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Abstract

Summarizing data samples by quantitative measures has a long history, with descriptive statistics being a case in point. However, as

natural language processing methods flourish, there are still insufficient characteristic metrics to describe a collection of texts in terms

of the words, sentences, or paragraphs they comprise. In this work, we propose metrics of diversity, density, and homogeneity that

quantitatively measure the dispersion, sparsity, and uniformity of a text collection. We conduct a series of simulations to verify that each

metric holds desired properties and resonates with human intuitions. Experiments on real-world datasets demonstrate that the proposed

characteristic metrics are highly correlated with text classification performance of a renowned model, BERT, which could inspire future

applications.
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1. Introduction

Characteristic metrics are a set of unsupervised measures

that quantitatively describe or summarize the properties of a

data collection. These metrics generally do not use ground-

truth labels and only measure the intrinsic characteristics

of data. The most prominent example is descriptive statis-

tics that summarizes a data collection by a group of un-

supervised measures such as mean or median for central

tendency, variance or minimum-maximum for dispersion,

skewness for symmetry, and kurtosis for heavy-tailed anal-

ysis.

In recent years, text classification, a category of Natural

Language Processing (NLP) tasks, has drawn much at-

tention (Zhang et al., 2015; Joulin et al., 2016; Howard

and Ruder, 2018) for its wide-ranging real-world applica-

tions such as fake news detection (Shu et al., 2017), doc-

ument classification (Yang et al., 2016), and spoken lan-

guage understanding (SLU) (Gupta et al., 2019a; Gupta et

al., 2019b; Zhang et al., 2018), a core task of conversational

assistants like Amazon Alexa or Google Assistant.

However, there are still insufficient characteristic metrics to

describe a collection of texts. Unlike numeric or categorical

data, simple descriptive statistics alone such as word counts

and vocabulary size are difficult to capture the syntactic and

semantic properties of a text collection.

In this work, we propose a set of characteristic metrics: di-

versity, density, and homogeneity to quantitatively summa-

rize a collection of texts where the unit of texts could be a

phrase, sentence, or paragraph. A text collection is first

mapped into a high-dimensional embedding space. Our

characteristic metrics are then computed to measure the dis-

persion, sparsity, and uniformity of the distribution. Based

on the choice of embedding methods, these characteristic

metrics can help understand the properties of a text col-

lection from different linguistic perspectives, for example,
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lexical diversity, syntactic variation, and semantic homo-

geneity. Our proposed diversity, density, and homogeneity

metrics extract hard-to-visualize quantitative insight for a

better understanding and comparison between text collec-

tions.

To verify the effectiveness of proposed characteristic met-

rics, we first conduct a series of simulation experiments that

cover various scenarios in two-dimensional as well as high-

dimensional vector spaces. The results show that our pro-

posed quantitative characteristic metrics exhibit several de-

sirable and intuitive properties such as robustness and linear

sensitivity of the diversity metric with respect to random

down-sampling. Besides, we investigate the relationship

between the characteristic metrics and the performance of

a renowned model, BERT (Devlin et al., 2018), on the text

classification task using two public benchmark datasets.

Our results demonstrate that there are high correlations be-

tween text classification model performance and the char-

acteristic metrics, which shows the efficacy of our proposed

metrics.

2. Related Work

A building block of characteristic metrics for text collec-

tions is the language representation method. A classic way

to represent a sentence or a paragraph is n-gram, with di-

mension equals to the size of vocabulary. More advanced

methods learn a relatively low dimensional latent space

that represents each word or token as a continuous se-

mantic vector such as word2vec (Mikolov et al., 2013),

GloVe (Pennington et al., 2014), and fastText (Mikolov et

al., 2017). These methods have been widely adopted with

consistent performance improvements on many NLP tasks.

Also, there has been extensive research on representing a

whole sentence as a vector such as a plain or weighted av-

erage of word vectors (Arora et al., 2016), skip-thought

vectors (Kiros et al., 2015), and self-attentive sentence en-

coders (Lin et al., 2017).



More recently, there is a paradigm shift from non-

contextualized word embeddings to self-supervised lan-

guage model (LM) pretraining. Language encoders are pre-

trained on a large text corpus using a LM-based objective

and then re-used for other NLP tasks in a transfer learn-

ing manner. These methods can produce contextualized

word representations, which have proven to be effective

for significantly improving many NLP tasks. Among the

most popular approaches are ULMFiT (Howard and Ruder,

2018), ELMo (Peters et al., 2018), OpenAI GPT (Radford

et al., 2018), and BERT (Devlin et al., 2018). In this work,

we adopt BERT, a transformer-based technique for NLP

pretraining, as the backbone to embed a sentence or a para-

graph into a representation vector.

Another stream of related works is the evaluation met-

rics for cluster analysis. As measuring property or

quality of outputs from a clustering algorithm is dif-

ficult, human judgment with cluster visualization tools

(Kwon et al., 2017; Kessler, 2017) are often used.

There are unsupervised metrics to measure the quality of

a clustering result such as the Calinski-Harabasz score

(Caliński and Harabasz, 1974), the Davies-Bouldin index

(Davies and Bouldin, 1979), and the Silhouette coefficients

(Rousseeuw, 1987). Complementary to these works that

model cross-cluster similarities or relationships, our pro-

posed diversity, density and homogeneity metrics focus on

the characteristics of each single cluster, i.e., intra cluster

rather than inter cluster relationships.

3. Proposed Characteristic Metrics

We introduce our proposed diversity, density, and homo-

geneity metrics with their detailed formulations and key in-

tuitions.

Our first assumption is, for classification, high-quality

training data entail that examples of one class are as differ-

entiable and distinct as possible from another class. From a

fine-grained and intra-class perspective, a robust text cluster

should be diverse in syntax, which is captured by diversity.

And each example should reflect a sufficient signature of

the class to which it belongs, that is, each example is repre-

sentative and contains certain salient features of the class.

We define a density metric to account for this aspect. On

top of that, examples should also be semantically similar

and coherent among each other within a cluster, where ho-

mogeneity comes in play.

The more subtle intuition emerges from the inter-class

viewpoint. When there are two or more class labels in a text

collection, in an ideal scenario, we would expect the ho-

mogeneity to be monotonically decreasing. Potentially, the

diversity is increasing with respect to the number of classes

since text clusters should be as distinct and separate as pos-

sible from one another. If there is a significant ambiguity

between classes, the behavior of the proposed metrics and a

possible new metric as a inter-class confusability measure-

ment remain for future work.

In practice, the input is a collection of texts

{x1, x2, ..., xm}, where xi is a sequence of tokens

xi1, xi2, ..., xil denoting a phrase, a sentence, or a para-

graph. An embedding method E then transforms xi into

a vector E(xi) = ei and the characteristic metrics are

computed with the embedding vectors. For example,

Mdiversity = fdiversity({e1, e2, ..., em}). (1)

Note that these embedding vectors often lie in a high-

dimensional space, e.g. commonly over 300 dimensions.

This motivates our design of characteristic metrics to be

sensitive to text collections of different properties while be-

ing robust to the curse of dimensionality.

We then assume a set of clusters created over the generated

embedding vectors. In classification tasks, the embeddings

pertaining to members of a class form a cluster, i.e., in a su-

pervised setting. In an unsupervised setting, we may apply

a clustering algorithm to the embeddings. It is worth noting

that, in general, the metrics are independent of the assumed

underlying grouping method.

3.1. Diversity

Embedding vectors of a given group of texts {e1, ..., em}
can be treated as a cluster in the high-dimensional embed-

ding space. We propose a diversity metric to estimate the

cluster’s dispersion or spreadness via a generalized sense of

the radius.

Specifically, if a cluster is distributed as a multi-variate

Gaussian with a diagonal covariance matrix Σ, the shape

of an isocontour will be an axis-aligned ellipsoid in R
H .

Such isocontours can be described as:

(x− µ)TΣ−1(x− µ) =

H
∑

j=1

(xj − µj)
2

σ2
j

= c2, (2)

where x are all possible points in R
H on an isocontour, c is

a constant, µ is a given mean vector with µj being the value

along j-th axis, and σ2
j is the variance of the j-th axis.

We leverage the geometric interpretation of this formula-

tion and treat the square root of variance, i.e., standard de-

viation,
√

σ2
j as the radius rj of the ellipsoid along the j-th

axis. The diversity metric is then defined as the geometric

mean of radii across all axes:

Mdiversity = (r1 · r2 · ... · rH)
1

H

= (
√

σ2
1 · ... ·

√

σ2
H)

1

H = H

√

√

√

√

H
∏

i=i

σi,
(3)

where σi is the standard deviation or square root of the vari-

ance along the i-th axis.

In practice, to compute a diversity metric, we first calculate

the standard deviation of embedding vectors along each di-

mension and take the geometric mean of all calculated val-

ues. Note that as the geometric mean acts as a dimension-

ality normalization, it makes the diversity metric work well

in high-dimensional embedding spaces such as BERT.



3.2. Density

Another interesting characteristic is the sparsity of the text

embedding cluster. The density metric is proposed to esti-

mate the number of samples that falls within a unit of vol-

ume in an embedding space.

Following the assumption mentioned above, a straight-

forward definition of the volume can be written as:

(r1 · ... · rH) = (
√

σ2
1 · ... ·

√

σ2
H) =

H
∏

i=i

σi, (4)

up to a constant factor. However, when the dimension goes

higher, this formulation easily produces exploding or van-

ishing density values, i.e., goes to infinity or zero.

To accommodate the impact of high-dimensionality, we im-

pose a dimension normalization. Specifically, we introduce

a notion of effective axes, which assumes most variance

can be explained or captured in a sub-space of a dimension√
H . We group all the axes in this sub-space together and

compute the geometric mean of their radii as the effective

radius. The dimension-normalized volume is then formu-

lated as:

volume = (r1 · ... · r√H)
1

√

H ...(rH−
√
H+1 · ... · rH)

1
√

H

= (r1 · ... · rH)
1

√

H = (

H
∏

i=i

σi)
1

√

H

(5)

Given a set of embedding vectors {e1, ..., em}, we define

the density metric as:

Mdensity =
m

(
∏H

i=i σi)
1

√

H

(6)

In practice, the computed density metric values often follow

a heavy-tailed distribution, thus sometimes its log value is

reported and denoted as density(logscale).

3.3. Homogeneity

The homogeneity metric is proposed to summarize the uni-

formity of a cluster distribution. That is, how uniformly

the embedding vectors of the samples in a group of texts

are distributed in the embedding space. We propose to

quantitatively describe homogeneity by building a fully-

connected, edge-weighted network, which can be modeled

by a Markov chain model. A Markov chain’s entropy rate is

calculated and normalized to be in [0, 1] range by dividing

by the entropy’s theoretical upper bound. This output value

is defined as the homogeneity metric detailed as follows:

To construct a fully-connected network from the embed-

ding vectors {e1, ..., em}, we compute their pairwise dis-

tances as edge weights, an idea similar to AttriRank (Hsu et

al., 2017)1. As the Euclidean distance is not a good metric

in high-dimensions, we normalize the distance by adding a

1https://github.com/ntumslab/AttriRank/

blob/master/attrirank.pdf

power log(n dim). We then define a Markov chain model

with the weight of edge(i, j) being

weight(i, j) =

(

√

(ei − ej) · (ei − ej)

)log(H)

(7)

and the conditional probability of transition from i to j can

be written as

p(i → j) =
weight(i, j)

∑

k weight(i, k)
. (8)

All the transition probabilities p(i → j) are from the tran-

sition matrix of a Markov chain. An entropy of this Markov

chain can be calculated2 as

entropy = −
∑

ij

νi · p(i → j) log p(i → j), (9)

where νi is the stationary distribution of the Markov chain.

As self-transition probability p(i → i) is always zero be-

cause of zero distance, there are (m − 1) possible destina-

tions and the entropy’s theoretical upper bound becomes

−
∑

ij,i 6=j

(

1

m

)

· 1

m− 1
log

1

m− 1
= log(m− 1). (10)

Our proposed homogeneity metric is then normalized into

[0, 1] as a uniformity measure:

Mhomogeneity =
−∑

ij νi · p(i → j) log p(i → j)

log(m− 1)
. (11)

The intuition is that if some samples are close to each other

but far from all the others, the calculated entropy decreases

to reflect the unbalanced distribution. In contrast, if each

sample can reach other samples within more-or-less the

same distances, the calculated entropy as well as the ho-

mogeneity measure would be high as it implies the samples

could be more uniformly distributed.

4. Simulations

To verify that each proposed characteristic metric holds its

desirable and intuitive properties, we conduct a series of

simulation experiments in 2-dimensional as well as 768-

dimensional spaces. The latter has the same dimensionality

as the output of our chosen embedding method-BERT, in

the following Experiments section.

4.1. Simulation Setup

The base simulation setup is a randomly generated isotropic

Gaussian blob that contains 10, 000 data points with the

standard deviation along each axis to be 1.0 and is centered

around the origin. All Gaussian blobs are created using

make blobs function in the scikit-learn package3.

Four simulation scenarios are used to investigate the behav-

ior of our proposed quantitative characteristic metrics:

2https://en.wikipedia.org/wiki/Entropy_

rate
3https://scikit-learn.org/stable

https://github.com/ntumslab/AttriRank/blob/master/attrirank.pdf
https://github.com/ntumslab/AttriRank/blob/master/attrirank.pdf
https://en.wikipedia.org/wiki/Entropy_rate
https://en.wikipedia.org/wiki/Entropy_rate
https://scikit-learn.org/stable


Figure 1: Visualization of the simulations including base setting, down-sampling, varying spreads, adding outliers, and

multiple sub-clusters in 2-dimensional and 768-dimensional spaces.

• Down-sampling: Down-sample the base cluster to be

{90%, 80%, ..., 10%} of its original size. That is, cre-

ate Gaussian blobs with {9000, ..., 1000} data points;

• Varying Spread: Generate Gaussian blobs with stan-

dard deviations of each axis to be {2.0, 3.0, ..., 10.0};

• Outliers: Add {50, 100, ..., 500} outlier data points,

i.e., {0.5%, ..., 5%} of the original cluster size, ran-

domly on the surface with a fixed norm or radius;

• Multiple Sub-clusters: Along the 1th-axis, with

10, 000 data points in total, create {1, 2, ..., 10} clus-

ters with equal sample sizes but at increasing distance.

For each scenario, we simulate a cluster and compute

the characteristic metrics in both 2-dimensional and 768-

dimensional spaces. Figure 1 visualizes each scenario

by t-distributed Stochastic Neighbor Embedding (t-SNE)

(Maaten and Hinton, 2008). The 768-dimensional simula-

tions are visualized by down-projecting to 50 dimensions

via Principal Component Analysis (PCA) followed by t-

SNE.

4.2. Simulation Results

Figure 2 summarizes calculated diversity metrics in the first

row, density metrics in the second row, and homogeneity

metrics in the third row, for all simulation scenarios.

The diversity metric is robust as its values remain almost

the same to the down-sampling of an input cluster. This

implies the diversity metric has a desirable property that it

is insensitive to the size of inputs. On the other hand, it

shows a linear relationship to varying spreads. It is another

intuitive property for a diversity metric that it grows linearly

with increasing dispersion or variance of input data. With

more outliers or more sub-clusters, the diversity metric can

also reflect the increasing dispersion of cluster distributions

but is less sensitive in high-dimensional spaces.

For the density metrics, it exhibits a linear relationship

to the size of inputs when down-sampling, which is de-

sired. When increasing spreads, the trend of density met-

rics corresponds well with human intuition. Note that the

density metrics decrease at a much faster rate in higher-

dimensional space as log-scale is used in the figure. The

density metrics also drop when adding outliers or having

multiple distant sub-clusters. This makes sense since both

scenarios should increase the dispersion of data and thus

increase our notion of volume as well. In multiple sub-

cluster scenario, the density metric becomes less sensitive

in the higher-dimensional space. The reason could be that

the sub-clusters are distributed only along one axis and thus

have a smaller impact on volume in higher-dimensional

spaces.

As random down-sampling or increasing variance of each

axis should not affect the uniformity of a cluster distribu-

tion, we expect the homogeneity metric remains approxi-

mately the same values. And the proposed homogeneity

metric indeed demonstrates these ideal properties. Inter-

estingly, for outliers, we first saw huge drops of the ho-

mogeneity metric but the values go up again slowly when

more outliers are added. This corresponds well with our

intuitions that a small number of outliers break the unifor-

mity but more outliers should mean an increase of unifor-

mity because the distribution of added outliers themselves

has a high uniformity.

For multiple sub-clusters, as more sub-clusters are pre-

sented, the homogeneity should and does decrease as the

data are less and less uniformly distributed in the space.

To sum up, from all simulations, our proposed diver-

sity, density, and homogeneity metrics indeed capture the

essence or intuition of dispersion, sparsity, and uniformity

in a cluster distribution.

5. Experiments

The two real-world text classification tasks we used for ex-

periments are sentiment analysis and Spoken Language Un-

derstanding (SLU).

5.1. Chosen Embedding Method

BERT is a self-supervised language model pretraining ap-

proach based on the Transformer (Vaswani et al., 2017),
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Figure 2: Diversity, density, and homogeneity metric values in each simulation scenario.

a multi-headed self-attention architecture that can produce

different representation vectors for the same token in vari-

ous sequences, i.e., contextual embeddings.

When pretraining, BERT concatenates two sequences as

input, with special tokens [CLS], [SEP ], [EOS] denot-

ing the start, separation, and end, respectively. BERT is

then pretrained on a large unlabeled corpus with objective-

masked language model (MLM), which randomly masks

out tokens, and the model predicts the masked tokens. The

other classification task is next sentence prediction (NSP).

NSP is to predict whether two sequences follow each other

in the original text or not.

In this work, we use the pretrained BERTBASE which has

12 layers (L), 12 self-attention heads (A), and 768 hid-

den dimension (H) as the language embedding to com-

pute the proposed data metrics. The off-the-shelf pre-

trained BERT is obtained from GluonNLP4. For each se-

quence xi = (xi1, ..., xil) with length l, BERT takes

[CLS], xi1, ..., xil, [EOS] as input and generates embed-

dings {eCLS , ei1, ..., eil, eEOS} at the token level. To ob-

tain the sequence representation, we use a mean pooling

over token embeddings:

ei =
(ei1 + ...+ eil)

l
, (12)

where ei ∈ R
H . A text collection {x1, ..., xm}, i.e., a set

of token sequences, is then transformed into a group of H-

dimensional vectors {e1, ..., em}.

4https://gluon-nlp.mxnet.io/model_zoo/

bert/index.html

We compute each metric as described previously, using

three BERT layers L1, L6, and L12 as the embedding

space, respectively. The calculated metric values are av-

eraged over layers for each class and averaged over classes

weighted by class size as the final value for a dataset.

5.2. Experimental Setup

In the first task, we use the SST-2 (Stanford Sentiment Tree-

bank, version 2) dataset (Socher et al., 2013) to conduct

sentiment analysis experiments. SST-2 is a sentence binary

classification dataset with train/dev/test splits provided and

two types of sentence labels, i.e., positive and negative.

The second task involves two essential problems in SLU,

which are intent classification (IC) and slot labeling (SL).

In IC, the model needs to detect the intention of a text in-

put (i.e., utterance, conveys). For example, for an input of

I want to book a flight to Seattle, the intention is to book

a flight ticket, hence the intent class is bookFlight. In SL,

the model needs to extract the semantic entities that are re-

lated to the intent. From the same example, Seattle is a

slot value related to booking the flight, i.e., the destination.

Here we experiment with the Snips dataset (Coucke et al.,

2018), which is widely used in SLU research. This dataset

contains test spoken utterances (text) classified into one of

7 intents.

In both tasks, we used the open-sourced GluonNLP BERT

model to perform text classification. For evaluation, senti-

ment analysis is measured in accuracy, whereas IC and SL

are measured in accuracy and F1 score, respectively. BERT

is fine-tuned on train/dev sets and evaluated on test sets.

https://gluon-nlp.mxnet.io/model_zoo/bert/index.html
https://gluon-nlp.mxnet.io/model_zoo/bert/index.html


Down-Sampling to Training Set Size Accuracy Diversity Density Homogeneity

100% 67,350 0.9266 0.292 44.487 0.928

90% 60,615 0.9323 0.292 44.367 0.927

80% 53,880 0.9260 0.292 44.224 0.927

70% 47,146 0.9266 0.292 44.071 0.925

60% 40,411 0.9312 0.292 43.928 0.924

50% 33,676 0.9300 0.292 43.672 0.922

40% 26,941 0.9243 0.292 43.384 0.919

30% 20,206 0.9300 0.292 43.148 0.917

20% 13,471 0.9174 0.293 42.733 0.914

10% 6,736 0.9071 0.294 41.972 0.908

Table 1: The experimental results of diversity, density, and homogeneity metrics with classification accuracy on the SST-2

dataset.

Down-Sampling to Training Set Size IC Accuracy (%) SL F1 (%) Diversity Density Homogeneity

100% 13,084 98.71 96.06 0.215 48.291 0.950

90% 11,773 98.57 95.79 0.215 48.199 0.949

80% 10,465 99.00 95.55 0.215 48.109 0.949

70% 9,157 99.14 95.13 0.215 47.996 0.948

60% 7,848 98.71 95.02 0.215 47.751 0.948

50% 6,541 98.86 94.38 0.215 47.660 0.945

40% 5,231 99.00 94.74 0.214 47.449 0.944

30% 3,922 98.57 93.74 0.215 47.090 0.941

20% 2,614 96.42 92.63 0.214 46.877 0.939

10% 1,306 87.20 89.12 0.214 46.158 0.929

Table 2: The experimental results of diversity, density, and homogeneity metrics with intent classification (IC) accuracy

and slot labeling (SL) F1 scores on the Snips dataset. Experimental setup is the same as that in Table 1.

We down-sampled SST-2 and Snips training sets from

100% to 10% with intervals being 10%. BERT’s perfor-

mance is reported for each down-sampled setting in Table

1 and Table 2. We used entire test sets for all model evalu-

ations.

To compare, we compute the proposed data metrics, i.e.,

diversity, density, and homogeneity, on the original and the

down-sampled training sets.

5.3. Experimental Results

We will discuss the three proposed characteristic metrics,

i.e., diversity, density, and homogeneity, and model perfor-

mance scores from down-sampling experiments on the two

public benchmark datasets, in the following subsections:

5.3.1. SST-2

In Table 1, the sentiment classification accuracy is 92.66%
without down-sampling, which is consistent with the re-

ported GluonNLP BERT model performance on SST-2.

It also indicates SST-2 training data are differentiable be-

tween label classes, i.e., from the positive class to the nega-

tive class, which satisfies our assumption for the character-

istic metrics.

Decreasing the training set size does not reduce perfor-

mance until it is randomly down-sampled to only 20% of

the original size. Meanwhile, density and homogeneity

metrics also decrease significantly (highlighted in bold in

Table 1), implying a clear relationship between these met-

rics and model performance.

5.3.2. Snips

In Table 2, the Snips dataset seems to be distinct between

IC/SL classes since the IC accurcy and SL F1 are as high

as 98.71% and 96.06% without down-sampling, respec-

tively. Similar to SST-2, this implies that Snips training

data should also support the inter-class differentiability as-

sumption for our proposed characteristic metrics.

IC accuracy on Snips remains higher than 98% until we

down-sample the training set to 20% of the original size.

In contrast, SL F1 score is more sensitive to the down-

sampling of the training set, as it starts decreasing when

down-sampling. When the training set is only 10% left, SL

F1 score drops to 87.20%.

The diversity metric does not decrease immediately until

the training set equals to or is less than 40% of the origi-

nal set. This implies that random sampling does not impact

the diversity, if the sampling rate is greater than 40%. The

training set is very likely to contain redundant information

in terms of text diversity. This is supported by what we ob-

served as model has consistently high IC/SL performances

between 40%-100% down-sampling ratios.

Moreover, the biggest drop of density and homogeneity

(highlighted in bold in Table 2) highly correlates with the



biggest IC/SL drop, at the point the training set size is re-

duced from 20% to 10%. This suggests that our proposed

metrics can be used as a good indicator of model perfor-

mance and for characterizing text datasets.

6. Analysis

We calculate and show in Table 3 the Pearson’s correlations

between the three proposed characteristic metrics, i.e., di-

versity, density, and homogeneity, and model performance

scores from down-sampling experiments in Table 1 and Ta-

ble 2. Correlations higher than 0.5 are highlighted in bold.

As mentioned before, model performance is highly corre-

lated with density and homogeneity, both are computed on

the train set. Diversity is only correlated with Snips SL F1

score at a moderate level.

Dataset SST-2 Snips Snips

Task Evaluation Metrics Acc. IC

Acc.

SL F1

Corr. to Diversity 0.196 0.196 0.555

Corr. to Density 0.637 0.637 0.716

Corr. to Homogenity 0.716 0.958 0.983

Table 3: The Pearson’s correlation (Corr.) between pro-

posed characteristic metrics (diversity, density, and homo-

geneity) and model accuracy (Acc.) or F1 scores from

down-sampling experiments in Table 1 and Table 2.

.

These are consistent with our simulation results, which

shows that random sampling of a dataset does not nec-

essarily affect the diversity but can reduce the density

and marginally homogeneity due to the decreasing of data

points in the embedding space. However, the simultaneous

huge drops of model performance, density, and homogene-

ity imply that there is only limited redundancy and more

informative data points are being thrown away when down-

sampling. Moreover, results also suggest that model per-

formance on text classification tasks corresponds not only

with data diversity but also with training data density and

homogeneity as well.

7. Conclusions

In this work, we proposed several characteristic metrics to

describe the diversity, density, and homogeneity of text col-

lections without using any labels. Pre-trained language em-

beddings are used to efficiently characterize text datasets.

Simulation and experiments showed that our intrinsic met-

rics are robust and highly correlated with model perfor-

mance on different text classification tasks. We would like

to apply the diversity, density, and homogeneity metrics for

text data augmentation and selection in a semi-supervised

manner as our future work.
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