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Diversity, dynamics, direction, 
and magnitude of high‑altitude 
migrating insects in the Sahel
Jenna Florio1, Laura M. Verú1, Adama Dao2, Alpha S. Yaro2, Moussa Diallo2, Zana L. Sanogo2, 
Djibril Samaké2, Diana L. Huestis1, Ousman Yossi2, Elijah Talamas3,4, M. Lourdes Chamorro3, 
J. Howard Frank5, Maurizio Biondi6, Carsten Morkel7, Charles Bartlett8, 
Yvonne‑Marie Linton10,11, Ehud Strobach9, Jason W. Chapman12,13, Don R. Reynolds14,15, 
Roy Faiman1, Benjamin J. Krajacich1, Corey S. Smith16 & Tovi Lehmann1*

Long‑distance migration of insects impacts food security, public health, and conservation–issues that 
are especially significant in Africa. Windborne migration is a key strategy enabling exploitation of 
ephemeral havens such as the Sahel, however, its knowledge remains sparse. In this first cross‑season 
investigation (3 years) of the aerial fauna over Africa, we sampled insects flying 40–290 m above 
ground in Mali, using nets mounted on tethered helium‑filled balloons. Nearly half a million insects 
were caught, representing at least 100 families from thirteen orders. Control nets confirmed that the 
insects were captured at altitude. Thirteen ecologically and phylogenetically diverse species were 
studied in detail. Migration of all species peaked during the wet season every year across localities, 
suggesting regular migrations. Species differed in flight altitude, seasonality, and associated weather 
conditions. All taxa exhibited frequent flights on southerly winds, accounting for the recolonization 
of the Sahel from southern source populations. “Return” southward movement occurred in most 
taxa. Estimates of the seasonal number of migrants per species crossing Mali at latitude 14°N were 
in the trillions, and the nightly distances traversed reached hundreds of kilometers. The magnitude 
and diversity of windborne insect migration highlight its importance and impacts on Sahelian and 
neighboring ecosystems.

Migration is key to individual reproductive success, population abundance and range, community composition, 
and thus, habitat function across the  biosphere1,2. We follow the de�nition of migration as persistent movements 
una�ected by immediate cues for food, reproduction, or shelter, with a high probability of relocating the animal 
in a new  environment1–3. Long-distance insect migration in�uences food  security2,4–9, public  health10–15, 
and ecosystem  vigor16,17. Over the past decades, knowledge of the migration of a handful of large insects 
(> 40 mg) provided insights into migratory routes and the underlying physiology and ecology of migration 
with implications ranging from pest control to  conservation18–21. Radar studies have revealed the magnitude 
of insect migration, highlighting its role in ecosystem biogeochemistry via the transfer of micronutrients by 
trillions of insects moving annually in  Europe22,23. Yet, radar studies seldom provide species-level  information24, 
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which is needed to discern the adaptive strategies, drivers, processes, and impacts of long-distance migration 
of the vast majority of the  species22,25. Ideally, addressing these issues requires tracking insects over hundreds of 
kilometers, a task that remains beyond reach for most species due to their small size, speed, and �ight hundreds 
of meters above ground level (agl)26. Given migration’s pervasive and critical role, knowledge of the species 
identity, sources, routes, destinations, schedules, and impacts would be especially valuable for sub-Saharan 
Africa, with its growing human population, nutritional demands, public health problems, and conservation 
challenges. Past migration studies in Africa focused on a handful of crop pests such as  grasshoppers4,7,27,28 and 
the African  armyworm24,29, yet as recently demonstrated by the diversity of mosquitoes among high-altitude 
 migrants15, the scope and impacts of African insect migration represent major gaps in our knowledge. We 
contend that monitoring of insect migrants in Africa will not only �ll that gap, but will lead to e�ective and 
comprehensive solutions inspired by the locust and armyworm monitoring and control  programs4,28,29, which 
�t well with the One Health  paradigm30. Accordingly, a longitudinal, systematic, comparative study on the 
high-altitude migration of multiple species of insects in the same region would be useful to gauge the species 
composition, regularity, dynamics, and directionality, which are fundamental to understand these movements’ 
predictability, sources, and impacts. Speci�cally, we focused on the following questions: Which taxa are the 
dominant windborne migrants? Do species migrate regularly every year? Within a year, does migration occur 
rarely, under speci�c weather conditions, or throughout the season? What are the prominent �ight directions, 
how variable are they within and between species, and does the direction change with the season? Using nets 
mounted between 40 and 290 m agl on tethered helium balloons, we undertook a three-year survey of �ying 
insects in central Mali. Here, focusing on a dozen collected insect species—representing broad phylogenetic 
groups and ecological “guilds”—we identify variation in migration patterns, and infer underlying strategies.

Results
In total, 461,100 insects were collected on 1,894 panels between 2013 and 2015. Sorting of 4,824 specimens 
from 77 panels (between 40 and 290 m agl) revealed a diverse assembly representing thirteen orders (Fig. 2a 
and Table 1). Members of the Coleoptera dominated these collections at 53%, followed by Hemiptera (27%)—
especially Auchenorrhyncha (18.5%), Diptera (11%), and Hymenoptera and Lepidoptera at 4% each, together 
accounting for > 99% of the insects collected (Table 1). Additional specimens were identi�ed totaling 100 insect 
families (Tables 1 and S1).

�irteen species representing diverse phylogenetic and ecological groups were identi�ed and counted from 
subsamples consisting of a total of 25,188 specimens. �ese were subsamples (see Methods) of 58,706 insects 
captured on 222 panels over 125 aerial collections, carried out over 96 sampling nights, in one or more of the 
Sahelian villages (Fig. 1).

Control panels were examined to determine if insects were inadvertently trapped near the ground as the 
nets were raised and lowered: a total of 564 insects were captured on 508 control panels compared with 58,706 
captured on the 222 experimental (standard) panels. �e control panels spent 3–5 min above 30 m and thus 
could be expected to contain ~ 0.5% of a normal panel that remained at high altitude for 14 h, assuming aerial 
density of the insects remained constant over that time. To assess if insects were intercepted below 30 m agl, we 
tested if the mean panel density (Methods) of each taxon on the control panel was (i) signi�cantly lower than 
corresponding mean on standard panel, and (ii) that it was not signi�cantly higher than the equivalent of a 4-min 
aerial nightly sampling with a standard panel (Table 2). Except for the bee, Hypotrigona sp. (Hymenoptera), both 

Table 1.  Overall diversity of insects collected in aerial samples (40–290 m agl) as re�ected by insect 
order composition (see also Fig. 2). �e insect families sent for identi�cation by taxonomists represent a 
small fraction of the predicted total diversity (see text). Orders represented by 1–2 specimens (Blattodea, 
�ysanoptera, Megaloptera, Psocoptera, and Phasmatodea) are not shown. a  In total, 4,824 insects from 77 
sticky nets (panels) were used to estimate the order composition. �e full collection awaits additional study 
and the authors would be pleased to hear from readers who might be interested in undertaking further study 
of particular taxa. b  Identi�ed through DNA barcoding correlations by Dr. Yvonne-Marie Linton.

Order Percent Families identi�ed Families

Coleoptera 53.3 Aderidae, Anthicidae, Attelabidae, Bostrichidae, Brentidae, Carabidae, Chrysomelidae, Coccinellidae, Curculionidae, Dytiscidae, 
Elateridae, Erorhinidae Hydrophilidae, Mordellidae, Nitidulidae, Phalacridae, Scarabaeidae, Staphylinidae 18

Hemiptera (Heteroptera) 8.2 Berytidae, Corixidae, Cydnidae, Geocoridae, Gerridae, Hydrometridae, Lygaeidae, Miridae, Nabidae, Notonectidae, Oxycareni-
dae, Pentatomidae, Pyrrhocoridae, Reduviidae, Rhopalidae, Rhyparochromidae, Stenocephalidae, Tingidae, Veliidae 19

Hemiptera (Homoptera) 19 Aphididae, Cicadellidae, Delphacidae, Flatidae, Ricaniidae 5

Diptera 11.2

Anthomyiidae, Calliphoridae,  Cecidomyiidaeb,  Ceratopogonidaeb,  Chironomidaeb, Chloropidae,  Culicidaeb, Curtonotidae, 
Diopsidae, Dolichopodidae, Drosophilidae, Ephydridae, Lauxaniidae,  Limoniidaeb, Lonchaeidae, Milichiidae, Muscidae, 
 Mycetophilidaeb, Phoridae, Pipinculidae, Platystomatidae, Rhiniidae, Sepsidae, Simuliidae, Tachinidae, Tephritidae, Tipulidae, 
Ulidiidae

28

Hymenoptera 4 Apidae, Bethylidae, Braconidae, Chalcididae, Chrysididae, Crabronidae, Diapriidae, Dryinidae, Eulophidae, Eupelmidae, Eury-
tomidae, Figitidae, Formicidae, Ichneumonidae, Megachilidae, Pompilidae, Rhopalosomatidae, Scelionidae, Sphecidae 19

Lepidoptera 3.9 Gelechiidaeb,  Nolidaeb 2

Orthoptera 0.3 Acrididae, Gryllidae, Pyrgomorphidae, Tetrigidae, Tettigonidae, Trigonidiidae 6

Neuroptera 0.2 Chrysopidae, Mantispidae, Myrmeleontidae 3

Total 100
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expectations were met for all taxa, with a control to standard mean density ratio of 0–0.003 (Table 2). �is low 
ratio suggests that the high-altitude �ight of most insects was reduced during the crepuscular periods, during 
which the panels were launched and retrieved, compared with night period. For Hypotrigona sp., however, the 
ratio of mean control to standard panel was 0.167, suggesting that ~ 17% of its aerial density could have been 
collected near the ground. For this reason, this taxon was removed from further analysis.

Overall abundance, sampling distribution, and correlation between taxa. Mean panel density 
of the selected taxa ranged over two orders of magnitude, from 0.05 for the Dysdercus sp. (Hemiptera) and 
Anopheles coluzzii (Diptera) to 11 for Chaetocnema coletta (Coleoptera, Table 2, Fig. 2b). �e distribution of 
captured insects on (standard) panels was “L shaped,” typical of clumped distributions (Fig. S2), with a median 
panel density of zero for all species except Ch. coletta, Cysteochila endeca (Hemiptera) and Zolotarevskyella 
rhytidera (Coleoptera, Table 2), and a maximum of 246 specimens per panel, suggesting that �ight activity was 
concentrated on one or a few nights. �e frequency of nights with at least one specimen per taxon per night 
(nightly occurrence frequency) varied between 4 and 71% (Table 2), indicating that all taxa engaged in high-
altitude �ight activity over multiple nights. Moreover, panel occurrence frequency was positively correlated with 
taxon panel density  (rP = 0.92, P < 0.001, N = 12, Fig. 2b), indicating that taxa that appeared on fewer nights were 
the least abundant. Nonetheless, the high values of the variance to mean ratios (2.7–83.6, Table 2 and Fig. 2c) of 
all taxa, except A. coluzzii, suggest that the distribution of insects was temporally clustered.

All taxa exhibited marked seasonality in high-altitude flight activity (Fig. 3a), peaking between July 
and October, following considerably lower activity in May–June. Overall, �ight declined substantially in 
November–December, and virtually none was recorded in March–April. Visual examination of the seasonality 
of individual taxa (Fig. 3a) suggests variability among species in �ight activity. For example, Microchelonus sp. 
(Hymenoptera) appeared as early as May and peaked in June, whereas, the lea�opper, Nephotettix modulatus 
(Hemiptera) �rst appeared in July and peaked in October (Fig. 3a). A unimodal activity best describes A. coluzzii, 
Dysdercus sp., Microchelonus sp., and N. modulatus, while bimodal activity describes the other taxa, e.g., Paederus 
fuscipes (Coleoptera), and Berosus sp. (Coleoptera, Fig. 3a). Bimodal distribution was also suggested by the 
total-insect density/panel (Fig. S3). Likewise, correlations between taxa in nightly �ight were low (Spearman, 
 rS mean = 0.17, − 0.15 < rs < 0.62, n = 96, Fig. 3b). �e highest r -values involved high density taxa, e.g., Paederus 
sabaeus and Metacanthus nitidus  (rs = 0.62, n = 96, P < 0.001). �e mean pairwise correlation dropped to 0.09 

Figure 1.  (a) Map of study area (Map data: Google, Maxar Technologies) under a schematic map of Africa 
above the equator. �e base map was generated using the ggplot2 package in  R74, under a GPL-2 license. Aerial 
collection sites are shown in yellow with distance between them (the small symbol of Dallowere indicates that 
only two sampling nights in Dallowere were included in the present study). (b) Sampling e�ort of high-altitude 
�ying insects by year. Needles represent sampling nights (by village: color) extending up to 100 insects per panel 
(actual number of insects can exceed 2000). Dry and wet seasons are indicated by yellow and green bands, 
respectively, under the x axis. Note: no sampling was done during January–February.
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(− 0.23 < rs < 0.56, n = 77, Fig. 3b) a�er con�ning the correlation to the migration season (excluding the dry 
season, when migration was negligible).

Variation between collection sites, years and altitude. �e occurrence frequency of each taxon 
was compared between localities (up to 100 km apart) and years to assess if they were location- or year-speci�c 
(Fig. 4). All taxa were found in all locations. �e similarity between the localities in the appearance of each 
taxon is striking since they were partly sampled in di�erent months (Fig. 1). Similarly, all taxa were present in 
every sampling year except for Dysdercus sp. and N. modulatus, which were not sampled in 2013. �e rarity of 
Dysdercus sp. may account for its absence from the sparse data in 2013, which consisted of 28 sampling nights vs. 
41 and 56 in the other years. Likewise, N. modulatus appeared late in the season (peaks in October) during 2014 
and 2015, thus, it was unlikely to be sampled in 2013, in which collection ended by mid-August.

�e typical �ight altitude, measured as an average panel height weighted by the taxon’s panel density values, 
varied among taxa from 130 m (Microchelonus sp.) to 175 m (N. modulatus, Fig. 4c). Despite limited use of the 
largest balloon (3.3 m in diameter), which allowed sampling up to 290 m agl in �ierola between August–Sep-
tember 2015, all taxa were collected in the top panels (240–290 m agl).

Aerial density and the effects of weather on high‑altitude migration. Estimated aerial density 
of each taxon, (per  106  m3 of air, Methods), was positively correlated with panel density (r = 0.93, P < 0.001, 
Fig. S3: Inset), suggesting that the results of analyses based on panel- and aerial- density would be similar. 
�is correlation stemmed in part from the modest variability in average nightly wind speed at �ight altitude 
(mean = 5.1 m/s, and the  10th and  90th percentiles are 2.4 and 8.0 m/s, respectively, Fig. S4).

Similar to the results based on panel density (Fig. 4), variation due to year and locality (village) of sampling 
were not signi�cant in all taxa (P > 0.05, Table 3), whilst seasonality was signi�cant in seven taxa (P < 0.05, Table 3 
and Fig. 3a), and a modest e�ect of altitude was detected in four taxa (P < 0.05, Table 3). In subsequent models, 
the factors locality and year were therefore removed.

To assess if migration activity occurred during particular weather conditions near the ground or at �ight-
height, we compared the taxon’s mean temperature weighted by its aerial density with that of other taxa and 
similarly considered the relative humidity (RH), and wind speed (Fig. S5). Variation across taxa was moderate 
and sizable overlap was apparent among their 95% CI (Fig. S5). Flight activity for most taxa occurred across 
broad temperature ranges and their 95% CI intersected the wet season mean temperatures at the ground (8 
taxa) and at �ight altitude (9 taxa, Fig. S5a). Overlapping CI of most taxa were also common with RH and wind 
speed, although most insect �ight took place at lower RH and lower wind speed than their wet season averages 

Table 2.  Overall abundance and occurrence of selected taxa in aerial samples collected on standard panels 
(220 panels between 40 and 290 m agl, in 125 sampling nights) and control panels (508 nets between 40 and 
120 m agl). a  �e lower 95% con�dence interval (CI) of the mean panel density of standard panel used to 
compare with the upper 95% CI of the control panel for each taxon (see text). b  Panel Frequency – Frequency 
of panels with at least one specimen per taxon. c  Night Frequency – Frequency of nights with at least one 
specimen per taxon per night regardless of village (ie., includes nights when launches occurred in more than 
one village, n = 96). d  Overall mean ratio of control/standard panel and mean control panel density were 
computed excluding Hypotrigona sp. (see text). e  Expected density assuming insects were intercepted while the 
control panels reached over 20 m and remain there for ~ four minutes (see text).

Standard panels (222 panels in 125 sampling nights) Control panels (508 panels)

Taxon

Mean 
panel 
density

Lower 
95% 
 CIa

Median
panel 
density

Panel 
 Freqb

Night 
 Freqc Total

Max 
panel 
density

Var / 
mean

Mean 
control/ 
 standardd

Mean 
panel 
density

Upper 
95% 
CI e

Four min 
 Standardf

Med 
panel 
density

Panel 
 Freqb Total

Max 
panel 
density

Var/ 
mean

Dysdercus sp. 0.03 − 0.007 0 0.02 0.04 7 4 2.7 0.0000 0 nd 0.0001 0 0.0000 0 0 nd

Cy. endeca 5.00 3.9325 1 0.54 0.67 1110 44 13.0 0.0016 0.0079 0.0156 0.0230 0 0.0079 4 1 0.993

M. nitidus 1.99 0.7636 0 0.27 0.43 442 117 43.2 0.0010 0.002 0.0058 0.0092 0 0.0020 1 1 1

N. modulatus 0.40 0.1898 0 0.12 0.21 88 17 6.2 0.0000 0 nd 0.0018 0 0.0000 0 0 nd

A. coluzzii 0.09 0.0519 0 0.09 0.17 21 2 1.1 0.0000 0 nd 0.0004 0 0.0000 0 0 nd

P. sabaeus 2.66 1.2729 0 0.29 0.42 591 134 41.4 0.0000 0 nd 0.0122 0 0.0000 0 0 nd

P. fuscipes 0.38 0.0414 0 0.09 0.21 84 32 17.2 0.0000 0 nd 0.0017 0 0.0000 0 0 nd

Z. rhytidera 8.61 5.0629 1 0.53 0.61 1912 246 83.6 0.0000 0 nd 0.0396 0 0.0000 0 0 nd

Ch. coletta 11.31 8.1055 2 0.58 0.71 2511 174 51.9 0.0009 0.0099 0.0185 0.0520 0 0.0099 5 1 0.991

Hydrovatus 
sp. 0.63 0.3414 0 0.18 0.34 139 21 7.4 0.0000 0 nd 0.0029 0 0.0000 0 0 nd

Berosus sp. 0.67 0.3805 0 0.19 0.32 149 20 7.2 0.0030 0.002 0.0058 0.0031 0 0.0020 1 1 1

Microch-
elonus sp. 0.26 0.1132 0 0.10 0.19 57 11 4.6 0.0000 0 nd 0.0012 0 0.0000 0 0 nd

Hypotrigona 
sp. 0.19 0.0519 0 0.05 0.08 42 8 5.7 0.1670 0.0316 0.0754 0.0009 0 0.0316 16 11 7.982

Overall 2.48 0.24 0.34 7153 21.9 0.0005 0.0018 0.0018 27 0.996
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(Fig. S5b and S5c), possibly because rainstorm conditions inhibit  migration24 or because aerial sampling did not 
include such nights. Statistical models that evaluated the e�ects of these weather parameters on high-altitude 
activity revealed that �ights of certain taxa were more common under lower wind speed (seven taxa) and higher 
RH (four taxa, Table 3).

Seasonal wind and flight directions. As  expected31, wind direction in the Sahel showed marked 
seasonality, with northerly winds (blowing towards the south) dominating from December to April and reversing 
course from May to October (Fig. 5a). However, in November, winds are variable and blow towards the south 
and the north with similar frequencies (Fig. 5a).

All taxa exhibited frequent northward migrations on southerly winds, which ranged widely from WSW to 
the ESE during the wet season (Fig. 5b). During the wet season (July–September), Sahelian rainfall is associated 
with large mesoscale convective systems with squall lines which have changeable wind directions. So, insects 
could have been carried by winds to nearly all directions (Fig. 5) and dispersed widely across the Sahel, albeit 
with di�erent intensities. �e concentration of the circles, denoting the source of mean winds, and their size, 
which correspond to aerial density (Fig. 5b), signi�es the relative position of the source populations. For example, 
Z. rhytidera exhibited a strong in�ux from the southwest, and Ch. coletta from western and southern sources.

To assess if a movement back into the savannas south of the Sahel took place at the end of the rainy season, we 
examined whether insects exhibited movement with southbound winds during September to December (Fig. 5b). 
Although they were less common, at least one or a few nights’ migration on southward wind were recorded in all 
except the three least abundant taxa (Dysdercus sp., A. coluzzii, and Microchelonus sp., Fig. 2c). Such southward 
movements were especially frequent in Z. rhytidera, Cy. endeca, Ch. coletta, and Berosus sp. (Fig. 5b). Tests of 
wind “selectivity”, evaluating if aerial density was higher during nights with favorable wind direction (southward 
during the end of the wet season) were performed using contingency tables contrasting the proportion of nights 
with northbound and southbound �ights during October through December did not support selective southward 
�ight across taxa (P > 0.05 at the individual test level, not shown). Similarly, no signi�cant interaction of wind 
direction by period was detected in the aerial density analysis (Table 3).

Figure 2.  (a) Overall diversity (by insect orders) of aerial collection estimated based on samples from 70 sticky 
nets. Orders represented by less than 3 specimens (Blattodea, �ysanoptera, Megaloptera, Psocoptera, and 
Phasmatodea) are not shown. (b) Relationship between overall species density/panel (+ 95% CI) and the fraction 
of nets on which capture occurred on (+ 95% CI) as a measure of the regularity of high altitude �ight activity. 
Insets show the Pearson correlation coe�cient (r), its P value (P) and sample size (N). Schematic insect 
silhouettes are not to scale. ( c) �e relationship between the variance to mean ratio and its mean panel density.
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Discussion
�is study presents the �rst cross-season survey of high-altitude migrant insects in Africa. Based on 125 high-
altitude sampling nights, yielding 222 samples, we assessed the diversity of migrants and focusing on a dozen 
taxa, evaluated their compositional regularity, aerial abundance, movement direction, and relationships with key 
meteorological conditions. �is information is fundamental to understanding the scope and impacts of African 
insect migration and can inform on the value of monitoring aerial migration to address African food security, 
public health, and conservation issues.

�e composition of our collection (Coleoptera—53%, Hemiptera—27%; especially Auchenorrhyncha, and 
Diptera—11%, Table 1) was distinct from aerial collections in Europe, which was dominated by Hemiptera 
(especially aphids) and  Hymenoptera32, and in North  America5, which was dominated by Diptera and Coleop-
tera, possibly re�ecting taxa more tolerant of xeric environments. �e large number of taxa representing a 
hundred families from thirteen orders already identi�ed from a small fraction of the aerial collection (< 10%, 
Tables 1, and S1) suggests that migration at altitude is a common and widespread life history strategy in the 
Sahel, as expected from the impermanence of many  habitats33,34. Although our taxa selection depended on ease 
of identi�cation and repeatable appearance in the �rst subsamples evaluated, we later realized that four represent 
notable agricultural pests: Dysdercus sp., N. modulatus, Ch. coletta, and Cy. endeca; three a�ect public health: 
P. sabaeus and P. fuscipes, which cause outbreaks of severe  dermatitis35 and the African malaria mosquito, A. 
coluzzii, and six are predators that likely control pests and mosquitoes (e.g., Microchelonus sp. and Hydrovatus 
sp. (Dytiscidae), Table S2). Moreover, our results explain the outbreaks of dermatitis due to Paederus beetles in 
 Africa36. �e services provided by an arbitrary assortment of windborne migrants suggests that further studies 
of insect migration including aerial surveillance may provide useful insights into the causes of human, animal, 
and plant disease outbreaks. Among the insect genera identi�ed, several included known or suspected wind-
borne migrants: Dysdercus sp.37, A. coluzzii15,38–40, and M. nitidus41; for the rest, such knowledge is new, as is 
their reported presence in Mali. Clearly, this aerial collection awaits additional study. Insects �ying > 200 m agl 
and day-�yers were underrepresented in our collection, as were larger insects (e.g., grasshoppers, moths) that 
could detach themselves from the thin layer of glue. Also, tiny insects (e.g., aphids and midges) might have been 
overlooked when insects were manually extracted from the panels.

Migration regularity was demonstrated by the similarity of the taxa composition over multiple years 
(2013–2015), in locations up to 100 km apart, and seasonal highs during the wet seasons (Figs. 3,4 and Table 3)
suggesting that it is integral behavior in these taxa. �e hypothesis that migration occurred exclusively on 

Figure 3.  Temporal variation in �ight activity across taxa. (a) Seasonal variation of migrant insects measured 
by panel density based on three-year data. Dry and rainy season are shown by yellow and green colors (ruler). 
(b) �e distribution of the Spearman correlation coe�cient  (rs) between 66 pairs of migrant insects and 
relationship in nightly mean densities of the taxa pairs with highest Spearman correlation coe�cients (b, N = 96 
nights). Schematic insect silhouettes are not to scale (species names are truncated to conserve space).
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particular nights, was rejected because the nightly occurrence frequencies varied between 4 and 71% and 
because the positive correlation between the taxon’s overall abundance and the nightly occurrence frequency 
(Fig. 2), indicated that low nightly occurrence re�ected the low overall taxon abundance. �e low inter-species 
correlations in nightly densities indicated species-speci�c migration patterns rather than rare mass-migration 
events. Altogether, the results suggest that these taxa engaged in migration over many nights, rather than during 
a few rare events; albeit certain nights, probably near peak activity were of higher density (Figs. 3a, S3). Indeed, 
accommodating variation due to season, year, village, and altitude, models with a negative binomial error 
distribution were superior to those with Poisson distributions in all taxa (Table 3), suggesting that migration 
�uctuated during the wet season. �e cross-panel occurrence (Table 2) indicated that clumping does not re�ect 
tight �ying “swarms”.

�e magnitude of migration is illustrated as the number of insects expected to cross a 1 km line perpendicular 
to the wind at altitude over a single night. Because our taxa were captured in altitudes spanning 40 to 290 m agl, 
a conservative estimate of the depth of the �ight layer is 200 m. Using the average nightly wind speed (3.5 m/s, 
Fig. S5c), we estimated the number of insects crossing this imaginary line throughout the night (14 h sampling 
duration), yielding an average parcel of air of 176.4 km length, 1 km (width), and 0.2 km (height). �e average 
aerial density was calculated across all sampling nights (including zeros) during the species’ “migration period”, 
estimated as the longest annual interval when migration occurred (between the �rst and the last dates the taxon 
was captured). �e number of insects per taxa crossing the 1 km line each night, between 50 to 250 m agl ranged 
from 7800 (Dysdercus sp.) to 750,000 (Ch. coletta, Fig. 6). Extrapolating these values to the annual number of 
insects crossing the 1000 km line spanning Mali’s width at latitude 14.0°N suggests values between one hundred 
million (Dysdercus sp.) and 0.1 quadrillion  (1014 Ch. coletta). �e mean total insect density/panel (280, Fig. 
S3) is > 25 times greater than that of Ch. coletta, our most abundant species (Table 2). Considering that these 
conservative values represent nocturnal migration of single taxa over mere 200 m layer in depth, they underscore 
the enormous scale of these movements and dwarf the number of insects �ying above the UK, which, when 
converted from the observed 300 km line to 1000 km would total  1013 (for all insects)22.

Flight speeds of small insects (< 3 mg; Table S2) range around 1 m/s42,43, thus their overall displacement at 
altitude, where typical wind speed exceeds 4 m/s (Fig. S5, S3, and below) is governed by the wind. �e distance 
covered by windborne migrants depends on wind speed and the duration of their �ights. Using a conservative 
average of wind speed at altitude of 4 m/s (Fig. S5 and S3), an insect �ying, for 2–10 h would be transported 
30–140 km, respectively. Flight durations can be estimated by �ight  mills40,44,45 or, less o�en, by the distance that 

Figure 4.  Spatial and annual variation in high altitude migration. Mean frequency of occurrence (+ 95% CI) 
of each taxon per panel by (a) locality (excluding Dallowere which was sampled in only 2 nights) and (b) year. 
�e sampling e�ort in each year with respect to nets and nights is given in the legend. Between-species variation 
in �ight altitude measured as mean panel altitude (+ 95% CI) weighted by panel density (c). Dotted blue line 
shows mean panel altitude. Note: the highest panel was typically 190 m agl, but between August and September 
2015 we used a larger helium balloon and the highest panel was set at 290 m agl (see Methods). Schematic insect 
silhouettes are not to scale.
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they demonstrably �ew and knowledge of the wind speed. Flight mill data suggest that lea�oppers (N. virescens) 
can �y over 10.75h46, similar to A. gambiae s.l. (10 h)47,48. Because all taxa were collected in the top panels, 
our sampling has not reached their highest �ight altitude and our results likely underestimate the actual �ight 
altitude as well as total abundance, diversity, speed and displacement distance. Indeed, radar data have shown 
that migrants reach (and o�en exceed) 450 m  agl24,49–51. �e low abundance of Dysdercus sp. may be accounted 
for by incomplete altitude sampling, as is the case for N. modulates, which tend to �y at higher altitudes (Fig. 4c). 
�is variation between species suggest that low-�ying insects including P. sabaeus, Z. rhytidera, and Hydrovatus 
sp. may engage in shorter �ights than high-�ying taxa, e.g., N. modulatus, Cy. endeca, Berosus sp., and M. nitidus.

Meteorological radar data from the Sahel revealed wind speed means between 8 and 12 m/s, with occasional 
nights when wind speed in the lower jet stream (LJS, 150–500 m agl) exceed 15 m/s52. Reanalysis datasets such 
as MERRA-2 or ERA5 consistently underestimate wind speed in that  layer53. Because migrant insects o�en 
concentrate at the layer with maximal air  speed24, a small insect �ying between 1 and 10 h in a realistic average 
windspeed of the LJS (10 m/s) will cover on average 36–360 km per night (over 500 km in some nights).

Table 3.  Variation in taxon’s aerial density among years, locality (villages), altitude, and meteorological 
conditions (GLIMMIX models of random (year and village) and �xed (season, panel height, wind speed and 
direction, temperature and RH at �ight height, 222 nets between 40 and 290 m agl, in 125 sampling nights). 
a For negative bionomial scale parameter estimates the k parameter of this distribution. b �e e�ects of year 
and village could not be estimated simultaneously, so the estimates were produced in two separate models, 
each including only one of the factors. c Two month periods were used (Mar-Apr, May-Jun, Jul-Aug, Sep-
Oct, and Nov-Dec). �e period of highest panel density is shown with its statistical signi�cance. ***,**,*, ns, ne 
refer to signi�cance probability of 0.001, 0.01 and 0.05, > 0.05, and to parameters that could not be estimated, 
respectively. d To better re�ect seasonal variation in wind direction (Fig. 5a), periods for this analysis were 
Mar-Jun, Jul-Sep, and Oct-Dec. �e period of highest panel density is shown with its statistical signi�cance. 
e �e main e�ect of wind direction, measured from south (− 1) to north (1) of each sampling location on aerial 
density. �is measures the south-north component of the average angle of nightly wind direction (see text and 
Fig. 5a). f �e interaction between Period and S–N vector of wind is shown for the di�erence between Oct-Dec 
and Jul-Sep. g Measured at �ight altitude using MERRA2 database based on panel height (see text for details).

Model 
(GLIMMIX) Parameter

Dysdercus 
sp.

Cy. 
endeca

M. 
nitidus

N. 
Modulatus

A. 
coluzzii P. sabeus P. fuscipes

Z. 
rhytidera

Ch. 
coletta

Hydrovatus 
sp.

Berosus 
sp.

Microchelonus 
sp.

None Var/Mean 
(mean) 3.5 (0.05) 27.3 

(8.1)
108.8 
(3.8) 12.3 (0.74) 2.3 (0.17) 59.3 (4.6) 14.5 (0.45) 142.9 

(13.5)
116.9 
(20.6) 16.8 (1.3) 17.0 (1.4) 9.6 (0.40)

Random 
vars: Poisson

Pearson χ2/
df (BIC) 2.65 (111) 24.26 

(4155)
57.55 
(3925) 5.98 (737) 2.30 (245) 34.19 

(3654) 8.42 (617) 59.75 
(7617)

91.78 
(11,867)

10.81 
(1216)

16.07 
(1498) 5.19 (552)

Random 
vars: Neg. 
Bin

Pearson χ2/
df (BIC) 0.5 (59.2) 0.7 

(1199) 1.4 (663) 0.5 (309) 0.7 (188) 0.8 (751) 1.1 (240) 0.9 (1241) 0.9 
(1450) 0.6 (441) 0.8 (464) 0.9 (2344)

Scalea 103.2 ns 4.1ne 10.4*** 13.4*** 12.9** 10.2ne 24.7ne 4.8*** 5.0ne 14.1*** 13.9*** 21.3**

Fixed & ran-
dom vars:

Pearson 
χ2/df 
(BIC)

0.3 (57.4) 1.0 
(1131) 1.0 (626) 0.9 (286) 0.4 (162) 0.8 (699) 0.6 (227) 1.0 (1198) 1.4 

(1386) 0.8 (426) 0.8* 
(463) 0.7 (229)

Negative 
Binomial Scalea 30.7 ns 2.5ne 6.8*** 9.2*** 4.7** 5.5* 13.9ne 3.8*** 3.3*** 10.2*** 12.1** 11.3**

Yearb (SD) 0 (ne) 0.0ne (ne) 0.001 ns 
(0.13) 0ne (ne) 0ne (ne) 0.43ne (0) 0ne (0) 0ne (ne) 0.09 ns 

(0.13) 0ne (ne) 0ne (ne) 0ne (ne)

Villageb 
(SD) 0 (ne) 0.2ne (0) 0ne (ne) 0ne (ne) 0ne (ne) 0 (ne) 0.17ne (0) 0ne (ne) 0.10 ns 

(0.15) 0ne (ne) 0ne (ne) 0ne (ne)

Periodc Sepns Octo-
berns Sep*** Oct** Augns Sep*** Aug*** July*** July*** July** Octo-

berns Julyns

Panel 
Height

0.02 ns 
(0.022)

0.007*** 
(0.002)

0.002 ns 
(0.004) 0.010*** (0) 0.003*** 

(0)
− 0.005*** 
(0)

− 0.016*** 
(0)

− 0.004 ns 
(0.003)

0.007 ns 
(0.004)

− 0.01* 
(0.006)

− 0.004 ns 
(0.005) − 0.004*** (0)

Fixed vari-
ables:

Pearson χ2/
df, (BIC) 0.28 (60.8) 1.2 

(1135) 1.2 (618) 0.5 (290) 0.3 (162) 2.3 (683) 0.4 (223) 0.9 (1202) 2.0 
(1357) 0.6 (421) 0.9 (450) 0.8(228)

Negative 
Binomial Scalea 41.2 ns 2.7*** 6.8*** 8.4*** 4.1** 4.7*** 12.4*** 3.6*** 2.8*** 9.6*** 9.8*** 11.8***

Periodd Jul-Sepns Oct-
Dec***

Oct-
Dec** Oct-Decns Jul-Sepns Oct-Decns Oct-Decns Jul-Sep** Jul-Sep* Oct-Decns Oct-

Decns Mar-Junns

Wind dir. 
vector 
(N-S)e

1.99 ns − 0.59 ns 0.6 ns − 0.19 ns 0.12 ns 0.09 ns − 1.07 ns − 0.82 ns − 0.75 ns 0.13 ns 0.22 ns 0.12 ns

Per x Wind 
dir. (N-S)f 1.89 ns − 0.30 ns 0.96 ns − 0.39 ns 0.02 ns − 0.56 ns − 3.0 ns 0.01 ns 0.18 ns 0.40 ns − 0.10 ns − 0.80 ns

Wind 
speed g − 0.23 ns − 0.12 ns − 0.37** − 0.41* − 0.17 ns − 0.46*** 0.43* − 0.09 ns − 0.26*** − 0.44*** − 0.41*** − 0.80 ns

Tempera-
ture (oC )g 1.04 ns − 0.06 ns 0.81** − 0.02 ns − 0.31 ns 0.72** 0.30 ns − 0.10 ns 0.09 ns − 0.06 ns 0.08 ns 0.94*

RH (%)g 0.23 ns 0.01 ns 0.11*** 0.03 ns − 0.001 ns 0.17*** 0.05 ns − 0.01 ns 0.04 ** 0.03 ns 0.03 ns 0.20 *
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�e seasonally productive habitats of the Sahel border diverse and “teeming” sub-equatorial habitats; a com-
bination that may increase the abundance of insect migrants and account for concentration of aerial predators 
such as  swi�s54,55,  nightjars56, and  bats57 during peak migration in this region. During their fall migration, swi�s 
arrive in the Sahel (latitudes 11–15°) in mid to late August when insect migration peaks (Fig. S3), and remain in 
the area for ~ 24d, 30% (9–67%) of their total migration duration, whilst covering only 9% of their total route. �is 
contrasts with their spring migration in May, before insect migration builds up, when they stay in the Sahel ~ 4d, 
constituting only 14% (3–38%) of their  journey55. It appears that the swi�s rely on the extreme insect abundance 
before heading to equatorial regions, where they overwinter, suggesting it is greater than in equatorial regions. 
Hence, it may represent a global hot zone for migratory insects.

�e seasonal movement of the Inter-Tropical Convergence Zone (ITCZ), which marks the zone of precipita-
tion, implies continuously shi�ing resources across the girth of the Sahel . During its short wet season a mosaic 
of patches receive high and low rainfall in any given year, which in turn reinforces  migration11,33,34,58,59. Move-
ment between resource patches is predicted, especially for inhabitants of ephemeral water such as puddles, e.g., 
A. coluzzii. Marked seasonality with migration peaking during the rainy season was evident in most taxa and 
might have been found in all taxa, had larger sample sizes been available (Table 3 and Fig. 3). Migration dynam-
ics in nine taxa exhibited bimodal activity similar to the total density of insects/panel (Fig. S3); only A. coluzzii, 
Dysdercus sp., and Microchelonus sp. exhibited a unimodal pattern (Fig. 3). A wide unimodal migration peak 
�ts the “residential Sahelian migration” strategy in species that persist in the Sahel throughout the year, but 
continuously migrate into new environments to maximize exploitation of resource-rich patches and safeguard 

Figure 5.  Seasonality of the south-north component of nightly wind direction in the Sahel and nightly wind 
direction during high-altitude �ights of each taxon. (a) To explore the possibility of north–south migration 
into the Sahel from more equatorial regions, the north–south component of nightly wind direction (2012–2015 
MERRA2 data; all nights) shows the frequencies of winds during the dry (top) and wet (bottom) season in 
�ierola (the other villages exhibited similar distributions). Kernel distributions are shown in blue. Wind 
direction from the N and S are indicated by positive and negative south–north vector values, respectively. 
INSET: November is a transition month with variable wind direction. Red reference line at the origin indicates 
easterly or westerly winds. Fringe marks indicate actual values south-north component of wind direction. (b) 
Wind direction during high-altitude �ights of selected taxa. Circles denote source of mean nightly winds in 
relation to the capture location (origin) with north and east denoted by top and right red lines, respectively. 
Circle size re�ects nightly aerial density and their color denotes the period (top le�). Dotted arrows highlight 
southbound winds during the end of the wet season, that could be used for the “return” migration from the 
Sahel towards tropical areas closer to the Equator (numbers denote the months of such events). Schematic insect 
silhouettes are not to scale.
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against severe wet-season  droughts31 that could eliminate local populations. �is strategy implies an ability to 
withstand the Sahelian dry season via dormancy as is the case for A. coluzzii38,60–62. Bi-modal �ight activity better 
�ts a “round-trip migration strategy”, whereby insects arrive in the Sahel from “perennial” habitats closer to the 
equator during the early peak, and “return” southwards before the approaching dry season, e.g., Dysdercus volkeri 
in Ivory Coast and  Mali37. For example, the grasshopper Oedaleus senegalensis �ies southward from the northern 
Sahel on Harmattan winds and covers 300–400 km in a night’s migration, although its northward movements 
seem  gradual7,24,58. �e late wet-season peak (October) in total insect density/panel (Fig. S3) supports a rise in 
population density as predicted. However, contrary to prediction, wind direction during the seven nights with 
highest total insect density had a predominant northward component (not shown). �ese strategies are not mutu-
ally exclusive as species may exhibit both “round-trip migration” and “residential migration” in di�erent popula-
tions. For example, equatorial populations of A. coluzzii63–65, are not expected to extensively engage in windborne 
migration. Likewise, O. senegalensis (Acrididae) probably uses both strategies. It exhibits aestivation—eggs can 
survive several years in dry soil—but it can also cross the Sahel into the Savanna and return (over its 3 annual 
generations)4,7,24,28,33. �e relative importance of each strategy may vary among populations. Possibly, species 
employing the “round trip” strategy may incorporate movements similar to “residential Sahelian migration” 
during the wet season, to better exploit the shi�ing rains and then return southwards to habitats with perennial 
resources, as exempli�ed by O. senegalensis (above). Distinguishing among these possibilities and linking them to 
life history traits require additional information, which currently are unveri�ed for most Sahelian taxa (Table S2).

Wind directions during the period of �ight activity spanned well over 180° for all taxa (Fig. 5 and Table 3), 
suggesting that movement between resource patches in the Sahel is widespread. For example, the nearly uniform 
distribution over large sectors exhibited by Hydrovatus sp. and Berosus sp. indicate dispersal with only weak 
concentration of southerly origin, probably re�ecting migration between aquatic habitats in multiple directions. 
During the rains, movements northwards and eastwards were especially common, following the ITCZ. A�er the 
long dry season, rain signi�es high productivity, minimal competition, predation, and  parasitism33. During the 
end of the wet season, movement southward was observed in 10 of the 12 taxa, however, there was no evidence 
of selective �ight on southbound winds as was found over  Europe22,66. �e prevailing seasonal winds in the 
Sahel—southwest monsoon and northeast Harmattan—happen to take the migrants in seasonally appropriate 
directions > 70% of the nights (Fig. 5a), reducing the pressure for wind selectivity that was demonstrated in 
temperate zones, where selectivity may confer greater bene�t. Return migrations were possibly missed given the 
fewer sampling nights during October–December and because during this time the LJS may have been higher 
than 190 m and most insects �ew above our traps.

In conclusion, our results demonstrate that a multitude of Sahelian insects regularly engage in high-altitude 
windborne migration, covering hundreds of kilometers, in enormous densities during the rainy season. �e 
implications of this for ecosystem stability, public health, and especially for food security are profound. �e 
dynamics of the studied taxa suggest species-speci�c drivers. �e dominant winds— southerly monsoon during 
the wet season and northerly Harmattan—during the dry season structure the sources and destinations, yet, all 
taxa exploited winds that transported them to various directions, indicating an intra-Sahelian patch interchange.

Methods
Study area. Aerial sampling stations were placed in four Sahelian villages (Fig.  1): �ierola (13.6586, − 
7.2147) and Siguima (14.1676, − 7.2279; March 2013 to November 2015); Markabougou (13.9144, − 6.3438; 
June 2013 to June 2015), and Dallowere (13.6158, − 7.0369; July to November 2015). Unless otherwise indicated, 
Dallowere, situated 25 km from �ierola was excluded from the statistical analysis because it was represented by 
only two sampling nights.

Figure 6.  �e number of insects per species crossing at altitude (50–250 m agl) imaginary lines perpendicular 
to the prevailing wind. Migrants per night per 1 km (le� Y axis, blue) are superimposed on the annual number 
per 1,000 km line across Mali (right Y axis, red, see text).
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No aerial samples were taken during January and February (Fig. 1). �e study area has been described in 
detail  previously38,61,67–69. Brie�y, it is a rural area characterized by scattered villages, with traditional mud-brick 
houses, surrounded by �elds, beyond which is a dry savanna, consisting of grasses, shrubs, and scattered trees 
Over 90% of the rains fall in the wet season (June—October, ~ 550 mm annually), forming puddles and ponds 
that usually dry by November. Rainfall during the dry season is negligible (0—30 mm, December—May).

Aerial sampling and specimen processing. �e aerial sampling methods have been described in detail 
previously in a study that focused on Anopheles mosquito species from the whole  collection15. Brie�y, insect 
sampling was conducted using sticky nets (panels) attached to the tethering line of 3 m diameter helium-�lled 
balloons, with each balloon typically carrying three panels. Initially, panels were suspended at 40 m, 120 m, and 
160 m agl, but from August 2013, a�er preliminary results showed higher panel densities at higher elevations, 
the typical altitude was 90 m, 120 m, and 190 m agl. When a larger balloon (3.3 m dia.) was deployed at �ierola 
(August–September 2015), two additional panels were added at 240 m and 290 m agl. Balloons were launched 
approximately one hour before sunset (~ 17:00) and retrieved one hour a�er sunrise (~ 07:30), the following 
morning. To control for insects trapped near the ground as the panels were raised and lowered, comparable 
control panels were raised up to 40 m agl and immediately retrieved during each balloon launch and retrieval 
operation. Between September and November 2014, the control panels were raised to 120 m agl. �e control 
panels typically spent 5 min above 20 m when raised to 40 m, and up to 10 min when raised to 120 m. Following 
panel retrieval, inspection for insects was conducted in a dedicated clean area. Individual insects were removed 
from the nets with forceps, counted, and stored in labeled vials containing 80% ethanol.

Taxon selection and identification. Using a dissecting microscope, insects were sorted by morphotype—
an informal taxon assigned to specimens with similar morphology that are putative members of a single 
species— counted and recorded in a database. �e remaining insects were sorted to order, counted, and recorded. 
Selected morphotypes were chosen based on their easily identi�able features and their repeated appearance in a 
preliminary examination of the collection. Later, a subset were identi�ed by expert taxonomists who narrowed 
the identi�cation down to species or genus and con�rmed that the morphotype likely represents a single species 
(Tables S1 and S2). �e thirteen taxa used in the present study are described in Table S2 and Fig. S1.

Data analysis. During months when aerial sampling was carried out in one, two or three sites, we sampled 
four, three, or two dates of collections per site, respectively. �e dates were spread more or less evenly through the 
sampling days of each month. From each sampling night, two panels were selected in sequential order (120 m, 
160 m, 190 m…) and 1–4 vials of insect specimens, representing > 30% of the total insects collected (based on the 
count of total insects removed from the panel, above), were sorted and counted as described above. For example, 
if the total insects removed from a panel in the �eld were 660 and the �rst vial had 185 insects, which were 
sorted, we added a second vial with 155 insects. Because the sum of the insects sorted was 340, which is > 30% 
of the 660 (220), no additional vial was sorted. Subsampling of the collection for the analysis was carried out 
to represent variation between years, seasons, sites, and altitude. However, as typical for �eld studies in remote 
areas, logistical constraints resulted in sampling that was not perfectly balanced (Fig. 1). �e ‘panel density’ of 
the selected taxa was computed as the product of the total number of insects collected on that panel and the 
fraction of specimens from each taxon in the subsample sorted. �us, using the example above, if the count of 
the �rst taxon was 9 in a subsample of 340/660, then the panel density was estimated as the 9*(660/340) = 17.47, 
which was rounded to 18.

�e Modern-Era Retrospective analysis for Research and Applications (MERRA-270)—selected to represent 
observed nightly conditions (18:00 through 06:00)—were used to calculate nightly mean temperature, relative 
humidity (RH), wind speed and direction. Corresponding values were computed for 2, 50, 70, 200, 330 m agl 
for the nearest grid center (available in ~ 65km2 resolution) of each village: Siguima, Markabougou and �ierola 
(Dallowere, located 25 km south of �ierola was included in the same grid of �ierola). Hourly records were 
available up to 10 m, and 3-hourly records at altitude > 10 m. Conditions at panel height, e.g., mean nightly wind 
speed, were estimated based on the nearest available altitude. �e altitudes of the sampling panels were generally 
well above the insects’ ‘�ight boundary layer’—the lowest air layer where an insect’s self-propelled �ight speed 
is greater than wind speed—so �ight direction is governed primarily by wind  direction24,71,72. �us, �ight direc-
tion was estimated from the average nightly wind direction during the night of capture at the location and panel 
height. �e seasonal �ight direction was estimated as the weighted average nightly wind direction at the �ight 
altitude at which a taxon was captured, with the taxon aerial density at the panel used as a weight to compute 
the weighted circular mean angle for that taxon (see below).

Aerial insect density was estimated based on the taxon’s panel density (above) and total air volume that passed 
through that panel that night, i.e.:

Insect sampling duration was calculated from balloon launch time until its retrieval time (typically 17:30 to 
7:30; ~ 14 h). Based on panel altitude, wind speed was selected from the nearest layer (above) to calculate the 
nightly average for each panel. Analysis was carried out both on panel density, and aerial density, to ensure that 
all key aspects of the data are well represented. �e calculation of aerial density assumed that air passed through 
the net with minimal attenuation and that the panel remained perpendicular to the wind direction throughout. 
�ese are reasonable assumptions because observations showed no �ipping of the panels, the thin layer of glue 

Aerial density = total insects per panel/volume of air sampled, andVolume of air sampled

= panel surface area ∗ mean nightly wind speed ∗ sampling duration
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did not block the holes of the net, and insects were always found only on one side of the panel. Under these 
assumptions (panel surface = 3m2, for 14 h) and nightly average wind speed from the MERRA-2 database, the 
volume of air that would pass through the nets when average nightly wind speed was 1 vs. 7 m/s is 151,200 and 
1,058,400m3, respectively.

�e variation in the aerial density measured by each panel due to the e�ects of season, altitude, and other 
factors was evaluated using mixed linear models with either Poisson or negative binomial error distributions 
implemented by proc GLIMMIX with a log link  function73. �ese models accommodate the non-negative integer-
counts and the combination of random and �xed e�ects. �e lower Bayesian Information Criterion (BIC), the 
signi�cance of the underlying factors, the ratio of the Pearson χ2 to the degrees of freedom and the signi�cance 
of the scale parameter (estimating k of the negative binomial distribution) were used to choose between models. 
Mean nightly wind direction was computed based on the average values of north–south and east–west vectors 
of the hourly wind direction angle (unweighted by wind speed). �e dispersion of individual angles around the 
mean was measured by the mean circular resultant length ‘r’ (range: 0 to 1), indicating tighter clustering around 
the mean by higher values. Rayleigh’s test of uniformity was used to test whether there was no mean direction, 
as when the angles form a uniform distribution over 360 degrees.
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