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Abstract. This paper follows our earlier publication [1], where we in-
troduced the idea of tuned data mining which draws on parallel resources
to improve model accuracy rather than the usual focus on speed-up. In
this paper we present a more in-depth analysis of the concept of Widened
Data Mining, which aims at reducing the impact of greedy heuristics by
exploring more than just one suitable solution at each step. In particu-
lar we focus on how diversity considerations can substantially improve
results. We again use the greedy algorithm for the set cover problem to
demonstrate these effects in practice.

1 Introduction

In [1], we claim that utilizing parallel compute resources to improve the accuracy
of data mining algorithms and to obtain better models is of merit and is an
important, emerging area of research in the the field of (parallel) data mining.
The main reason for data mining algorithms not finding optimal solutions, is
the usually enormous solution space, which requires the use of a – often greedy
– heuristic. While this helps in finding a solution in reasonable time, it limits
the exploration of the solution space and often leads to suboptimal solutions.
In [1] we presented two generic strategies for using parallel resources to improve
a greedy data mining heuristic, namely Deepening and Widening. Deepening
focuses on smarter strategies to pick temporary solutions by looking several
steps ahead and selecting a temporary solution, which has shown potential to
perform better further down the search. The goal of Widening, in contrast, lies
on achieving better accuracy by exploring more solutions simultaneously, not
just the locally optimal one. We then demonstrated that both of these tuning
methods offer potential for improvement using a widened versions of the greedy
base algorithm for the set cover problem and a deepened decision tree learner.

In this paper we again focus on our key goal: the development of algorithm
and architecture-independent generic strategies, which can be applied to a broad
spectrum of data mining heuristics in order to improve their accuracy, while
keeping the runtime constant. At the same time we wish to abstract away from
implementation details, such as parallelization models. We will focus primarily
on Widening in this paper and mechanisms to further improve the search.

The ideal goal of Widening is, given a sufficient (and hence usually enormous)
number of parallel resources, to enable full exploration of the search space and
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guarantee the discovery of the optimal solution. In practice this is, of course,
usually not feasible. Instead we need to make sure we make best use of every
parallel resource available towards the goal of improvement of solution quality,
while still keeping the runtime of the widened heuristic the same as the runtime
of the original heuristic. The goal of cost-effective investment of parallel resources
is closely related to the concept of diverse exploration of the search space, which
is the main focus of this paper. The main goal of Diversity-driven Widening is
to force different workers to investigate substantially different models, hence re-
sulting in a diverse set of final solutions. Ideally this increases our chances to find
an even better model than the standard heuristic. We describe simple ways to
achieve diversity and illustrate how enforcing diversity in widening techniques
helps to further improve the accuracy of the data mining heuristic. However,
ensuring diversity often adds computational overhead which contradicts the sec-
ond goal of Widening: keeping the runtime constant. We therefore investigate
and compare Widening techniques with and without communication between
the parallel workers. We demonstrate these different practical techniques on the
greedy algorithm for the set cover problem.

2 Related Work

Trading quantity (of computational resources) for quality (of discovered solu-
tions) has already been published before. In [2] the authors focus on a broad
range of applications, ranging from cryptography to game playing. We, instead,
focus on data mining algorithms which allows us to formalize a number of con-
straints based on the underlying model search space.

Plenty of related work exists in others areas, e.g. parallel data mining. We do
not have the space to discuss all of this in detail and only briefly summarize the
main trends and mainly focus on improvements of search heuristics through the
use of diversity, as this is most relevant for the focus of this paper.

Speed-Up through Parallelization. For the vast majority of parallelizations
of data mining algorithms, the aim is to improve efficiency. Comprehensive sur-
veys are found in [3,4,5,6]. A large amount of work focuses on the parallelization
of decision tree learning. One of the earliest distributed decision tree algorithms,
SPRINT [7], has served as the basis for many subsequent parallel decision tree
approaches. Some noteworthy examples include [8] (employing data parallelism),
[9] (using task parallelism), and [10,11] (presenting hybrid approaches). Probably
the second most researched area is parallel association rule mining algorithms.
Extensive surveys exist in this area as well [12]. Parallelism in clustering algo-
rithms has been used for both efficient cluster discovery and more efficient dis-
tance computations. Partitioning clustering algorithms are parallelized mostly
using message-passing models, examples are presented in [13,14]. Examples for
hierarchical clustering, which is more costly, include [15,16]. However, as dis-
cussed above, speed-up is not the primary goal of Widening.

In recent years specialized frameworks have also emerged, allowing data min-
ing algorithms to be implemented in a distributed fashion and/or operating on
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distributed data. MapReduce [17] is the most prominent paradigm for process-
ing parallel tasks across very large datasets and allows for massive scalability
across thousands of servers in a cluster or a grid. Due to its inherent structure,
MapReduce requires specialized versions of the data mining algorithms to be
developed. Chu et al. [18] present a general approach by using a summation
representation of the algorithms. While offering amazing scalability, MapReduce
has inherent flaws – it is not designed to deal well with moderate-size data
with complex dependencies; it is not suitable for algorithms that require com-
munication between the parallel workers or impose other dependencies across
iterations (see [19] for more details). So whereas MapReduce offers the potential
for creating better models based on processing more data, Widening focuses on
improving model quality using normal amounts of data. This does not exclude
Widened MapReduce style implementations, of course, but it is not at the core
of this paper.

Model Quality Improvement. A number of papers also concentrate on im-
proving the accuracy of the models. Some approaches learn more models to be
used in concert (ensembles) or in a randomized fashion (meta heuristics).

Ensembles use multiple models to obtain better predictive performance than
could be obtained from any of the constituent models. The most notable ex-
amples are bootstrap aggregating or bagging [20], boosting [21], and random
forests [22]. However, a high degree of accuracy comes at the price of inter-
pretability, as these methods do not result in a single interpretable model, which
is contrary to the goal of Widened Data Mining.

Learners based on stochastic learning algorithms, such as genetic algorithms
are naturally parallelizable. Parallelization can be achieved by way of indepen-
dent parallel execution of independent copies of a genetic algorithm, followed by
selecting the best of the obtained results. This results in improved accuracy [23].
This is similar to Widening, however, Widening aims at exploring the search
space in a structured way as opposed to the randomized nature of these other
methods.

Using Diversity to Improve Search Heuristics. There is a wealth of lit-
erature focusing on the improvement of (greedy) search algorithms in general.
In [24], an approach is presented for incorporating diversity within the cost
function, which is used to select the intermediate solution. In [25], the authors
use the observation that, in most cases, failing to find the optimal solution can
be explained by a small number of erroneous decisions along the current path.
Therefore, their improved search first explores the left-most child at a given
depth as suggested by the current heuristic function. If no solution is found, all
leaf nodes are tried that differ in just one decision point from the heuristic func-
tion choice. The algorithm iteratively increases the deviation from the greedy
heuristic. The Widening proposed here performs a similar search for alterna-
tives, but in parallel. In [26] the idea of adding diversity by a simple K-best
first search was explored and shown empirically to be superior to the greedy
(best-first) search heuristic.
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Improving Set Covering. And finally, we should not forget to mention that
a vast amount of literature addresses improving the greedy algorithm for the
set cover problem [27,28]. Since we use this to illustrate the effects of Widening,
we hasten to add that we do not intend to compete with these approaches!
However, the greedy base set covering algorithm allows the benefits of Widening
to be demonstrated well and intuitively.

3 General Widening of a Greedy Heuristic

We can view many of the data mining algorithms as a greedy search through a
space of potential solutions, the model search space. This search space consists
of model candidates, from which the greedy algorithm chooses a locally optimal
solution at each step, until a sufficiently good solution is found, based on some
stopping criteria. The greedy search can, therefore, be schematically presented
as an iterative application of two operators: refinement r and selection s.

During the refinement operation, a temporary model m is made more specific
to generate new, potentially better, models (which we refer to as refinements).
The selection operator chooses the locally best model from all possible refine-
ments.

For the purpose of this paper it is sufficient to assume the existence of a family
of models M, that constitutes the domain of the two operators. The refinement
operator is model and algorithm specific and the selection operator is usually
driven by the training data. We will investigate the selection operator in more
detail, as it will be the tool we use to widen a greedy heuristic. It is usually
based on a given quality measure ψ, which evaluates the quality of a model m
from a family of models M (and therefore also its refinements):

ψ : M → R.

Employing this notation, we can present one iterative step of the greedy search
as follows:

m′ = sbest(r(m)),

where
sbest(M) = argmax

m′′∈M
{ψ(m′′)} ,

that is, the model from the subset M ⊆ M which is ranked highest by the
quality measure is chosen at each step. Figure 1 depicts this view of a greedy
model searching algorithm.

We can now also specify how we got to a certain model and define the concept
of selection path, which defines how a specific model is reached:

Ps (m) = {m(1),m(2), . . . ,m(n)},
where the order is specified via the refinement/selection steps, that is

∀i = 1, . . . , n− 1 : m(i+1) = s(r(m(i))).
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Fig. 1. The classic heuristic (often greedy) search algorithm. On the left (a), the current
model m is depicted in green, the refinement options r(m) are shown gray. The selection
operator s picks the yellow refinement (b) and the next level then continues the search
based on this choice.

and m(n) = m and m(1) is a root model for which no other model exists that it
is a refinement of. Note that the selection path depends heavily on the chosen
selection operator s, which will come in handy later.

3.1 Widening of a Greedy Heuristic

In order to improve the accuracy of the greedy algorithm one has to deal with
its inherent flaw – the fact that a locally optimal choice may in fact not lead
us towards the globally optimal solution. To address this issue, we can explore
several options in parallel – which is precisely what Widening is all about. How
those parallel solution candidates are picked is the interesting question, which
we will address later, but let us first look into widening itself in a bit more
detail. Using the notation introduced above, one iteration of Widening can be
represented as follows:

M ′ = {m′
1, . . . ,m

′
k} = swidened

( ⋃
m∈M

r(m)

)
.

That is, at each step, the widened selection operator swidened considers the re-
finements of a set M of original models and returns a new set M ′ of k refined
models for further investigation. We will refer to parameter k as the width of the
widened search. Intuitively, it is clear that the larger the width, i.e. the more
models (and hence selection paths) are explored in the solution space, the higher
our chances are of finding a better model in comparison to the normal greedy
search. Figure 2 illustrates this process.

An easy implementation of the above (what we will later refer to as top-k
Widening) is a beam search. Instead of following one greedy path, the path of
k best solution candidates is explored. However, this does not guarantee that
we are indeed exploring alternative models – on the contrary, it is highly likely
that we are exploring only closely related variations of the locally best model.
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Fig. 2. Widening. From a set of models M (green circles), the refinement operator
creates several sets of models (gray), shown on the left (a). The selection now picks a
subset of the refined models (yellow circles in (b)) and the search continues from these
on the right (c).

Fig. 3. Normal Widening may lead to local exploitation only (a). Adding diversity
constraints encourages broader exploration of the model space (b).

In the area of genetic algorithms this effect is known as exploitation, that is, we
are essentially fine tuning a model in the vicinity of an (often local) optimum.

3.2 Diversity-Driven Widening

In order to avoid the local exploitation, as discussed above, we can add diversity
constraints which enforces the search to more broadly investigate our search
space. In genetic algorithms this is often called exploration. Figure 3 illustrates
the difference between local exploitation and global exploration. This effect has
also been shown to improve results quite considerably for other beam search type
problems, as we briefly discussed in Section 2. By forcing the parallel workers to
consider not only multiple selection paths, but also diverse ones simultaneously,
we aim to obtain better exploration of the search space and escape entrapment
by local optima. Techniques for this type of Diversity-driven Widening are the
main focus of this paper.
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4 Techniques for (Diversity-Driven) Widening

In this section we will describe several specific techniques for Widening. We start
by establishing the base top-k Widening, describe the diversity-driven version,
and then focus on approaches that require less or no communication effort.

Top-k Widening. In [1] we already described this approach to Widening. It
is the most obvious approach and identical to a classic beam search. In each
iteration of top-k Widening each parallel worker selects the top k choices for the
refinements of its model and from the resulting k2 choices, the top k are chosen:

{m′
1, . . . ,m

′
k} = stop-k

⎛
⎝ ⋃

i=1,...,k

stop-k (r(mi))

⎞
⎠

where stop-k selects the top k models from a set of models according to the given
quality measure ψ. Obviously, stop-1 = sbest.

In [1] we demonstrate that top-k Widening leads to an improved quality, with
larger width k leading to better accuracy. However, two main flaws exist. The first
problem, as mentioned above already, is that possibly only a small neighborhood
of the best solutions is explored. Secondly, continuous communication is required
between threads which contradicts our goal of wanting to keep the time constant.

Diverse Top-k Widening. As discussed above we can tackle the first flaw
of Top-k Widening by enforcing diversity. One simple way to add diversity can
be achieved by using a fixed diversity threshold θ, a distance function δ, and
by modifying the selection operator stop-k,δ to iteratively pick the best k refine-
ments, that satisfy the given diversity threshold. This can be summarized as
follows:

1: Mall = ∪i=1,...,kr(mi) create set of all possible refinements
2: m1 = argmaxm∈Mall

{ψ(m)} pick the locally optimal model as first model
3: M1 = {m1} add as initial model to solution
4: for i = 2, . . . , k: iteratively pick next, sufficiently diverse model:
5: mi = argmaxm∈Mall

{ψ(m) | ¬∃m′ ∈Mi−1 : δ(m,m′) < θ}
6: Mi =Mi−1 ∪ {mi}
7: endfor
8: return Mk

This is a known approach for diverse subset picking, however, our second problem
persists: we still require frequent communication among our parallel workers to
make sure we pick a diverse solution subset among all intermediate solutions at
each iteration.

Communication-Free Widening. In order to achieve communication-free
Widening, we must force each worker to focus on its own subset of models without
continuously synchronizing this with the other workers. Ideally, communication-
freeWidening is achieved via partitioning the model search space between the par-
allel workers in such a way, that the full search space is covered by the partitioning,
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Fig. 4. Communication-free Widening: two different selection paths generated by two
different selection operators s1 and s2.

every model is reachable in at least one partition, and there is no overlap between
different partitions. Evenmore ideally, those partitions contain sufficiently diverse
solutions. However, those objectives are difficult to meet in practice. Our current
goal is moremodest: we aim to enforce diverse selection paths to be explored by the
different parallel workers, which will hopefully lead to diverse final solutions. We
approach this goal indirectly, by assigning a modified quality measure ψi to each
selection operator si (of worker i), which, when given a choice, has a personalized
preference for a (different) subset of models. If this individualized assignment is
properly implemented, each parallel worker iwill explore a different selection path
Psi if refinements with sufficiently similarly high quality exist.

Figure 4 illustrates two different selection paths generated by two different se-
lection operators s1 and s2. Our goal that each individualized selection operator
explores a different and diverse path through the search space can be achieved
by a modification of the selection operators which we describe below.

Diverse Communication-Free Widening. As described above, we need to
ensure that the explored selection paths by the parallel workers i = 1, . . . , k
are sufficiently diverse. To increase the chances for different parallel workers to
explore diverse paths, we modify the k quality measures ψi of operator si so
that each ψi assigns different preferences for the models in the search space. In
the most subtle case, this will only break ties between models differently when
we have more than one refinement with the (locally) optimal quality. However,
to achieve real exploration, we will also want to lift slightly worse models above
better ones for some of our workers but we need to ensure that at least one worker
still investigates the locally optimal choice. It is important to note that while we
want to explore different and diverse selection paths, we also do not want to focus
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solely on diversity. Random diverse exploration may lead to investing resources
in the discovery of many degenerate solutions. We will need to balance between
the two notions “diversity” and “quality”. This trade-off was already visible in
the case of the diverse top-k approach discussed above, where the threshold θ
determines how much the selection operator stop-k,δ is influenced by diversity
and how much by the quality of the remaining solutions.

Enforcing diversity by modifying the underlying quality measures tends to
be fairly algorithmic specific. Generally, the quality measures can assign diverse
preferences directly to models (or parts of models), which we call model-driven
diversity or by assigning preferences based on data points, which we term data-
driven diversity. We will show examples for these approaches in the following
section.

5 Diversity-Driven Widening of Set Covering

Various data mining problems employ strategies that are similar to the set cover
problem. We have already used this algorithm in [1] to illustrate the benefits of
Widening and will use it here as well.

5.1 The Set Cover Problem

We consider the standard (unweighted) set cover problem. Given a universe X
of n items and a collection S of m subsets of X : S = {S1, S2, . . . , Sm}. We
assume that the union of all of the sets in S is X :

⋃
Si∈S Si = X . The aim is

to find a sub-collection of sets in S, of minimum size, that contain (“cover”) all
elements of X .

The standard iterative algorithm [29] follows a greedy strategy, which, at
each step, selects the subset with the largest number of remaining uncovered
elements. Using the formalizations introduced above, a single iterative step of
the algorithm operates as follows: if m is the temporary cover, a refinement
generated by rgreedySCP(m) represents the addition of a single subset, not yet
part ofm, tom. From all of the possible refinements, generated by rgreedySCP(m),
sgreedySCP picks the one with the largest number of covered elements as the
new intermediate cover. The quality measure ψ, used by the selection operator,
sgreedySCP , therefore simply ranks the models based on the number of elements
they cover.

5.2 Diversity-Driven Widening of Set Covering

In the following we will discuss how we can use the widening strategies described
above for the greedy algorithm for the set cover problem. Note that our goal here
is not to outperform other algorithmic improvements of the standard greedy set
covering algorithm but instead use this to illustrate the benefits of Widening
itself.
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Top-k Widening and Diversity. Instead of selecting one locally best inter-
mediate cover, the top-k Widening of the greedy SCP algorithm selects k best
covers at each given step. To implement diversity, we can use a a simple thresh-
old based on the Jaccard distance and enforce that the chosen k intermediate
covers chosen by the selection operator stop-k,δ at each step have a minimum
distance:

δ(mi,mj) = 1− |mi ∪mj|
|mi ∩mj| .

(Each model m covers a set of elements, so we are interested in picking interme-
diate models that are sufficiently different.)

Communication-Free Widening: Model-Driven Diversity. Enforcing di-
versity without continuously comparing intermediate models is more difficult.
We can define individual quality measures ψi, by enforcing different preferences
for different subsets. Given an intermediate coverm, ψi evaluates the refinement
m′ = m ∪ Sj for an additional subset Sj based on the original quality measure
and an individual preference weight wi ∈ (0, 1) for the subset Sj :

ψi(m ∪ Sj) = ψ(m ∪ Sj) + t ∗ wi(Sj),

The set of weights wi(·) for a given ψi defines an order πi on the set of subsets
S for a particular parallel worker i:

wi(Sπi(1)) > · · · > wi(Sπi(|S|))

Our goal is to have k diverse orders π1, . . . , πk of the subsets by ensuring that
the inversion distances between different orders are maximized. The inversion
distance between two ordered sets calculates how many pairs of elements are
present in a different order in the two orders πp and πq:

dinv(πp, πq) =
∑
k �=l

{
1 if (πp(k)− πp(l)) · (πq(k)− πq(l)) < 0

0 else
.

Assigning preferences in this fashion will steer the selection operators based on
characteristics of the models (or model fragments), hence the term model-driven
diversity.

By varying parameter t, we can control how much the selection paths of the
parallel workers deviate from the selection paths explored by the greedy SCP
algorithm. The parameter t controls the relative importance of the factors quality
and diversity. For parameter t ≤ 1, the parallel workers explore different selection
paths of the greedy algorithm, only considering different paths that have equally
good, local quality. Here the different orders πi only serve to differentiate the tie
breaking. For parameter values t > 1, the selection paths of the parallel workers
also include locally sub-optimal solutions. Large values of t (� 1) will lead to
random exploration of the search space.
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Communication-Free Widening: Data-Driven Diversity. In contrast to
the model (fragment) driven diversity described above, we can also ensure di-
versity by weighting data elements. To accomplish this we enforce diverse pref-
erences for the elements from X for the different selection operators si:

ψi(m ∪ Sj) = ψ(m ∪ Sj) + t · 1

|{e ∈ Sj ∧ e ∈ m}|
∑

e∈Sj∧e�∈m

wi(e),

the preference for different elements is again defined via weights wi(e) and the
weights define an ordering on the elements where we again aim for k different
orderings via sufficient inversion distance. Note that this approach bears some
similarities to boosting because we weight the impact of data elements on the
model quality measure differently.

It must be noted, that, while using diverse quality measures can help steer
the parallel workers into diverse selection paths, it by no means guarantees it.
Choosing different models at each step can still lead to having the same final
solution, just generated along a different paths. Implementing selection in such a
way that diversity of the obtained final solutions is guaranteed is an interesting
focus of future work. In the following section, however, we will demonstrate
that regardless of the lack of theoretical guarantees, our simple approaches to
Diversity-driven Widening are beneficial.

6 Experimental Evaluation and Discussion

In this section we demonstrate the impact of the Widening techniques discussed
above using three benchmark data sets: rail507, rail516, and rail582 [30]. We
aim to demonstrate how different widths of the search affect the quality of the
solution and the additional benefit of enforcing diversity on the widened searches.
Each experiment was repeated 50 times. For diverse top-k Widening, a Jaccard
distance threshold of 0.01 was used in all experiments.

Figure 5 shows the results for top-k Widening with and without diversity.
Figure 6 shows the results for communication-free Widening without diversity
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Fig. 5. Results from the evaluation top-k Widening with and without diversity
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Fig. 6. Results from communication-free Widening without diversity, with data-driven
and model-driven diversity, for parameter t = 1
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Fig. 7. Results from communication-free Widening using data-driven diversity for dif-
ferent values of parameter t

and with data- resp. model-driven diversity enforcement using a fixed trade-off
parameter t = 1, while Figure 7 demonstrates the impact of trade-off parameter
t for data-driven diversity.

From the above results two main trends become clear. As expected, a larger
width of the search does improve the quality of the solution. Enforcing diversity
improves the results even further. For communication-free Widening, the first
set of tests simply enhances the greedy algorithm by exploring different options
when breaking ties in-between equally good intermediate solutions. By increasing
parameter t to t = 1.5 the widened algorithm is allowed to also explore paths
of non-locally optimal choices, which further improves the results. The optimal
value for parameter t depends heavily on the dataset, and if fine-tuning is applied,
more improvement can be expected. Obviously, if t is too large, this will turn the
algorithm into an almost data-independent, random search process, deteriorating
solution quality again.

7 Conclusions and Future Work

We continued earlier work on the impact of Widening on data mining algorithms.
A number of practical techniques to implement Widening focusing on reduction
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of communication and enhancing the exploration of the solution space were pre-
sented. The latter shows promise to further increase the accuracy of Widening as
we have demonstrated using the base greedy set covering algorithm. Focusing on
better ways to enforce diversity without the need for extensive communications
is an area of future work, as is the application of the presented techniques to
other data mining algorithms.
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