mm, and 346 germplasms (58.7%) were distributed between 30.34
and 38.67 mm. The area of the top 10 germplasms was >46.99 mm, whereas the bottom
10 germplasms had an area of <17.85 mm. The largest area was observed in IT269675,
which originated from China, while that of IT267342 was the smallest. The 100-seed weight
and seed height, width, perimeter, and area were all normally distributed.
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Figure 2. Histogram of seed morphological traits of 589 germplasms. (a) 100-seed weight is the
measured value. (b) height, (c) width, (d) perimeter, and (e) area are the values measured directly as
primary parameters, and (f) AR, (g) solidity, (h) roundness, and (i) circularity are values obtained by
formulating the values of the primary parameters.

3.2. Correlation Analysis

A correlation analysis was conducted to examine the associations between seed traits
(Table 1). The results of correlation analysis indicate all types of correlations—positive,
neutral, and negative—occurring between the studied parameters. A majority of the



Agronomy 2022, 12, 1004 6 of 13

parameters (25 of 36) indicated a positive correlation, two were negligible or neutral, and
nine correlations were negatively related to each other. Strong positive correlations (r > 0.7,
p < 0.001) were found among 100-seed against height, width, perimeter, and area; height
and width against perimeter and area followed perimeter against area. The correlation
between perimeter against circularity and roundness was near neutral (r < ±0.1), which is
logical. Strongly negative correlations (r > −0.7, p < 0.001) were found between AR against
circularity and roundness.

Table 1. Correlation analysis of morphological traits of soybean, 589 germplasms.

Variables 100 Weight Height Width Perimeter Area AR Solidity Circularity
Height 0.712 ***
Width 0.841 *** 0.495 ***

Perimeter 0.876 *** 0.899 *** 0.813 ***
Area 0.909 *** 0.835 *** 0.884 *** 0.970 ***
AR −0.310 *** 0.296 *** −0.655 *** −0.118 −0.255 ***

Solidity 0.440 *** 0.384 *** 0.440 *** 0.385 *** 0.485 *** −0.193 ***
Circularity 0.158 −0.358 *** 0.450 *** −0.073 0.103 −0.850 *** 0.528 ***
Roundness 0.259 *** −0.362 *** 0.618 *** 0.061 0.194 *** −0.976 *** 0.145 0.815 ***

*** Significant at the 0.001 level of probability.

3.3. Clustering and Diversity Analysis

The KMO test coefficient is greater than 0.6, indicating that the sample had met the
requirements of a reasonable data structure.

PCA was performed on the data for nine seed morphological traits of 589 germplasms,
as stated above. The first principal component (PC1) explained 53.7% of the total variance,
with an eigenvalue of 4.834, and the second principal component (PC2) explained 33.9%
(eigenvalue of 3.05; Table S1). The correlations between the two principal components
and nine quantitative traits were compared. PC1 had significant positive correlations (in
order of magnitude) with width (r = 0.439), area (r = 0.432), 100-seed weight (r = 0.416),
and perimeter (r = 0.402), whereas the correlation with AR (−0.233) was significantly
negative. PC2 had significant positive correlations (in order of magnitude) with circularity
(r = 0.488) and roundness (r = 0.487), whereas the correlations with AR (r = −0.476) and
height (r = −0.430) were significantly negative. In PC1, traits related to seed size were
highly correlated, while seed shape traits were positively correlated with each other in PC2.

A scatter plot of the soybean seed morphological traits, adjusted according to PC1
and PC2, is shown in Figure 3a. It can be observed that all the studied parameters have
strong correlations with or against each other as none of them displayed zero weight in
the PCA plot. All of the studied parameters were positively correlated with PC1 except
AR. However, in the case of PC2, the parameters of circularity, roundness, width, and
solidity were positively correlated, and 100-seed weight, area, perimeter, height, and AR
were negatively correlated with the component. The values for AR seem to be negatively
correlated for both the principal components PC1 and PC2. Circularity and roundness
values were strongly positively correlated, and the same could be observed for 100-seed
weight, area, and perimeter. In the case of the accessions, those from China and the US
were widely distributed across all quadrants, with a majority of the accessions positively
correlated to PC1 and PC2. Accessions from Korea had comparatively fewer outliers and
indicated a positive trend toward PC2.

The PCA clusters were compared using OPLS-DA. The major variables for distin-
guishing clusters were (in order of importance) area, perimeter, 100-seed weight, width,
and height (Figure 4). The most distinctive characteristics between adjacent clusters were
area and perimeter. Generally, 100-seed weight is considered a representative agronomic
trait and important target for breeders and researchers [26]. Cluster 5 in this study had
the highest 100-seed weight (28.903 ± 12.375) value. In cluster 4, germplasm with small
AR (1.299 ± 0.008) and large roundness (0.777 ± 0.002) values were included, so the seeds



Agronomy 2022, 12, 1004 7 of 13

had a circular shape. In contrast, cluster 1 included small oval seeds with a large AR
(1.545 ± 0.178) and small circularity (0.827 ± 0.004) and roundness (0.694 ± 0.026) values
(Table 2). These phenotypes are typical of wild-type or landrace soybean.
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Table 2. Comparison of 9 seed morphological traits between groups divided into 5 clusters using k-means clustering and origin within clusters.

Cluster No. Origin 100 Weight (g) Height (mm) Width (mm) Perimeter (mm) Area (mm2) AR Solidity Circularity Roundness

Cluster 1
(58 accessions)

Mean 9.59 ± 6.30 a 6.25 ± 0.77 a 4.29 ± 0.39 a 17.71 ± 2.45 a 20.78 ± 11.25 a 1.545 ± 0.178 a 0.981 ± 0.000 a 0.827 ± 0.004 a 0.694 ± 0.026 a

CHN (17) 9.87 ± 9.51 6.91 ± 0.50 4.18 ± 0.37 18.77 ± 1.30 22.47 ± 8.46 1.757 ± 0.163 0.982 ± 0.001 0.798 ± 0.005 0.604 ± 0.020
US (25) 9.71 ± 6.50 6.35 ± 0.59 4.21 ± 0.55 17.79 ± 2.22 20.76 ± 12.16 1.621 ± 0.196 0.981 ± 0.001 0.818 ± 0.005 0.665 ± 0.027
KOR (16) 9.10 ± 3.04 5.39 ± 0.16 4.54 ± 0.13 16.47 ± 1.43 19.03 ± 7.75 1.202 ± 0.005 0.981 ± 0.001 0.876 ± 0.001 0.838 ± 0.003

Cluster 2
(122 accessions)

Mean 15.66 ± 2.85 b 7.12 ± 0.33 b 5.28 ± 0.20 b 20.79 ± 0.66 b 29.20 ± 3.87 b 1.387 ± 0.063 b 0.983 ± 0.000 b 0.847 ± 0.001 ab 0.743 ± 0.011 b

CHN (42) 15.42 ± 3.69 7.18 ± 0.26 5.29 ± 0.23 20.90 ± 0.55 29.46 ± 4.41 1.397 ± 0.066 0.984 ± 0.001 0.845 ± 0.002 0.738 ± 0.011
US (73) 15.79 ± 2.40 7.10 ± 0.37 5.29 ± 0.18 20.75 ± 0.72 29.17 ± 3.42 1.385 ± 0.065 0.984 ± 0.001 0.85 ± 0.002 0.745 ± 0.011
KOR (7) 15.79 ± 2.85 6.94 ± 0.37 5.21 ± 0.18 20.48 ± 0.70 27.94 ± 4.44 1.354 ± 0.057 0.982 ± 0.001 0.837 ± 0.002 0.758 ± 0.011

Cluster 3
(236 accessions)

Mean 19.31 ± 2.71 c 7.52 ± 0.13 c 5.81 ± 0.06 c 22.41 ± 0.40 c 34.06 ± 2.39 bc 1.311 ± 0.013 bc 0.983 ± 0.000 bc 0.851 ± 0.000 b 0.771 ± 0.003 b

CHN (107) 19.14 ± 3.30 7.60 ± 0.13 5.84 ± 0.07 22.57 ± 0.38 34.52 ± 2.47 1.318 ± 0.014 0.984 ± 0.001 0.85 ± 0.001 0.769 ± 0.004
US (119) 19.33 ± 2.06 7.48 ± 0.12 5.79 ± 0.06 22.28 ± 0.40 33.67 ± 2.03 1.313 ± 0.014 0.984 ± 0.001 0.852 ± 0.001 0.771 ± 0.004
KOR (10) 20.86 ± 1.97 7.28 ± 0.04 5.94 ± 0.02 22.14 ± 0.23 33.70 ± 2.10 1.234 ± 0.002 0.984 ± 0.001 0.862 ± 0.001 0.814 ± 0.001

Cluster 4
(130 accessions)

Mean 23.03 ± 4.56 d 8.01 ± 0.13 d 6.23 ± 0.06 d 24.0 ± 0.55 d 38.86 ± 4.13 c 1.299 ± 0.008 c 0.984 ± 0.000 c 0.847 ± 0.000 b 0.777 ± 0.002 c

CHN(81) 22.48 ± 4.25 8.05 ± 0.13 6.27 ± 0.07 24.11 ± 0.65 39.35 ± 4.92 1.297 ± 0.007 0.985 ± 0.001 0.849 ± 0.001 0.779 ± 0.003
US (32) 23.30 ± 3.82 7.98 ± 0.12 6.11 ± 0.04 23.73 ± 0.35 37.98 ± 2.13 1.322 ± 0.009 0.984 ± 0.001 0.848 ± 0.001 0.764 ± 0.003
KOR (17) 25.17 ± 1.48 7.89 ± 0.11 6.26 ± 0.07 23.99 ± 0.30 38.23 ± 1.35 1.268 ± 0.012 0.983 ± 0.001 0.837 ± 0.002 0.797 ± 0.004

Cluster 5
(43 accessions)

Mean 28.90 ± 12.38 e 8.83 ± 0.34 e 6.56 ± 0.11 e 25.93 ± 1.09 e 45.05 ± 10.69 c 1.365 ± 0.018 c 0.985 ± 0.000 c 0.842 ± 0.001 b 0.743 ± 0.005 c

CHN (17) 28.20 ± 8.46 8.64 ± 0.43 6.70 ± 0.13 25.88 ± 1.65 45.10 ± 14.05 1.309 ± 0.019 0.985 ± 0.001 0.846 ± 0.001 0.777 ± 0.006
US (14) 29.45 ± 11.61 9.23 ± 0.27 6.36 ± 0.09 26.34 ± 0.74 45.69 ± 10.95 1.477 ± 0.014 0.985 ± 0.001 0.828 ± 0.001 0.686 ± 0.003
KOR (12) 29.26 ± 8.13 8.63 ± 0.07 6.60 ± 0.05 25.52 ± 0.49 44.23 ± 6.17 1.317 ± 0.003 0.986 ± 0.001 0.853 ± 0.001 0.765 ± 0.001

Total
(589 accessions) Mean 19.12 ± 25.99 7.52 ± 0.62 5.699 ± 0.48 22.22 ± 4.89 33.67 ± 40.54 1.351 ± 0.044 0.983 ± 0.000 0.846 ± 0.001 0.757 ± 0.008

Arrange the average values (mean ± standard deviation) from largest to smallest; a, b, c, d, e represent the average values that are significantly different from each other, where a is
the maximum average value. ab represents the average value between a and b and not significantly different from a and b. bc represents the average value between b and c and not
significantly different from both b and c.
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3.4. Verification between Image Measurement and Actual Measurement

To determine classification accuracy, values obtained via 2D image measurements
and actual values obtained using vernier calipers were compared. Thirty seeds from
10 randomly selected accessions were measured and compared in terms of height, width,
and AR. The correlation coefficients (r2) between the image-based and actual height, width,
and AR values were 0.9735, 0.9839, and 0.9382, respectively (Figure 5).
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3.5. Seed Phenotypic Chararcterization

The International Union for the Protection of New Varieties of Plants (UPOV) has estab-
lished standards for individual crops. According to the UPOV guidelines for soybean [25],
we classified 589 soybean germplasms in terms of shape, size and seed coat color. Re-
garding shape, 583 germplasms were categorized as elongated (width/height ratio ≤0.89)
and 6 as spherical (width/height ratio ≥0.90). No flattened (thickness/width ratio ≤0.84)
germplasm were found. Size was categorized as small (<13 g), medium (13–24 g), or large
(>24 g) based on the 100-seed weight (33, 490, and 66 germplasms, respectively).

We created a seed coat color dataset with yellow, yellow-green, green, brown, and
black classifications. A simple convolution neural network (CNN) was trained using the
seed color coat image dataset. The classification accuracy of the model was 98%, and
the loss rate was 0.051 (Figure S2). Yellow (n = 491) was the most frequent classification,
followed by black (n = 40), dark brown (n = 22), yellow (n = 11), yellow-green (n = 11), and
light brown (n = 10) (Figure 6). We also distinguished bicolor seed coats absent from the
UPOV guidelines, including black with a white dot (n = 2) and brown with a white dot
(n = 2).
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Figure 6. Classification of soybean seed color according to the UPOV guideline. On the top, the
seed coat color was assigned based on six colors: yellow (IT134357), yellow-green (IT162934), green
(IT215881), light brown (IT262893), dark brown (IT165456), and black (IT2082671). The box plot
shows the R (red), G (green), and B (blue) values of the germplasm classified by the seed coat color
and their average. The boxes in each figure are in the order of average, R, G, and B.

4. Discussion

During the last decade, developments in phenomics have aided the analysis of
high-throughput phenotyping seed morphology data. SmartGrain [19], ImageJ [27], Cell
Profiler [28], P-TRAP [29], and WinSeedle [30] are commonly used by researchers as open-
source programs to study seed phenotype. These programs can analyze complicated and
perimeter areas, but the measurements are as cumbersome and laborious as those obtained
using vernier calipers. There are limitations to the measurement of large numbers of
germplasm in gene banks. Our program has the advantage of measuring the phenotype
automatically in a large number of germplasm. To determine accuracy, measures performed
on 2D images and actual measurements obtained by vernier calipers were compared. Ten
germplasms (each with 30 seeds) were randomly selected, and the height, width, and AR
were measured. Beak et al. [20] reported an average R2 of 0.94 between image-based and
actual measurements of nine randomly selected seeds. In terms of distinguishing seed coat
colors from the background during the initial imaging process, the accuracy of our HSV
method was better than that based on red-blue-green (RGB) values.

No previous study has analyzed diversity via high-throughput phenotyping of a
large number of seed germplasm. To analyze diversity based on seed morphological traits,
we performed Pearson correlation analysis, PCA, and OPLS-DA. As shown in Table 1,
100-seed weight showed significant positive correlations with height, width, perimeter, and
area. In contrast, the AR had significant negative correlations with circularity and round-
ness. Cober et al. [21] reported no correlation between the size and shape of 694 soybean
germplasm. In another study [31], the correlation between roundness and area was low
(r = 0.194, p < 0.001).

K-means clustering has been widely used over the past 70 years [32]. We divided
the 589 germplasm into five clusters using k-means clustering and applied OPLS-DA to
compare them, as shown in Figure 4. OPLS-DA is often used to distinguish between two or
more groups based on certain variables [33]. In addition, the variable influence on projection
(VIP) value, which can be obtained from OPLS-DA, can be used to identify significant
variables. The VIP value reflects the difference in contribution between variables [34]. In
this study, the clusters were distinguished based on area, perimeter, 100-seed weight, width,
and height, all of which are related to seed size; these traits were also highly correlated
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with each other. Since 100-seed weight is efficient and easily measured, it could be used
alone to distinguish soybean seeds.

Cui et al. reported that Chinese cultivar seeds were larger than US seeds [31]. In this
study, we compared the size of seeds originating from China (n = 264), the US (n = 263),
and Korea (n = 62). We also compared them based on type (cultivar (n = 396), landrace
(n = 29), and unknown (n = 164). Contrary to previous reports [35], we found that the
100-seed weight (29.45 ± 11.607) and area (45.688 ± 10.948) of seeds from the US were
larger than for seeds from China (28.199 ± 8.455 and 45.101 ± 14.05, respectively). In
addition, the 100-seed weight (29.263 ± 8.13) of seeds from Korea was greater than that
of seeds from China (28.199 ± 8.455). Regarding seed diversity, most cultivars showed
significant differences in 100-seed weight, area, perimeter, roundness, and circularity,
although large and round seeds predominated. Korean cultivars had small round seeds,
whereas the Chinese and US had small oval seeds. Korean cultivars were developed by
the National Institute of Crop Science, and small circular seeds were bred for bean sprouts.
It is presumed that the small circular seeds bred in China were also bred by the CAAS as
soybean sprouts (Figure S1).

Significant correlations between the 100-seed weight of soybeans and oil and protein
content of the seeds have been reported [36,37]. Florencia et al. found that high-protein
cultivars had smaller seeds [38]. China and Korea have implemented breeding programs
to increase the protein content of soybean seeds [39,40]. Among cultivars from China
and Korea, accessions with a small size, shown on the left of Figure 3c,d, are considered
high-protein soybean seeds. In general, large seeds have been selected through breeding
programs. While landrace is distributed over a wide range and has high diversity, breeders
are biased toward large seed cultivars [41]. Among accessions of Chinese origin, landrace
was distributed over a wide range and had high diversity, whereas cultivar seeds were
mostly larger in size (Figure 3d).

In previous studies, the shape of soybean seeds was categorized as spherical or
elongated according to UPOV guidelines [42,43]. The researchers directly measured width
and height according to the UPOV standards and classified the seeds in terms of shape
according to the width/height ratio. We classified seeds in terms of shape using the
traditional method, i.e., according to the standards of the UPOV, and found that the
classifications were consistent with those based on roundness and the AR.

Soybean seed coats have various colors, including yellow, green, brown, and black [44].
Despite the importance of seed coat color, classification is often subjective. We created a
dataset to distinguish soybean seeds based on seed coat color according to UPOV standards,
for accurate coat color identification. Our simple CNN model classifies seeds based on coat
color according to UPOV standards; bicolor seed coats were also distinguished (black with
a white dot and brown with a white dot).

We inferred phenotypes from 2D images of soybean germplasm conserved by the
Korean Genebank and analyzed diversity. The results could be useful for breeders and
breeding programs. Furthermore, this experimental method could be applied to determine
seed phenotypes for other crops and to analyze other parts of crops such as roots and leaves.

5. Conclusions

In this study, the seed morphological traits and diversity of a large number of soybean
genotypes (589 soybean germplasms) were analyzed using 2D images. The 100-seed weight
significantly correlated with seed area, perimeter, width, and height. The 589 soybean
germplasms were divided into five clusters using k-means clustering and OPLS-DA. The
VIP values showed that the major variables determining the clusters were (in order of
importance) area, perimeter, 100-seed weight, width, and height. Cluster 5 had the largest
100-seed weight, whereas cluster 1 had the smallest 100-seed weight. Cluster 4 included
large, round seeds with a high 100-seed weight and small AR, circularity, and roundness
values. The accessions included in cluster 4 could be used as breeding materials to improve
soybeans. In this study, soybean seed sizes were analyzed for the first time according to
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their origin. The US seeds were the largest, followed by those from Korea and China. We
followed the UPOV guidelines to distinguish seeds in terms of shape and seed coat color.
Seed shape could be classified using the secondary parameters of roundness and AR. In
addition, our CNN-based model distinguished the UPOV coat colors, as well as coats that
were black with a white dot and brown with a white dot.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agronomy12051004/s1, Table S1: Eigenvalue and proportion of prin-
cipal component to 9 seed traits of 589 soybean germplasms. Figure S1: PCA (a) between Chinese cul-
tivar (183 germplasms), American cultivar (151 germplasms), and Korean cultivar (62 germplasms);
(b) Comparison of Chinese Cultivar (183 germplasms) and landrace (29 germplasms). Figure S2:
Accuracy (left) and loss (right) graphs of training and validation, respectively.
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