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Diversity Combihing Considerations for Incoherent
Frequency Hopping Multiple Access Systems

Ching P. Hung and Yu T. Su, Member, IEEE

Abstract— This paper studies the problem of diversity com-
bining for frequency-hopped multiple access (FHMA) systems
that operate in a mobile satellite environment characterized by
frequency-nonselective Rician multipath fading. The modulation
scheme considered is the incoherent }/ -ary frequency-shift keying
(MFSK). The optimal diversity combining rule is derived under
the assumptions that the number of active users (I\') in the
system is kmown, all users are chip (hop)-synchronous, and
each user employs a random FH address. We suggest practical
implementations that are close approximations of the optimal
rule and examine the effects of various system parameters on
the resulting receivers. The bit error probability performance is
analyzed and numerical examples are provided. The effects of the
diversity order (L), the signaling size (1/) and unequal received
powers are examined and related system design concerns such as
system capacity and spectral efficiency are evaluated as well.

1. INTRODUCTION

REQUENCY-HOPPED multiple access (FHMA) tech-
Fniques have attracted considerable interests over the past
two decades [11-{13]. Cooper and Nettleton [1] first pro-
posed an FHMA system with differential phase shift-keyed
(DPSK) signaling for mobile communication applications.
At about the same time Viterbi [3] initiated the use of
MFSK for low-rate multiple access (MA) mobile satellite
systems. Performance of FHMA/DPSK and MFSK systems in
Rayleigh fading channels was analyzed by Yue [5], [6]. Using
the same Rayleigh fading assumption, Goodman et al. [4]
studied the system capability of a fast FHMA/MFSK system
with a hard-limited diversity combining receiver. Bounds and
approximations for the bit error probability of an asynchronous
slow FHMA system with memoryless random hopping pattern
were obtained by Geraniotis and Pursley [7]. The effect of
unequal user power levels was analyzed by Geraniotis [8].
Assuming Markov hopping pattern, Cheun and Stark [9]
analyzed the performance of both synchronous and asyn-
chronous slow FHMA systems with BFESK signaling. Agusti
[10] used a numerical integration method to evaluate the
performance of both slow and fast asynchronous FHMA/BFSK
communications. Recently, Fiebig [11] evaluated the spectrum
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efficiencies of various fast FHMA/MFSK systems; Yegani
and McGillem [12] investigated the performance of a new
hard-limited FHMA/MFSK system with a two-level modu-
lation in typical factory environments (Rayleigh, Rician or
lognormal fading). An FHMA/MFSK system with multi-user
detection and cochannel interference cancellation is proposed
by Mabuchi er al. [13], [14]. [8]- [11] studied additive white
Gaussian noise (AWGN) channels while others considered
fading environments.

When used in a mobile communication environment, a
communication signal suffers not only thermal noise pertur-
bation but also multipath fading and MA interference from
other system users. MFSK signaling is employed so that the
MA interference can be lessened. The diversity technique is
known to be an effective measure in combating the fading
effect, if an appropriate signal combining scheme is used.
Yue [5] derived optimal diversity combining rules for incoher-
ent and differentially coherent synchronous FHMA systems
in the presence of nonselective Rayleigh fading. He also
compared the union bound error-rate performance of three
diversity combining schemes, namely, the soft-limited, hard-
limited, and linear diversity combining rules. In this paper,
we derive an incoherent maximum likelihood (ML) diversity
combiner for FHMA/MFSK systems. The communication
channel is assumed to be nonselective Rician fading, which
is an appropriate model for mobile satellite channels when
a line-of-sight path exists between a satellite and a mobile
terminal [16]. Since the resulting nonlinearity is difficult to
implement, we propose three practical receivers and analyze
their performance. The rest of this paper is organized as
follows. The optimal ML FHMA/MFSK diversity combining
rule is derived in the next section. This part is an extension
of Yue’s work [5]. The influence of the channel characteristic
(the Rice factor and the number of active users in the system)
on the optimal nonlinearity is investigated. Three suboptimal
receivers that replace the soft-limiter-like nonlinearity with a
multi-level quantizer are then proposed. One of them uses
an adaptive upper threshold while the other two use fixed
thresholds. Hard-limited linear combiner can be regarded as a
special case of these proposed combiners. Section III presents
performance analysis of these suboptimal receivers. Section
IV provides numerical results for the proposed receivers and
discusses the capacity and spectral efficiency issues. Finally,
we draw some concluding remarks in Section V. To ease
the task of performance analysis we assume that the signals
received by different channels at the same hopping interval
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are mutually independent. The Appendix examines the effect
of such an approximation.

II. SYSTEM STRUCTURE AND PARAMETERS

Consider the FHMA/MFSK system shown in Fig. 1. The
- binary data sequence of rate Ry is converted into an MFSK
signal sequence of rate R,, where R; = Ry/k = 1/T%,
k = log, M. The carrier frequency of an MFSK symbol is then
hopped for L times within 7 seconds, i.e., in the subsymbol
(chip) interval (I-1)T. < t < IT,, where T, = 1/R. =T,/ L,
the transmitted signal for the kth user is given by

V2E. [T.p(t — IT,.) cos(2m fr,t + d,)

where E. is the signal energy per chip and is assumed to be the
same for all users of the system, p(t) is a rectangular function
of unit amplitude and is nonzero only if 0 < ¢t < T, and
¢x, is the carrier phase. The transmitted carrier frequencies
in a symbol time (fi,, fk,,- -+ fx,_,) depend on both the k-
bit input data and the ‘address’ (hopping pattern) assigned to
the kth user. Let (fo, fo + W) = B be the frequency band
available to the FHMA system and R, be the bandwidth per
channel. The total channel number is then given by

N = |W/R.] = |Wk/(LR,)] (M

where |z] is the largest integer smaller than z and N is
usually greater than M. In the system proposed in [4], M =
N. There are several other possible frequency structures for
FHMA/MESK systems [12], [14], [15]). For example, W may
be partitioned into ¢ = N/M adjacent, non-overlapping M-
ary bands, each with bandwidth M A f. To mitigate multipath
fading, it is required that the chip interval 7. = 1/R. be
smaller than the channel’s coherent time 7. and two adjacent
channels be separated by at least a coherence bandwidth B..
These two requirements along with the need to minimize
adjacent channel interference often necessitates that Af =
nR., n > 1. For convenience, we shail use n = 1 in our
computations and assume that no adjacent channel interfer-
ence results. The numerical results so obtained can easily be
converted to the more practical case n > 1 by modifying
related system parameters.

An address can be an L-tuple a = (ag,a1, "-,aL-1),
where a; € Sp, Sp = {1,2,---,¢} and each integer is
associated with a pre-designated channel within B. The actual
transmitted frequency fi, during the /th chip interval can be
the mth tone of the a;th M-ary band— fo+(m—1)Af+(a; —

1)M A f—where m is determined by a k-bit data vector. The
frequencies associated with an address a can also be allowed to
be any one of the N candidate channels within the transmitting
band B [3]-[5]. We shall assume that each user is given a
random address, i.e., a; is selected from a legitimate set such
that each element of that set is equally likely to be chosen.
The resulting performance can be regarded as the average
performance over all possible users’ address assignments. An
suitably designed address set will certainly yield performance
superior to the average performance obtained herein. As in
[5], we define the following set of orthogonal basis functions
which spans the band B over the interval [0,7})

rni(t) = VE:/Tep(t — lTC)eiz"(f“Jr“Af)t,
n:1727"'1M;l:1921"'7L5 (2)

where i < v/—1. The transmitted signal during the symbol
period (0,7}) is thus given by

L N
S(t) = Z Z Cnlrnl(t) (3)

I=1n=1

where ¢,,; is 1 or 0 and, for a given [, only one of {c,} is
nonzero. When transmitted through a frequency-nonselective
slow Rician fading MA channel, the received dehopped signal
is composed of three components

r(t) = &(8) + I(t) + 2(t) (42)
where §(t) is the desired signal, I(t) = Z] 1 1;(t) is the
interference from .J other simultaneous users in the same

system, and z(¢) is a white Gaussian noise process. The desired
signal can be written as

L N
= ZZ& Cr1€' ()

=1 n=1

(4b)

where ¢,; are phase shifts, ¢,y = Opm, for some m, Omn
being the Kronecker detla, and {«;} are independent and
identically distributed (i.i.d.) Rician random variables with
mean a and variance 20'}. Note that o? represents the average
power of the unfaded (direct) component of the transmitted
signal, and 2 afr represents the average power of the diffused
component. Equation (4b) implies that these two parameters
and therefore the total average transmitted signal power per
hop, E. = a*+20%, are the same for all the L hops associated
with an MFSK symbol. Defining I as the power ratio of the
direct component and the diffused component and applying the
normalization, a” + 20% = 1, we then have o* = I'/(1+T')
and 2 o"f[ = 1/(1 + T'), respectively. It can easily be seen
that I' = 0 is equivalent to Rayleigh fading while I' =
represents the AWGN-only case. All J interferers, like the
desired signal, experience i.i.d. Rician fading, therefore, the
total interference can be written as

J L N
=2, D el

Jj=11=1

(40)
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where &;;’s are i.i.d. Rician random variables with the com-
mon mean a and variance y2 = o;, 0;ni’s are ii.d. random
variables that are uniformly distributed within (0, 2| and, for
a given (j, 1), only one ¢;,, is nonzero and equal to one. This
interference model is a result of four assumptions. Firstly, each
user has an independent random address. Secondly, within
a given chip (hop) interval, all N candidate transmitting
channels can be modeled as i.i.d. Rician fading channels and
channel statistics at different hops are i.i.d. as well (chip-
independence assumption). Thirdly, the system has exercised
a power-control scheme such that none of the users in the MA
network dominates and that in a noiseless environment all the
signals arrive at a receiver with the same strength. Finally, all
the users are chip-synchronous (but not symbol-synchronous).
Note that it have shown [9]-[10] that chip-asynchronous
FHMA systems perform better than their chip-synchronous
counterparts.

A. Optimal Diversity Combining Rule

Let us assume that the mth bin of the M -ary signaling band
is the channel so that, for all [, é,; is equal to 1 if n = m, and
0 otherwise. In this case, the nth energy detector output from
the Ith diversity branch R,; (see Fig. 1) is the squared value
of the complex variable U, defined by

J
Ld, E P i0;n
Unl = alémnel¢ L+ aj[cjnlel ant + Znt (5)
Jj=1

where 2z, is a zero-mean complex Gaussian random variable

. . . de
whose real and imaginary parts have the same variance o2 ef

Np/2. It can be shown [17] that the characteristic function of
Xt ef [Uni|, conditioned on {&ji, au, Cjni}, is given by
242 J
O (Méjnt, @0, 1) = e~ 7N 2 Jo(ubmnA) [ [ Jo(Ejmain).
i=1
(6)
Using the random independent hopping pattern assumption and

taking the expectation with respect to ¢;,;, we obtain

D x (M@, )
J
241 ~
= e N2 Jo(rbmnd) [T 1 = 1+ wo(@d)l. (D
j=1
Averaging (6) with respect to &;; and «; and using the identity

/ ilf_ei(O“lza)/”gl(l(Oé_[;‘)Jo(Oélz\)dOél = e770X/2 Jy(a)
0 a
®)
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we obtain

Nof _A%mp
@y, (X)) =e T2 e T Jy(arbmn)
J A2 2
xS Bk Jome” T I @) )

k=0

where B(k;J,p) & (D)uF(1 = )% and p = 1/N.
The above equation indicates that, as a result of the chip-
independence assumption, the characteristic function is inde-
pendent of . We will henceforth omit the diversity parameter
[ in our notations whenever there is no danger of ambiguity.
The corresponding probability density function (pdf) for X,
can be derived from
oc
fr.@) =2 [ MleNox,ix. (10)
0
Substituting (9) into (10) and using the transformation R,; =
X2, we find that the pdf of the nth energy detector output,
given that the desired signal is in the mth channel, is

Pa(rim) = % /0 CM(rAex. (NdA. (D)

For the Rayleigh fading case (I' = 0), (11) becomes

L Bk i)

Po(rim) = 3 2 LR
" okt 202 + byn

exp [=1/(k + 202 + 6,nn)]

(12)
which is the same as that obtained in [5]. In case there is no
interference, (11) is reduced to (13), at the bottom of this page.

The energy detector outputs {Ry,n = 1,2---,M;l =

1,2,---,L} £ R constitute a sufficient statistic for maximum
likelihood detection of incoherent MFSK signals. Strictly
speaking, for a fixed I/, {R,;} are not independent because the
number of interferers is finite. But when N > 1 and J >
1 the bin-independence assumption (i.e., R are statistically
independent) is considered as a valid approximation model
[5]-(6), [11]-{12]. Such an approximation also leads to a
simpler receiver structure, for if the correlation among {R,.i}
is taken into account, the resulting optimal receiver has to
process mutichannel outputs simultaneously and it will have
a connection complexity O(LM?). The bin-independence
and the chip-independence assumptions then enable us to
decompose the conditional joint pdf of {R.;}

M-1 L

P antin] = T T Pt

n=0 1=1

(14)

A diversity combiner (demodulator) is a decision rule that,
based on the observed R, decides which tone is the correct

Pr(r|m)

il

1

S} 2+ 26m"
% / Ao(v/7A) exp [_ﬁ%—v} Jo(V/TJ(L+ D) Abn)dA
0

7+ a6,

T 20B 4 0% ¥ {‘ 2

I VT0brmn
o2+ 0%5,"") 0 o5 + 056mn

(13)
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(transmitted) signal. If the a priori probability that mth bin
was transmitted, p(im), is independent of m, then the optimal
Bayses decision rule is:

Accept the hypotheses that the mth tone was transmitted
(Hp) if

Pr [{Rn,}|m] > Pr {{an}lk}, for all k # m.

The fact that P, (Rui|m) = Po(Rulk), for n £ m # k leads
to the equivalent test:
Accept H,, if

L
ZEn{Pm(lelm)/Pm(Rmﬁk)}
=1

L
> Zen{Pk(RM|k)/pk(Rk,|m)},Vk #m. (15)
=1

Therefore, the optimum diversity combining rule can be re-
alized by three consecutive steps: i) let the energy detector
outputs R pass through a common nonlinearity g(-), ii) add up
the outputs corresponding to the same bin at different hopping
intervals

L
Zn =) g(Ru) (16)
=1

where
9(R) Y tnP,,(R|m) — tnPy(Rk)

and then iii) decide that the kth bin was sent if 7, =
maxall n Zn

B. Numerical Behavior and Suboptimal Nonlinearities

For the convenience of comparison, the optimal nonlinearity
is normalized to

H(Rl/z)[g(R) - 9(0)]
g(Rl/Q) - 9(0) '

where R/, is such that g(Ry2) = 0.5g(Rsq:) and the
saturation input is defined by R.o: = min{R : ¢'(R) = 0}.
Because the R,; so defined is often difficult to locate we
choose R(20) & 20Ny as the reference point and redefine
Ry as the input value such that g(Ry/5) = g(R(20))/2.
When no other user is present, i.e., J = 0, the optimal
receiver becomes a linear diversity combiner, which is a well-
known result [18]. The behavior of the normalized optimal
nonlinearity h(R)/No as a function of the Rice factor T’
of the fading channel, the number of active users J, and
the normalized energy detector output R/Nj is depicted in
Fig. 2(a) and (b). Only the case B = 20 MHz, R, = 32.895
KHz, M = 256, and L = 16 is shown but the basic shape

h(R) = 0<R<cx arn

of the optimal nonlinearity remains unaltered for other cases
of interest. A common feature is that the optimal nonlinearity
can be well-approximated by the soft-limiter

_JR, O0<R<LTY
hs’(R)*{T, T <R<oo.

Such a soft-limiter is much easier to implement than the
optimal nonlinearity. In practice, however, the baseband de-
modulator is often realized in finite-precision arithmetic. In
that case, the soft-limiter must be approximated by a quantizer.
Since the threshold of the soft-limiter depends on the number
of active users, the corresponding upper limit of the quantizer
should be made adaptive. We shall refer to the receiver with
an adaptive quantization threshold as a receiver of class A,
or simply Receiver A. There is still a problem associated
with the selection of the upper limit because the upper part
of an optimal nonlinearity is not totally flat. An optimal
upper limit can be found only after a case-by-case numerical
search. Numerical examples indicate that it causes negligible

degradation when the threshold T, = h(R(20)) is used.
Although it is reasonable to assume that the number of
active users K = J 4+ 1 in an MA system is perfectly
known. Receiver A can still be simplified if the perfect side
information assumption is removed. Consider two such non-
adaptive receivers which set their quantizer’s upper limit to

(18)

Ty “ R(R(20) | k-n
and
de
Yo " h(R(20))|x—ny2

respectively. The one with the fixed threshold Y, will be
referred to as Receiver B, and the other one with Y. will
be called as Receiver C in subsequent discussions.

III. PERFORMANCE ANALYSIS
To evaluate the performance of the receivers proposed in
the previous section, let us assume, as before, that the first bin
of the M-ary signaling band is the correct dehopped message
bin. Then the pdfs of the quadratic detector output R can be
derived from (11) with m = 1, i.e.

fa(Butlm = 1) = %/ﬂ Ao(Ay/ Rut /02) (X)X (19)

where (20), at the bottom of this page, where p el g2 /208

and ¢ % % /a, are the signal-to-noise ratio of the direct and
the diffused components, respectively. If a )-level uniform
quantizer with step size s = T /(Q —1) is used, the probability

. - d
mass function (pmf) of the quantizer’'s outputs {Zj lef

Ppi(A) = exp {—LC;UC)—/\T

Jo(VZA61) S BU 1) (/20N exp(—iCN2/4)

(20)
j=0
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Fig. 2. Optimal nonlinearity for fast FHMA/MFSK system over Rician
fading channel with Af = 256, L =16. (@ T' = 1. (b) T = 10.

ho(Ri) k = 1,2,--- M,l = 1,2,---, L}, for the kth bin
at the [th hop can be expressed as

Q-1
Pr{Z = 2] = Pg(z) = Y Viu(n)8(z — ns)

1)
n=0
where
ng(n) = PI‘{ZH = ns}
= Pr{ns <Ru<(n+ 1)3}. (22)

Therefore, for the message bin we have

Vau(n)
_{FRU((TL-FI)S)—FR“(TLS), n:071a""Q‘2
T |1 - Fg,(T) n=0Q-1

(23)
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and for other bins (i.e., &k > 1)
Vkl(n)
:{FRM((""'I)S)_'FRM("S)» n=0117"'7Q_2
I‘FRM(T) ":Q_l
(24)

where the cumulative distribution function is to be calculated
from
(oo}
Fro() = V7 [T R/iean @)
and the characteristic function ®4(A) is defined by (20).
The pmf of the diversity combiner output of the kth bin,

L ef Zlel Z1, can be obtained by an L—fold convolution
of the single diversity pmf (21)

Pr[Zi = 2] = rf Via(n)d(z — ns)} °

n=0
L(Q-1)

wf 3" Cri(n)s(z —ns)

n=0

(26)

where ®L denotes the L—fold convolution. The discrete
probabilities {Cy;(n)} can be computed recursively via

Crr(n) = Z Cr,L—1(n —m)Vir(m) 27

m=m,

where m; = max[0,n— (L—1)(Q —1)], m2 = min(n, Q@ —1)
and Ci1(n) = Vi1(n). Using these results we can evaluate the
symbol error probability P,(M, L) as follows. Note that

P,(M;L)=1-Pr [correct symbol decision] (28)
and

Pr [correct decision} =Pr [Zl = m?x ZkJ

1
=P
-i-2 T

—

Zy is one of two largest Zk]

1
+ gPr [Zl is one of three largest Zk]

. :
+ -MPI‘ [all 7y are equal]. (29)

The above expression is resulted from the assumption that
if two or more outputs are equal, an unbiased randomized
decision is to be made. After some algebra, (29) can be
simplified to (30), shown at the bottom of the next page.
Substituting (30) into (28) and using the relation between
the bit-error probability and the symbol error probability for
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orthogonal M-ary signaling, we then obtain the probability of
bit error. When J = 0 (23) and (24) can be simplified to (31),
at the bottom of the page, and for 7 # 1

exp{—"TSg} ~exp{*——(n2t%)s}, n<@Q-1
exp{—%oq}, n=Q-1

(32)
where Q(a,b) is the Marcum’s Q-function defined by

Vi(n) =

Q(a,b):/ e_“‘%lo(aaz)d;c.
b

To compute the performance of other proposed receivers we
can just replace Y with the associated thresholds and substitute
the new step sizes into (23)—(30). The hard-limited combiners
belong to a special class of our investigation, J = 2. The
resulting error probability, however, can be expressed in a
more compact form (4], [12], [14].

IV. RESULTS AND DISCUSSIONS

Numerical behavior of the proposed fast FHMA/MFSK
receivers is presented in this section. Throughout this section
the parameters W = 20 MHz and R, = 32.895 KHz are
assumed. Define the average bit signal-to-noise ratio, <, as
E[%a] = FE(a)Ey/Ny, where a is the Rician random
variable characterizing the slow fading effect of the chan-
nel. Fig. 3(a) and (b) depict the influence of the number of
quantization levels used when M = 256, L. = 16. These
curves reveal that increasing the number of the quantization
levels beyond 8 will not bring noticeable improvement. A
16-level uniform quantizer is thus used to approximate the
optimal nonlinearity in the remaining numerical examples.
Fig. 4(a) and (b) show bit-error rate (BER) performance of
three receivers with M = 256, parameterized by -, and T.
All three receivers yield almost identical performance in most
cases. This means the system performance is not sensitive to
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Fig. 3. BER performance of FHMA/MFSK system with (J-level quantizer
(M =25 L=16). @T =1. (T = 10.

the threshold setting so long as it is greater than a certain
reasonable value. All these figures indicate that receiver A

Pr [correct decision] =

{ZPI‘Zgﬁkb

L(Q-1)

Z Cri(n) Z

Vu(n) =

o /a0

- ("

2, ns 2 (n+1)s _
o2 ) - oV B EEE). n<a-

& (" Nl e

—-m~—1

MPr[Z ]{Pr[z2 = o]}M 1

) [Cor(n)]™

m+1

(30)

(3H
n=0Q-1
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Fig. 4. BER performance of FHMA/MFSK systems with different
soft-limited combining receivers (M = 256, L = 16). (a) I' = 1. (b)
I = 10.

has the best performance, which is expected, since it uses an
adaptive threshold derived from its perfect knowledge about
K = J + 1. Receiver C, which uses a threshold that is
optimal when the K = N/2, is better than Receiver B and
its performance is very close to Receiver A. Receiver B is the
worst, especially when both «, and I' are small. This may, in
part, due to the fact that the optimal nonlinearity associated
with Receiver B is ‘more nonlinear’, as can be seen from
Fig. 2(a) and (b) where the deviation from the linear case J =
0 increases as the number of interferers increases.

As have been demonstrated by the above figures, FHMA
systems are interference-limited. When a system satisfies a
basic signal-to-noise requirement its performance is only lim-
ited by the number of interferers. Hence two related important
performance indices are of interest to us. One is the system
capacity defined as the maximum number of simultaneous
active users K5 such that the resulting error probability is
less than a predetermined specification. If the required bit-
error probability is 1073, Fig. 4(a) and (b) tell us that all
three receivers render almost identical system capacity in most

339

TABLE 1
SPECTRAL EFFICIENCY AND THE ASSOCIATED SYSTEM PARAMETERS

% (@B) M Loy Fmas T 7 (%)
15 8 17 19 1 3.1
15 16 15 32 1 5.3
15 32 15 44 1 7.2
15 64 15 63 1 10.4
15 128 18 73(81) 1 12.0(13.3)
15 256 15 71(92) 1 11.7(15.1)
15 512 10 63(89) 1 10.4(14.6)
15 8 7 52 10 8.6
15 16 8 73 10 12.0
15 32 9 90 10 14.8
15 64 10 104 10 17.1
15 128 11  116(135) 10 19.1(22.2)
15 256 12 128(145) 10 21.1(23.8)
15 512 10 134(153) 10 22.0(25.2)
30 8 10 100 1 16.5
30 16 11 124 1 20.4
30 32 12 144 1 23.7
30 64 13 161 1 26.5
30 128 15 175(186) 1 28.8(30.6)
30 256 16 188(200) 1 30.9(32.9)
30 512 10 181(211) 1 29.8(34.7)
30 8 10 106 10 17.4
30 16 11 131 10 21.6
30 32 12 152 10 25.0
30 64 13 170 10 28.0
30 128 13 185(191) 10 30.4(31.4)
30 256 15 198(204) 10 32.6(33.6)
30 512 10 194(199) 10 31.9(32.7)

cases. To simplify our presentation we use Receiver C as the
representative receiver in the following discussion. Fig. 5(a)
shows the impacts of the parameters M, I' and -, on the
hard-limited FHMA/MFSK system’s capacity Kn,,x. Both the
threshold, 7;, and the diversity order, L, have been optimized.
Maximum capacity is achieved by using a relatively large
M (M = 2% k > 7), which is also true for soft-limited
combiners, as is evidenced from Table I. The corresponding
optimal diversity order, Loy, is between 10 and 15 for I' =
10 and becomes 16 or 18 when I' = 1.

Another performance index of interest is the spectral ef-
ficiency, n, measured in number of bits per second per Hz
and defined by 17 = KmaxRs/W, where R, is the data rate.
Substituting the identity Ry log,(M) = LR., we have [11]

n= KmaxlogZ(M) ~ Kopax Ry (33)

NL w

The above equation points out that the optimal diversity order
Lopt that maximizes K also results in the largest n if W/ R,
is fixed. Spectral efficiencies correspond to the systems shown
in Fig. 5(a) are depicted in Fig. 5(b) and listed in Table
1. Both hard-limited and soft-limited (in parentheses) cases
are considered. When «, = 15 dB, the maximum spectral
efficiency is 15.1% for I' = 1 and 25.2% for I' = 10. When
~ = 30 dB, the maximum spectral efficiency is increased to
34.7% for I' = 1 and 33.6% for I' = 10. The enhancement
achieved by using soft-limiters is around 1% ~ 4.9%. In
other words, the simple hard-limited combiner can suppress
most of the cochannel interference a multi-level quantizer is
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Fig. 5. Performance of the hard-limited combining receiver. (a) System
capacity. (b) Spectral efficiency.

expected to eliminate. System performance depends not only
on the channel characteristic but also on the number of active
user numbers. The influence of the former is most apparent
when the average signal-to-noise ratio is low, say 15 dB.
But for high «,, the influence of K becomes dominant, i.e.,
the FHMA channel becomes an interference-limited channel.
Fig. 6(a) and (b) present the BER performance of hard-limited
FHMA/MESK systems in two different channels. Also shown
there (dashed curves) is the performance derived from the
simplified analysis method which assumes no interferer in
the message bin and computes the probability of the event
{Ri; > m:]i is not the message bin}, denoted by py, through
(4], [12], [14]

Pr=p~+pr—Pp-Pr (34)
where
p=[1-(1-1/N)’](1-pp),
pp = Pr[R;; > n,| ¢ is the message bin, no interferer],
pr = Pr[R;; > n| ¢ is not the message bin, thermal

noise only].
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Fig. 6. BER performance comparisons (M = 256, L = 16). (a) I' = 1. (b)
T = 10. Solid curves are evaluated by the proposed method and dash curves
are obtained by the simplified method.
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Such a simplification predicts more pessimistic results for
small I" and small to median ;, and shows little or no influ-
ence of v, when the Rice factor is not small [see the dashed
curve in Fig. 6(b)]. More BER performances comparisons
between hard-limited and soft-limited combiners are shown
in Fig. 7(a) and (b). As expected, the soft-limited combining
systems outperforms the hard-limited combining systems. The
improvement of the soft-limited combiner is a decreasing
function of ~y,. All the results shown so far assume a power-
control mechanism is in place and all user signals arrive at
the MA receiver with the same field strength. Table II shows
examples of two and three unequal power levels. These results
reveal that the proposed receiver structure can tolerate power
level variation to some extent.

V. CONCLUSIONS

An optimal ML FHMA/MFSK receiver for frequency-
nonselective slow Rician fading channels is derived and practi-
cal realizations are suggested. The corresponding BER perfor-
mance is analyzed and numerical examples are given. Related



HUNG AND SU: DIVERSITY COMBINING CONSIDERATIONS

10°
101
102
10°
& 2
@
10
10
. =20 dB
10 ! - hard-limiter
X — soft-limiter
107 . ! L
0 50 100 150 200 250 300
Total active users (K)
(a)
10° r T v -
10" E ==
102 F1=150d8
10-3 L
-4
@
10*
/
!
5 L
10" b 1=20 dB
10° ¢ - hard-limiter
. — soft-limiter
10-7 L L L
0 50 100 150 200 250 300

Total active users (K)
(b)

Fig. 7. BER performance of FHMA/MFSK systems for hard-limited and
soft-limited combining techniques (M =256, L = 16). @ I'=1. b)) T =
10.

design concerns such as system capacity and spectral efficiency
are evaluated. The analysis presented in this paper can be
applied to systems with or without power control though
we deal almost exclusively with equal power systems. Only
very limited unequal power cases are examined. The results,
nevertheless, indicate that the proposed receiver is not very
sensitive to the power variation of the received waveforms. All
the numerical results shown assume that the minimum channel
spacing Af = R is used. The actual channel spacing depends
on the rms delay spread of the channel used, the required chip
rate and the maximum adjacent channel interference allowed.
Therefore, the achievable spectral efficiency has to be divided
by the factor 7. On the other hand, the system performance
can be improved by using a chip-asynchronous system with a
good address assignment scheme [20], [21].

APPENDIX
ExacT BER ANALYSIS FOR BFSK SIGNALING

Let J; be the number of interferers hitting the (dehopped)
signaling band during the I/th hop interval and Ji; be that
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TABLE 11
EFFECT OF UNEQUAL RECEIVED POWER LEVELS; M = 256, L = 15
Ey/N.mo (dB) | T | power ratio | # of interferers | BER

15 1 (1,0.5) (70,70) 0.289 x 1071
15 1 (1,1) (70,70) 0.625 x 101
15 1 (1,2) (70,70) 0.993 x 101
15 1 (2,0.5) {70,70) 0.571 x 10!
15 1] (21,05 (60,20,60) | 0.579 x 107
20 1 {1,0.5) (70,70) 0.314 x 102
20 1 (1,1) (70,70) 0.563 x 1072
20 1 (1,2) (70,70) 0.710 x 102
20 1 (1,2) (70,70) 0.418 x 102
20 1] (2,1,05) (60,20,60) 0.436 x 1072
30 1 (1,0.5) (70,70) 0.426 x 107*
30 1 (1,1 (70,70) 0.456 x 10~
30 1 (1.2) (70,70) 0.456 x 104
30 1 (1,2) (70,70) 0.426 x 10~°
30 1 (2,1,0.5) (60,20,60) 0.430 x 10~*
15 10 (1.1 (70,70) 0.156 x 10!
15 10 (2,1,0.5) (60,20,60) 0.974 x 102
20 10 (%)) (70,70) 0.426 x 1072
20 10} (2,1,0.5) (60,20,60) 0.165 x 10~°
30 10 (1,1 (70,70) 0.176 x 10~
30 10| (2,1,0.5) (60,20,60) | 0.146 x 10~*_

hitting the kth bin of the signaling band. Suppose the first
bin of the signaling band is the message bin then (5) can be
rewritten as

Js
Unt = ayb1ne™7% + Z&jzA(d, bj)e "t + zn,
=t

n=12

(A.D)
where d and b, are the message bits of the sender and the
Ith hop’s jth interferer, A(d,by) = Obap, is the indicator
of the (conditional) event that both the sender and the Ith
interferer transmit the same message bit provided that their
dehopped carriers lie in the same signaling band. Let the set
{0,1,---,Q — 1} be denoted I and Y; be the difference of
the -level uniform quantizer’s outputs at the /th hop, i.e.,
Y; def h(Ry;) — h(Rg;). Then the pmf of ¥; can be expressed
as

Q-1
z D(n|J1)b(y — ns)

n=—(Q-1)

Pr(Y, =y) = (A2)

where s is the step size of the quantizer and

D(nl|J;)
= Pr[Y; = n|J; interferers)

=Pr| |J {(A(Ru)=ms h(Rx) = ks| i}

m—k=n

(m.k)elg

min(Q—~1,Q—1+4n)
m=max(0,n)

min(Q~1,Q—l{+n)

def
= Am,m—-n-

Pr{h(R1) = ms, h(Rar) = (m ~ n)s|Ji]

(A3)

m=max(0,n)
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Defining y(k) = ks for 0 < k < @ — 1 and v(Q) = oo, we
have (A.4)—(A.6), shown at the bottom of the page. Note that
Dr(Aou, @i, bji), k= 0, 1, are the conditional characteristic
functions for the message bin (k¥ = 1) and noise bin (k = 0),
respectively. Equation (A.6) can be simplified to

Pji.= /() (k) /OM/OOOJ LWAG)M)eEOHTDN/2 Jy(an))

- (VAR AL)eOM 2T (AL Ap)dArd s (A.7)

where

de . .
I h0) Ea b, [Jo(Gj1A(Lbj1) M) Jo(aiA(2, bin)A2)]
1 22
= 5 I:Jo(a)\l)e_oﬁAf/Q + Jo(a/\z)e_”f"\2/2] .

Furthermore, we can show that Pjo = Por = 0 and

Piq = () / TGN e @OHTDNT2 1y (aX) T (A)dA
0

(A8)
Pox = \/7(F) / I (VAN /2 Jo (@A) T (A)dA
’ (A9)
where
I0) = %[1 n e-U?*Q/QJ(,(aA)] (A.10)

The pmf of Y def ZIL:1 Y, is the L-fold convolution of that
of Y,
Q-1 ®L
Pr(Y =vy) :{ Z D,;16(y — ns)
n=—(Q-1)
oy M@
2 3 Bubly—ns).  (AlD
n=—L(Q-1)

The probabilities B,,; can be evaluated recursively

ma

BnL: Z Bn~m,L71DmL

where m; = max[—(Q — 1),n — (L — 1)(Q — 1)], mg =
min(n,Q — 1), and B,; = D,1. The conditional bit error
probability P,(e|J1, J2,---,JL) is

-1

1
Pb(8|J1,J2,"~,JL): Z BnL+§BOL~ (A.12)
n=-L(Q-1)
Let J, = S Ji, pn = 2/N, and b(k;J,py) =

B(k; J.pn)/(5) = pi(1 — pu)¥~7. The unconditional

bit error probability can be written as

)kﬂJ

Py(M, L)
J T /J J

= Y. PUn- Jo)Pelh o JL). (A.13)

Since all J! permutations of the interference pattern
(J1,---,Jr) lead to the same conditional error probability
P(e|Jy,---,JL), to evaluate P,(M, L), we need to compute

Ajk = P!‘[h(Ru) = jS, h(RQl) = ksl.][},

= Ea, ;6 [Pr{v(§) < Ru < v(j +1),v(k) < R < v(k + V)|ay, &0, b5},
= Eo 6,06, [Pr{7(5) < Ru <~ + Vay, a1, b }Pr{v(k) < Ry < v(k + 1)|ay, &1, bji}],

= Pit1k+1 = Pjre1 — Pk + Pig

def

Pji. = Euy a0, [Pr{Ru < v(j)|au, &1, b }Pr{Ra < v(k)|dji, bj}]

(A.4)

(A.5)

= Bovan, { VAR /0 " LAGINE: Mo, @, by )dA /0 T L ATIN@a(Mdn, bir)dA } (A6)

P(M,L) = i XJ: (i) (i)b(JL;JS,M/N)PM(6|J1,---.,JL)

J1=0

- ¥

all (Jy.Jp)
ey <d

&5

J11=0J12=0

Jp=0

J

JLm=0

> P, Jom)Pulel i, Jiar)

P(Jy, - Jp)Pu(eldr, -+, JL)

(A.16)
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Fig. 8. BER performance of FHMA/BFSK systems: comparison of the exact
analysis and the bin-independence approximation. (a) L = 3,I' = 10. (b)
L=6T-=1.

(J + 1)X/J! conditional probabilities only. But this is still
an enormous task when J or L is large. Note that (A.13)
can also be expressed as

LJ
> Y P(h,eJu)Pel o, )

Js=0 (J1,.JL)
€S(L.Js,J)

LJ

> Ple]Jy)

Je=0
where S(L,Jy, J) = {(J1,--,J1) : 0< J; < LS5, Ji =

Js}, and
Peld)= >, P(J,--
(J1.--Jdp)

€S(L,Js,J)

< X
(Jy.Jgp)
€5(L.Js,J)

de f

= Pu(elJ,).

P, (M, L)

(A.14)

7JL)Pb(e\Jla‘ : '7JL):
P(Jla"'vJL)v

(A.15)
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We have examined the behavior of P(e|Js) versus Js for
several different sets of {(J,L,N) : N > 100} and found
that in computing Py(e) via (A.14) we have to compute only
a small portion of the conditional probabilities {P(e|Js)},
even with a truncation error as small as 107!2, Fig. 8(a)
and (b) compare the BER performance of two FHMA/BFSK
systems obtained from the approximation method and the exact
analysis derived above. It is clear that the approximation is in
excellent agreement with the exact analysis.

As for the MFSK case, the corresponding symbol error
rate (SER) is given by (A.16), shown at the bottom of the
previous page, where Pps(e|Jy,---,JL) is the SER given
the presence of the interference pattern (Jy, Jz,---,Jr) and
Pr(elJr, -+, Joar) is that conditioned on the presence of
the pattern (Ji1,- -+, Jpar). The evaluation of the latter con-
ditional SER can be accomplished in a way similar to what
have been shown in the main text. The problem is the number
of the conditional SER needed to be computed. Even with
appropriate sorting of the legitimate interference patterns into
equivalent classes that result in the same SER’s we still have
to handle a computing complexity several order larger than
that of the BFSK case.
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