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Microorganisms possess a variety of survival mechanisms, including the production of 
antimicrobials that function to kill and/or inhibit the growth of competing microorganisms. 
Studies of antimicrobial production have largely been driven by the medical community in 
response to the rise in antibiotic-resistant microorganisms and have involved isolated pure 
cultures under artificial laboratory conditions neglecting the important ecological roles of 
these compounds. The search for new natural products has extended to biofilms, soil, 
oceans, coral reefs, and shallow coastal sediments; however, the marine deep subsurface 
biosphere may be an untapped repository for novel antimicrobial discovery. Uniquely, 
prokaryotic survival in energy-limited extreme environments force microbial populations to 
either adapt their metabolism to outcompete or produce novel antimicrobials that inhibit 
competition. For example, subsurface sediments could yield novel antimicrobial genes, 
while at the same time answering important ecological questions about the microbial community.
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INTRODUCTION

Microbes play fundamental roles in ecosystem functioning, particularly through mediating 
biogeochemical cycles, yet we  know very little about their interactions in nature. Microorganisms 
have several mechanisms for survival depending on the respective environment: (1) outcompete 
neighboring populations through adaptation and/or evolution; (2) work with their neighbors via 
mutualistic cooperation; and/or (3) inhibit or kill their neighbors. One of the most common 
mechanisms for inhibition or elimination of competition is the production of antimicrobial 
compounds, including antibacterials and antifungals. These compounds can be toxic to the surrounding 
community, providing a selective advantage for nutrients, carbon, and space (Bibb, 2005; Rigali 
et  al., 2008). Many environments have been explored for novel antimicrobial discovery including 
continental soils (Wright, 1956; Gottlieb, 1976; Chander et  al., 2005; Bundale et  al., 2015), caves 
(Cheeptham and Saiz-Jimenez, 2015), desert soils (Hozzein et  al., 2011; El-Deeb et  al., 2013; 
Nithya et  al., 2015; Ouchari et  al., 2019), freshwater sediments and water (Cross, 1981; Cannell 
et  al., 1988; Madhumathi et  al., 2011), and marine sediments and water (Duff et  al., 1966; Martins 
et  al., 2008; Valli et  al., 2012; Bose et  al., 2015; Zinke et  al., 2017; Quintero et  al., 2018; Ser 
et  al., 2018; Hook and Plante, 2019; Skočibušić et  al., 2019). Terrestrial areas including soils, 
deserts, and freshwater lakes and rivers are typically easier to access relative to deep-sea environments 
and generate promising results in the hunt for antimicrobial activity, as natural products isolated 
from these environments have been used medicinally (Mcdonald et  al., 1996; Haefner, 2003; 
Hughes et  al., 2008; Dias et  al., 2012; David et  al., 2015). However, one of the most diverse 
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biomes on our planet has yet to be  examined for antimicrobial 
production: the marine deep subsurface biosphere.

This review will survey natural antimicrobials that have 
been isolated from Bacteria and putative antimicrobial 
production within different environments including continental 
soil, caves, freshwater, marine, and deep subsurface sediments. 
Key studies focusing on specific genes for antimicrobial 
production within these environments will be  discussed. 
Notably absent from this review is fungal antibiotic discovery 
in ecosystems other than terrestrial soils, which would 
necessitate an entire review on its own. The overall purpose 
of this review is to highlight studies that have found natural 
antimicrobial producing genes from Bacteria and Archaea 
within various environments, as well as pinpoint areas that 
have yet to be  explored.

HISTORY OF ANTIMICROBIAL 
DISCOVERY

The production of an antimicrobial by a microorganism was 
first noted in the fungus Penicillium chrysogenum in 1929 by 
Alexander Fleming (Shama, 2009; Bush, 2010). This critical 
observation initiated the discovery and isolation of penicillin 
in the early 1940s, spurring a “Golden Age” of antimicrobial 
discovery from 1940 to 1980 (Figure 1), which led to a boom 
in the exploration, isolation, and commercialization of natural 
products from cultivated continental microorganisms (Mehta 
et  al., 2006; Katz and Baltz, 2016). This Golden Age yielded 
natural products including biopharmaceutical primary and 
secondary metabolites, such as macrolides, quinolones, 
tetracyclines, and cephalosporins as well as chemical derivatives 
that combat bacteria, fungi, and eukaryotic parasites (Harvey, 
2008) by inhibiting the synthesis of cell walls, proteins, DNA, 

or metabolites essential for cellular functions (Walsh, 2000). 
The initial compounds isolated from microorganisms during 
the Golden Age were from soils around the world including 
the United  States, Russia, Borneo, and the Philippines (Raper 
et  al., 1944; Hays et  al., 1945; Wells, 1952; Abraham, 1962; 
Kaplan and Weinstein, 1968; Rubin and Tamaoki, 2000; 
Andersson and MacGowan, 2003; Emmerson and Jones, 2003; 
Grabowski, 2005; Moellering, 2006; Houbraken et  al., 2011; 
Chander et  al., 2015; Ventola, 2015; Gradnigo et  al., 2016; 
Kim et  al., 2018). After the discovery of carbapenems in 1976, 
antimicrobial bioprospecting from Streptomyces cattleya tapered 
off and has since been limited to artificial synthesis and 
rediscovery (Figure 1; Williamson et  al., 1985; Drews, 2000; 
Aminov, 2009).

Traditionally testing for antimicrobial production relied on 
agar plate cultivation and identifying zones of inhibition caused 
by competing Bacteria (Schatz et  al., 1944; Mehta et  al., 2006; 
Lewis, 2013). Antimicrobial compounds are naturally produced 
as secondary metabolites from microorganisms as a defense 
mechanism. Microorganisms can use various methods to defend 
themselves from harm including producing toxins such as 
antimicrobial compounds that act against surrounding microbial 
cells. As a result, microorganisms exposed to natural products 
with toxic effects can develop strategies for antimicrobial resistance 
(Cohen, 1992; Tenover, 2006), which are observed relatively 
quickly in microorganisms due to horizontal gene transfer (Read 
and Woods, 2014). Naturally-produced antimicrobials and 
antimicrobial resistance have co-evolved within microbial 
communities by eliminating susceptible strains, leaving behind 
those that have resistance or become resistant (Kerr et  al., 
2002; Ventola, 2015). This means that the method of culturing 
Bacteria to identify and isolate bioactive compounds often 
results in the re-discovery of known compounds, which is 
expensive and time consuming (Machado et al., 2015). However, 

FIGURE 1 | Discovery timeline of most clinically important antibiotic classes and first isolated antibiotic compound. Each box contains the class of antibiotics, the 
first compound isolated, the organism that naturally produced the compound, and the isolation year.
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computational methods for assessing secondary metabolite 
production potential can complement, or in some cases replace, 
traditional exploration techniques (Culligan et  al., 2014; 
Adu-Oppong et  al., 2017).

POLYKETIDE SYNTHASE AND 
NONRIBOSOMAL PEPTIDE SYNTHASE 
GENE STRUCTURE AND FUNCTION

Antimicrobial production occurs through a multitude of metabolic 
intermediate biosynthesis pathways, with two of the most common 
and extensively researched protein families involved in these 
processes being the polyketide synthases (PKS) and non-ribosomal 
peptide synthases (NRPS) (Ehrenreich et al., 2005). PKSs synthesize 
polyketides, a broad class of bioactive compounds defined by 
alternating carbonyl and methylene groups (Staunton and 
Weissman, 2001), while NRPSs produce peptides independent 
of messenger RNA and ribosomal machinery (Walsh, 2016). 
PKSs and NRPSs exhibit high structural and functional similarity 
and have been found to form hybrid genes producing antimicrobial 
compounds (Fisch, 2013). These genes are generally organized 
into operons or gene clusters generally ranging from 1  kb to 
greater than 10 kb in length (Medema et al., 2015) which encode 
large, multifunctional enzymes (200–2,000  kDa) (Ehrenreich 
et  al., 2005). PKSs and NRPSs can synthesize other biologically 
active compounds such as siderophores and immunosuppressants 
(Cane and Walsh, 1999; Crosa and Walsh, 2002; Ehrenreich 
et  al., 2005). These enzymes are classified according to their 
structure and biosynthetic function.

There are three types of naturally occurring PKS modules, 
aptly designated Type I, II, and III (Shen, 2003). Type I  is 
composed of large enzymes that contain multiple functional 
domains with defined functions that perform a single catalytic 
step during biosynthesis of the antimicrobial compound. The 
Type II PKS complex includes several single-module proteins 
with separated enzymatic activities acting repetitively to produce 
a polyketide. Type III consists of a single active site enzyme 
that acts iteratively to form the final polyketide product (Austin 
and Noel, 2003; Weissman, 2009). Type I  is most common 
in Bacteria, Type II is most commonly found in fungi, and 
Type III is most common within plants (Yu et  al., 2012). Type 
I  and II PKS genes will receive focus in this review.

There are approximately 10 domains that contribute to the 
PKS gene. Three essential domains are necessary for the PKS 
operon to function, which include β-ketosynthase (KS), 
acyltransferase (AT), and acyl carrier protein domains (ACP) 
(Ansari et al., 2004). The KS domain functions via the attachment 
of a malonyl-CoA extender unit to an acetyl-CoA starter molecule. 
The AT domain serves as a support to load the appropriate 
substrate onto the enzyme, whereas the ACP domain supervises 
the movement of substrates and products between the different 
active sites of the enzyme. Variability of antimicrobial compounds 
produced via the PKS pathway is due to insertion or deletion 
of optional domains, including β-ketoreductase, dehydratase, and 
trans-acting enoyl (Cane and Walsh, 1999). If all three of these 
optional domains are present, then the PKS gene is highly reducing, 

otherwise it is non-reducing (Ma et  al., 2009; Gallo et  al., 2013; 
Liu et  al., 2015). This determination of highly-reducing versus 
non-reducing is due to the presence of domains that can reduce 
and/or dehydrate substrates to construct a specific compound 
(Chiang et al., 2010). PKS genes can be deemed partially-reducing 
if the β-ketoreductase and dehydratase domains are present and 
the trans-acting enoyl domain is not. There are other optional 
domains that are less prevalent than those described. Non-reducing 
PKS genes have a special domain located in at the N-terminus 
called the starter unit acyl carrier protein transacylase, which is 
responsible for selection and loading of a starter unit and the 
product template. The product template domain controls the 
folding of the polyketide backbone (Gallo et  al., 2013).

The NRPS gene encodes multifunctional enzymes whose 
modules elongate the amino acid chain (Staunton and Weissman, 
2001). Similar to the PKS gene, there are three essential domains 
required for the function of this gene. They include the adenylation 
(A), thiolation/peptidyl carrier protein (T/PCP), and condensation 
domains (C) (Weissman and Müller, 2008; Weissman, 2015). 
The A domain recognizes and activates the related amino acid 
or hydroxyl acid. The T/PCP domain functions as a “swinging 
arm” carrying a phosphopantetheinyl at a conserved serine residue 
and delivers substrates to the corresponding active site of the 
domain. The C domain catalyzes the peptide bond formation 
between the activated amino acid and elongation chain (Weissman, 
2015). There are optional domains associated with NRPSs as 
well, such as the epimerization, reductase, cyclization, and 
oxidation domains (Gallo et  al., 2013). It has been proposed 
that NRPSs can be  sorted into three groups: linear, iterative, 
and non-linear (Mootz et al., 2002; Eisfeld, 2009). Linear NRPSs 
follow a specific template of domain organization and can 
be predicted (Eisfeld, 2009). Iterative NRPSs are similar to linear 
NRPSs but use some domains repeatedly during biosynthesis. 
These NRPSs are more common with fungi and are better 
described due to predictability (Keller et  al., 2005; Medema 
et  al., 2011; Röttig et  al., 2011). Non-linear NRPSs have more 
complex domain interactions and the possible product created 
cannot be predicted (Mootz et al., 2002). The inability to predict 
non-linear NRPS products is due to the capability to utilize 
free soluble molecules during biosynthesis (Eisfeld, 2009).

Hybrid PKS-NRPSs have been found to be  structurally and 
functionally diverse across bacteria (Wenzel and Müller, 2005a,b; 
Fisch, 2013). Microbial hybrid PKS-NRPSs are formed commonly 
in nature by adjoining the PKS modules and NRPS modules 
together in an ‘assembly line’ fashion (Fisch, 2013). The 
functionality of the hybrid depends on the domain organization 
within each module. The organization of the domains within 
each module results in a specific cascade of enzymatic reactions 
that give rise to diverse hybrid antimicrobials such as bleomycin 
(Du et  al., 2000), epothilone (Tang et  al., 2000), yersiniabactin 
(Pelludat et  al., 1998), and rapamycin (Aparicio et  al., 1996; 
Boettger and Hertweck, 2013; Masschelein et  al., 2013).

Both PKS and NRPS pathways are diverse due to the 
variable domains that can be  present or absent in a specific 
order following the essential domains (Figure 2; Cane and 
Walsh, 1999). The order, presence, absence, and essential 
domains are critical to what antimicrobial molecule is created. 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mullis et al. Diversity of Antimicrobials

Frontiers in Microbiology | www.frontiersin.org 4 November 2019 | Volume 10 | Article 2518

Due to the large size and complexity of antimicrobial gene 
clusters, it is difficult to target the entire antimicrobial gene 
for identification and isolation (Weissman, 2015; Ziemert 
et  al., 2016). However, the identification, isolation, and 
availability of essential domain sequences in public databases 
have aided further annotation of homologous domains of 
these megasynthases through bioinformatic data mining (Keller 
et  al., 2005; Bergmann et  al., 2007; Khaldi et  al., 2010; 
Weber et  al., 2015). Despite these recent advances, only a 
few studies exist that explore these genes in an ecological 
context (Helfrich et  al., 2014; Tyc et  al., 2017).

COMPUTATIONAL APPROACHES  
TO DISCOVERY

Limitations in culture-based techniques have brought 
computational genomic mining methods to the forefront of 
antimicrobial exploration (Banik and Brady, 2010; Juhas et al., 
2011). Advances in DNA sequencing technologies and 
computational approaches have become increasingly prevalent 
since the early 2000s as a means of exploration and prediction 
of antimicrobial production potential (Van Lanen and Shen, 
2006; Li and Vederas, 2009; Zerikly and Challis, 2009; Harvey 

et al., 2015). The study of “omics includes analysis of molecules” 
roles, actions, and relationships within a cell (Patti et  al., 
2012) to determine a microorganisms’ genetical potential 
and activity within its respective environment. The significantly 
decreased cost of DNA sequencing in the past decade has 
led to the creation of massive genomic databases (Shendure 
et al., 2017), with a recent explosion of environmental genomes 
reconstructed through metagenomic (community genetic 
potential, DNA) sequencing and binning methods that represent 
novel, and often unculturable, taxonomic lineages (Hug et al., 
2016). Other ‘omics’ technologies are utilized in secondary 
metabolite prospecting, including metatranscriptomics (actively 
expressed genetic material, RNA), metaproteomics (entirety 
of proteins), and metabolomics (entirety of metabolites) 
(Zhang et  al., 2010; Franzosa et  al., 2015; Prosser, 2015; 
Beale et al., 2016; Manzoni et al., 2016). Several bioinformatic 
tools have been developed that enable the prediction and 
identification of secondary metabolites from environmental 
samples, such as Natural Product Domain Seeker (NaPDoS) 
(Ziemert et  al., 2012), antibiotics and Secondary Metabolite 
Analysis Shell (antiSMASH) (Medema et  al., 2011), 
NRPSpredictor2 (Röttig et  al., 2011), and Environmental 
Surveyor of Natural Product Discovery (eSNaPD). The NaPDoS 
pipeline searches genomic or metagenomic data for the 

A

B

C

FIGURE 2 | Essential and optional domains of PKS and NRPS. The order and combination in which domains appear in the genome determines which antimicrobial 
compound is produced. Examples include: (A) PKS domain order that is associated with production of rapamycin (accession number X86780.1); (B) NRPS domain 
order that is associated with production of bacitracin (accession number EF159954); (C) domain order of PKS and NRPS that is associated with Chivosazol 
(accession number DQ065771). KS, ketosynthase; AT, acyltransferase; ACP, acyl carrier protein; C, condensation; A, adenylation; PCP, peptidyl carrier protein. Gray 
ovals depict domains that are nonessential but add variability to the antimicrobial compound. The domains were visualized from sequences using ClusterMine360 
and antiSMASH.
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presence of the KS domain for PKSs and the C domain for 
NRPS (Ziemert et  al., 2012). This program allows for insight 
into putative antimicrobial production but is limited due to 
analysis of only one essential domain for PKSs and NRPSs. 
The antiSMASH pipeline identifies known antimicrobial 
production loci using profile hidden Markov models and 
aligns them with regions of the closest relative gene cluster 
(Medema et al., 2011), while NRPSpredictor2 utilizes support 
vector machine-based learning to predict domains (Röttig 
et al., 2011). The eSNaPD platform can be used for discovery 
of novel natural products or derivatives of known antimicrobial 
compounds from metagenomic data (Reddy et  al., 2014). 
While these tools are useful in searching for antimicrobial 
producing genes, it must be  considered that data mining 
approaches are only as effective as the reference databases 
provided (Scholz et al., 2012; Kim et al., 2013; Hiraoka et al., 
2016; Siegwald et  al., 2017).

Databases specific to the PKS and NRPS antimicrobial genes 
are ClusterMine360 (Conway and Boddy, 2012) and antiSMASH 
(Blin et  al., 2016), which include all of the essential domains 
needed for antimicrobial synthesis. These manually curated 
databases can be  utilized for mining antimicrobial producing 
genes from publicly-accessible sequencing data, which lends 
itself to a unique opportunity as well as a massive challenge. 
To date, there are approximately 200,000 genomes, 40,000 
metagenomes, and 5,000 metatranscriptomes from various 
environments in publicly available databases (e.g., National 
Center for Biotechnology Informatics). Mining these data for 
antimicrobial production using available bioinformatics tools 

may demonstrate the potential for antimicrobial production 
at genome-resolved or community-level scales. This has been 
reflected in sharp rise in the number of publications since 
1990 that have included antibiotic or antimicrobial as a keyword 
or in the title (Figure 3).

ANTIMICROBIALS AS A WEAPON  
OR A TOOL

Exploration for natural antimicrobial production has extended 
to a wide variety of habitats including continental soils 
(Gottlieb, 1976; Williams and Vickers, 1986; Laskaris et  al., 
2010), caves (Montano and Henderson, 2013; Cheeptham 
and Saiz-Jimenez, 2015; Maciejewska et  al., 2016), mines 
(Park et  al., 2009; Senhorinho et  al., 2018), and marine 
environments (Rosenfeld and ZoBell, 1947; Burkholder et al., 
1966; Patin et  al., 2016). The marine environment is a 
burgeoning source of clinically significant natural products, 
with over 30,000 previously described and more than 1,000 
novel compounds discovered each year since 2008 (Blunt 
et  al., 2016; Lindequist, 2016). Marine biodiversity contains 
an array of secondary metabolites synthesized by marine 
microfauna and microflora which are driving the focus of 
scientific research (Figure 3; Leary et  al., 2009). Ocean 
exploration for new natural products has been driven heavily 
by medicinal need. However, there is a lack of research on 
the ecological importance of antimicrobial compounds within 
natural habitats.

FIGURE 3 | Prevalence of published peer-reviewed literature containing each search term. The earliest study to use the term “antibiotic” was published in 1930. 
From 1930 to 2000, “hits” were recorded in 10-year increments, and from 2000 to 2018, the number of “hits” was recorded for each year.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mullis et al. Diversity of Antimicrobials

Frontiers in Microbiology | www.frontiersin.org 6 November 2019 | Volume 10 | Article 2518

The ecology of microorganisms is complex, due to the 
number of individuals and vast diversity of natural communities. 
Fierce competition is driven by a variety of factors such as 
finite nutrient availability, access to sunlight, and a lack of 
space. There are two mechanisms of competition. The first is 
a passive approach, which is resource consumption thus causing 
indirect competition (Hibbing et al., 2010; Morris, 2015; Ghoul 
and Mitri, 2016). The second method is through direct 
interference where microorganisms attempt to “fight” one another 
through use of chemicals or toxins (Hibbing et al., 2010; Ghoul 
and Mitri, 2016). Antimicrobial production is the most well-
known example of direct competition. Natural products produced 
by microorganisms are weaponized to gain a competitive 
advantage for essential nutrients and space (Chao and Levin, 
1981; Riley and Gordon, 1999; Abrudan et  al., 2015;  
Cornforth and Foster, 2015).

Antimicrobials can be  divided into many chemical classes 
and can have a range of actions against neighboring cells. 
Antimicrobials can be  broken down into two large groups: 
β-lactams and non-β-lactams (Donowitz and Mandell, 1988; 
Clairoux et  al., 1992). Within β-lactams the major classes 
are penicillins, β-lactams, cephems, and penems (Clinical and 
Institute, 2009). The major classes within non-β-lactams include 
aminoglycosides, glycopeptides, lipopeptides, macrolides, 
quinolones, and tetracyclines (Clinical and Institute, 2009). 
These classes all have various mechanisms of action which 
include inhibition of cell wall synthesis, protein synthesis, 
DNA replication and repair, and disruption of the cell membrane 
(Epand and Vogel, 1999; Lewis, 2013). Antimicrobials also 
have a range of toxicity which affects the minimum inhibitory 
concentration (MIC) (Vogelman and Craig, 1986). The MIC 
is defined as the minimum concentration of an antimicrobial 
to inhibit growth (Vogelman and Craig, 1986; Li et al., 2017). 
Antimicrobial MICs can vary between classes and can 
be  affected by surrounding cell concentration and cell type 
such as resistant, persistent, dormant, biofilm-associated or 
planktonic microorganisms (Li et  al., 2017). Based on the 
respective environment, antimicrobial toxicity can vary. 
Secondary metabolites including antimicrobials may serve 
additional roles in communication and cooperation between 
and among species.

Antimicrobials may also be  utilized as a means of 
communication, i.e. quorum sensing, or enabling commensal 
or mutualistic relationships within microbial communities 
(Ghoul and Mitri, 2016). Low doses of potentially harmful 
environmental stimuli such as of antimicrobials may produce 
beneficial effects in microbial cells via a process termed 
hormesis (Southam, 1943; Kendig et  al., 2010). The concept 
of hormesis is not new (Stebbing, 1982); however, antimicrobial-
induced hormesis has become a new avenue of research (Yim 
et  al., 2007; Mathieu et  al., 2016; Okada and Seyedsayamdost, 
2017). Different concentrations of antimicrobial compounds 
may result in various ecologically significant hormetic effects 
(Stebbing, 1982; Calabrese, 2005; Davies et al., 2006) influencing 
the expression of genes potentially involved in elevated virulence 
in pathogenic Bacteria (Davies, 2006; Linares et  al., 2006; 

Mathieu et  al., 2016; Arseneault and Filion, 2017; Dersch 
et al., 2017) increased biofilm formation (Hoffman et al., 2005; 
Ranieri et  al., 2018) and mutation frequency (Gillespie et  al., 
2005; Henderson-Begg et  al., 2006), stimulation bacterial 
adhesion (Fitzpatrick et al., 2002), and enhanced gene transfer 
(Wang et  al., 2005). Diverse classes of antimicrobials have 
been analyzed to determine their effects on bacterial physiology. 
For instance, beta-lactam antibiotics that inhibit cell wall 
biosynthesis have been found to increase biofilm formation, 
while antimicrobials such as fluoroquinolones targeting specific 
cellular functions like DNA replication may decrease formation 
(Marti et  al., 2017; Ranieri et  al., 2018; Yu et  al., 2018). 
Likewise, some antimicrobials can alter bacterial cell surface 
properties such as ionic charge and cause more favorable 
conditions for adherence and biofilm formation (Kumar and 
Ting, 2013; Kumar and Anthony, 2016; Ranieri et  al., 2018). 
The specific roles of antimicrobial compounds in nature are 
highly debated, which increases the need for further study 
in natural environments (Davies, 2006; Keren et  al., 2013; 
Dwyer et  al., 2015; Ranieri et  al., 2018). The prevalence of 
antimicrobial-driven symbioses has been demonstrated within 
terrestrial and marine ecosystems (Hardin, 1960; Hutchinson, 
1961; Fredrickson and Stephanopoulos, 1981; Smith and 
Waltman, 1995; Fontaine et  al., 2003; Prosser et  al., 2007; 
Coyte et  al., 2015), yet the majority of such studies were 
conducted using traditional culture-dependent techniques under 
controlled laboratory conditions, and therefore not representative 
of the natural environment.

Antimicrobial production in the environment is a relatively 
young area of research (Riley and Gordon, 1999; Woon and 
Fisher, 2016; Van Der Meij et  al., 2017), which appears to 
result in a wide range of ecological effects. An antimicrobial 
compound can cause surrounding cells to enter dormancy 
(Gilbert et  al., 1990; Song et  al., 2019), inhibition of specific 
cellular functions such as DNA replication and repair 
(bacteriostatic) (Vogelman and Craig, 1986; Lewis, 2013), death 
(bactericidal) (Nastro and Finegold, 1972; Vogelman and Craig, 
1986; Peterson and Shanholtzer, 1992; Voo et al., 2016), become 
tolerant to the secondary metabolite (Lewis, 2017), or become 
resistant to the antimicrobial (Cohen, 1992; Riley and Gordon, 
1999; Woon and Fisher, 2016). Cells that detect a molecule 
that is not favorable can go into dormancy until more favorable 
conditions return (Song et  al., 2019). Some dormant cells 
could become persister cells which are highly tolerant to 
antimicrobial compounds (Lewis, 2007, 2008, 2010). Cells that 
become tolerant or resistant to antimicrobials will be  able to 
withstand the metabolites and even proliferate while other 
populations are inhibited (Lewis, 2010, 2017). It is plausible 
that all of these events could be  occurring simultaneously, 
which could culminate in shifts in microbial diversity thereby 
altering the prevailing metabolic function of the environment 
(Woon and Fisher, 2016). The key to understanding such a 
theory would be  to monitor the environment over time and 
document shifts as a result of antimicrobial production. As 
such, there is a lack of natural ecological data in regard to 
what drives different, uncultured, and/or under-studied 
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microbial taxa to produce antimicrobials (Hibbing et al., 2010; 
Zhu et  al., 2014; Van Der Meij et  al., 2017).

ARCHAEAL ANTIMICROBIALS

Antimicrobial production in Bacteria has been studied for over 
85  years and Eukarya have been studied for almost 60  years, 
but Archaea have received comparatively little attention (O’connor 
and Shand, 2002; Shand and Leyva, 2007). Proteinaceous archaeal 
antimicrobial compounds (i.e., archaeocins) were discovered in 
halophiles in 1982 (O’connor and Shand, 2002), and were once 
thought to be  limited to extreme halophiles (i.e., halocins) until 
sulfolobicin was described in Sulfolobus islandicus, a 
hyperthermophilic Crenarchaeote found from solfataric fields 
in Iceland (Prangishvili et al., 2000; O’connor and Shand, 2002). 
Halocin production has been described as universal across 
rod-shaped archaeal halophiles, but only a small portion have 
been characterized (Shand and Leyva, 2007; Mandal et al., 2014). 
There have been six categories proposed (Rodriguez-Valera et al., 
1982), but the type of halocin produced is dependent on the 
producing microorganism, the surrounding environmental 
conditions, and growth phase of the culture (Besse et al., 2015). 
Halocins cause membrane deformation and inhibits Na+/H+ 
antiporter in halobacteria (Demain et  al., 2019). Sulfolobicins 
have been found to belong to only members of Sulfobales and 
affects membrane structure (Demain et  al., 2019; Kumar and 
Tiwari, 2019). Both halocins and sulfolobicins have different 
structures than bacterial antimicrobials that affect Archaea, which 
could be  indicative of unique compounds yet to be  surveyed 
for medicinal purposes (Nagrale and Gawande, 2018).

Polymorphic toxin systems (PTSs) are used by Bacteria 
against similar strains or species by cleaving the toxin domain 
off of the protein upon entry into the neighboring cells (Zhang 
et  al., 2012a; Jamet and Nassif, 2015). The toxins released 
from the PTSs can attack a wide array of targets including 
nucleic acids, lipids, and proteins (Zhang et al., 2012a; Makarova 
et  al., 2019). Archaeal homologs of PTSs have been identified 
but have not been fully explored (Makarova et  al., 2019). 
Makarova et  al. surveyed archaean genomes and found 141 
genomes to contain genes predicted to encode PTSs (Makarova 
et  al., 2019). Many of the archaeal genomes did not have 
recognizable self-defense mechanisms compared to bacterial 
defenses, which can suggest novel or unique self-defense 
mechanisms that could be  creating toxic compounds with 
antimicrobial activity (Makarova et  al., 2019).

The number of cultured Archaea is few compared to Bacteria 
and fungi; therefore, bioprospecting for antimicrobially active 
natural products is currently limited in laboratory settings (Gagen 
et  al., 2013; Besse et  al., 2015). There has been very little focus 
on secondary metabolites with potential antimicrobial activity 
within Archaea (Kumar and Tiwari, 2019; Makarova et al., 2019). 
Archaea likely contain an array of novel or unique antimicrobial 
biosynthesis pathways (Roller and Gowan, 2016) that may 
be  elucidated through culture-independent methods, especially 
considering the widespread distribution of this domain in 

non-extreme terrestrial and marine environments (Stein and Simon, 
1996; Karner et  al., 2001; Francis et  al., 2005; Biddle et  al., 2006; 
Leininger et  al., 2006; Lipp et  al., 2008; Zhang et  al., 2012b; 
Seitz et  al., 2016; Hoshino and Inagaki, 2019).

CONTINENTAL SOILS, A FERTILE 
GROUND FOR ANTIMICROBIAL 
DISCOVERY

Continental environments are diverse, but only comprise 
approximately 30% of Earth’s surface. Soils are dynamic due 
to their heterogenous nature and microbes there are diverse 
(Raaijmakers and Mazzola, 2012). Soils experience spatial and 
temporal variation from both abiotic and biotic factors, which 
can cause microbes to experience difficulty in proliferating 
and surviving (Raaijmakers and Mazzola, 2012). Nutrient 
limitation, e.g., nitrogen and phosphorus, as well as increased 
cellular abundance have been found to induce microbial 
competition mechanisms including antimicrobial production 
(Bibb, 2005; Ghoul and Mitri, 2016; Dundore-Arias et  al., 
2019). Natural product production has been extensively studied 
in soils since the discovery of penicillin in 1929 (Ligon, 2004).

Although antimicrobials are phylogenetically widespread 
throughout Bacteria and portions of Archaea and Eukarya, 
most studies in continental soils have focused on a relatively 
small fraction of microorganisms that are genetically predisposed 
to producing antimicrobial compounds (Fiedler et  al., 2005; 
Tiwari and Gupta, 2012). Some of the most notable lineages 
include Actinomycetales (i.e. actinomycetes), Myxobacteria, 
Bacillus and, to a lesser extent, some archaeal lineages, filamentous 
fungi, and Cyanobacteria. The gram-negative Actinobacteria, 
especially Streptomycetes spp. and spore-forming actinomycetes, 
produce bioactive compounds demonstrating antibacterial, 
antifungal, and antitumor activities (Berdy, 1995; Lazzarini 
et  al., 2000). More than 10,000 known bioactive products have 
been discovered in Streptomyces (Bérdy, 2012; Weber et  al., 
2015), while some actinomycetes are capable of creating 30–50 
secondary metabolites (Katz and Baltz, 2016). Genomic analyses 
from different ecosystems, such as soils and sediments, have 
found that between 5 and 10% of actinomycete genes are for 
secondary metabolite synthesis, including antimicrobial 
compounds (Nett et  al., 2009; Ghoul and Mitri, 2016).

Although there has been considerable focus on actinomycetes 
and Streptomycetes, the capacities of these well-studied genera 
have yet to be  exhausted as new genes are currently being 
discovered from these organisms. For example, new products 
with antimicrobial activity such as thiopeptide antibiotics have 
been isolated from Streptomyces (Blunt, 2009; Nandhini et al., 
2018; Schneider et al., 2018). Cryptic gene clusters, or biosynthetic 
clusters that have yet to be identified, have recently been described 
in this genus via culture-independent data mining through 
genomics (Aigle et  al., 2014; Antoraz et  al., 2015; Weber et  al., 
2015). Thus, both novel and known actinomycetes likely produce 
uncharacterized secondary metabolites. Myxobacteria have also 
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been shown to contain novel antimicrobial producing gene 
clusters but are typically difficult to culture (Strohl, 2004). Bacillus 
spp., (a member of Firmicutes phyla) is a prolific producer of 
cyclic peptides and polyketides that have limited overall structural 
diversity (Tillett et  al., 2000; Stein, 2005). Shifting research to 
these underexplored groups such as Firmicutes can hold more 
potential for novel or unique antimicrobial production.

There is some debate regarding the further exploration of 
continental environments for bioactive molecules. Most literature 
supports prospecting in unexplored and underexplored ecosystems 
(Indraningrat et  al., 2016; Danilovich et  al., 2018), while some 
still support exploring soil for novel bioactive molecules (Daniel, 
2004; Borsetto and Wellington, 2017). One explanation for this 
debate is the complexity of soils, as they contain distinct 
microhabitats of differing physicochemical gradients and 
environmental conditions (Torsvik and Øvreås, 2002) that host 
diverse microorganisms whose specific metabolisms and 
interactions are integral to biogeochemical cycling (Daniel, 2004). 
Additionally, continental soils have the largest microbial abundance 
per gram in comparison to other ecosystems (Killham, 1994), 
and complex communities with closely co-located populations 
may support novel members with the potential to produce 
secondary metabolites (Crits-Christoph et al., 2018). While these 
interconnected systems and the secondary metabolites sourced 
from them have been studied for decades, the limitations of 
culture-based techniques has led to a drastic decrease in the 
discovery rate of novel secondary metabolites since the Golden 
Age (Strohl, 2000; Daniel, 2004). This leaves the remaining 
question: what are we missing? Culture-independent sequencing 
methods have pointed us in the right direction of potentially 
undiscovered natural products or unknown derivatives of known 
bioactive molecules in alternative environments such as freshwater, 
marine, and deep subsurface systems.

FRESHWATER EXPLORATION

Antimicrobial production exploration has extended to freshwater 
environments over the past few decades (Sibanda et  al., 2010; 
Bharathi et al., 2011; Saravanan et al., 2015; Passari et al., 2017). 
Much of the research surrounding freshwater antimicrobials has 
focused on Cyanobacteria due to their contributions to carbon 
cycling (Stanier and Bazine, 1977; Carmichael, 1994; Herrero 
et  al., 2001; Rai, 2018) and production of toxins that act as 
direct competition mechanisms (Swain et al., 2017). Cyanobacteria 
genomes have been shown to contain many gene clusters of 
PKSs and NRPSs (Christiansen et  al., 2001; Schembri et  al., 
2001; Moffitt and Neilan, 2003; Ehrenreich et al., 2005; Pancrace 
et  al., 2017; Zhang et  al., 2017; Demay et  al., 2019; Maurya 
and Mishra, 2019). There have been at least 33 PKS or NRPS 
clusters experimentally identified within Cyanobacteria and some 
have been linked to the production of microcystin and 
anabaenopeptilide in freshwater and marine environments 
(Pancrace et  al., 2017). Microcystins and anabaenopeptilides 
are secondary metabolites that inhibit protein phosphatases and 
serine proteases, respectfully (Repka et  al., 2004). Both of these 
toxins can be  used to inhibit protein synthesis thus inhibiting 

surrounding microorganisms from proliferating. Multiple species 
of Cyanobacteria produce antimicrobials that defend against 
harmful pathogens such as B. subtilis, S. aureus, Streptococcus 
mutans, and E. coli (Madhumathi et  al., 2011). Microcystis 
aeruginosa and Nodularia spumigena produce microcystin and 
nodularin, which are used to inhibit surrounding community 
members (Moffitt and Neilan, 2000, 2001; Tillett et  al., 2000). 
However, analyses of the ketosynthase domain within PKS genes 
have revealed more biosynthetic diversity within Cyanobacteria 
genera including Cylindrospermopsis and Umezakia (Moffitt and 
Neilan, 2003). Freshwater Cyanobacteria encode diverse PKSs 
and NRPSs are and able to produce a wide array of antimicrobial 
compounds including cyclic peptides, macrolides, and terpenoids 
(Ehrenreich et  al., 2005; Busti et  al., 2006; Frangeul et  al., 2008; 
Silva-Stenico et  al., 2011; Swain et  al., 2017). These studies 
suggest that Cyanobacteria may contain uncharacterized 
biosynthetic gene clusters or create novel compounds. Additionally, 
it has been suggested that undifferentiated filamentous and 
heterocystous strains (e.g., Anabaena, Nodularia, Nostoc, and 
Spriulina) show the greatest potential for natural product 
biosynthesis (Ehrenreich et al., 2005). Over 60% of Cyanobacteria 
genera are capable of biosynthesizing secondary metabolites with 
putative antimicrobial activity (Demay et  al., 2019). There have 
been 260 compound families of Cyanobacteria secondary 
metabolite products and can have a range of activities including 
lethality, cytotoxicity, antibacterial, anti-microalgal, and enzyme 
inhibition (Demay et  al., 2019). Due to their PKS and NRPS 
diversity (Brito et  al., 2015; Mazard et  al., 2016), Cyanobacteria 
will likely be  the primary focus for future exploration of novel 
or unique antimicrobials in freshwater environments. Putative 
antimicrobial activity is suspected based on the discovered gene 
clusters; however, many of the gene clusters have only been 
observed from a culture-independent standpoint (Demay et  al., 
2019). Cyanobacteria also have been heavily investigated for 
the toxin production that can have an antimicrobial affect 
(Carmichael, 1992, 1994; D’agostino et  al., 2016). Detection of 
PKS and NRPS domains is an important first step in identifying 
putative antimicrobial production. To definitively state that 
antimicrobial production is occurring, both culture-dependent 
and culture-independent needs to be  performed. Determining 
the ecology of Cyanobacteria secondary metabolite producers 
would require culture-dependent methods to have concrete 
evidence of antimicrobial activity (Demay et  al., 2019).

Many Bacteria isolated from freshwater environments have 
shown antimicrobial activity including Actinobacteria and 
Proteobacteria which are typically highly abundant phyla in 
freshwater sediment communities (Zhang et al., 2015; Zothanpuia 
et  al., 2016; Chung et  al., 2018; Nam et  al., 2018; Passari et  al., 
2018; Koch et  al., 2019). Isolates collected from sediments in 
Tamdil Lake, India belonged to 10 different genera and seven 
of the isolates had type II PKS and NRPS (Zothanpuia et  al., 
2016; Passari et al., 2018). Detection of these genes was performed 
using PCR selecting for the ketosynthase domains and adenylation 
domains for PKS and NRPS, respectively (Zothanpuia et  al., 
2016). Along with the detection of PKS and NRPS domains, 
the isolates were grown and tested for antimicrobial production 
by analyzing the zones of clearing, also known as zones of 
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inhibition, around the inoculation site (Zothanpuia et  al., 2016). 
The isolates containing biosynthetic gene domains were identified 
as Staphylococcus, Methylobacterium, Lysinibacillus, Bosea, 
Aneurinibacillus, Bacillus, and Novosphingobium (Zothanpuia et al., 
2016). Detection of biosynthetic gene clusters in these isolates 
is the first step in determining the ecology of PKS and NRPS 
metabolites in situ. Determining what metabolite is created, the 
mechanism of action can be determined which can then elucidate 
what that metabolite is being used for against surrounding 
community members. All of these genera have been underexplored 
for antimicrobial production, especially Novosphingobium, which 
could indicate an untapped reservoir for unique or novel 
antimicrobial genes (Zothanpuia et  al., 2016). An isolate from 
Nakdong River, South Korea was identified as Paucibacter aquatile 
and contains nine biosynthetic gene clusters that are involved 
in lantipeptide, bacteriocin, terpene, and NRPS biosynthesis 
(Chung et  al., 2018). Lantipeptides and terpenes do extensive 
damage to microbial cell walls thus killing surrounding cells 
(Chatterjee et  al., 2005; Sieniawska et  al., 2017). Lantipeptides 
and terpenes could be  used to lyse surrounding cells to gain 
access to nutrients harbored by the surrounding cells, eliminate 
competition, or gain access to spatial resources (Chatterjee et al., 
2005; Sieniawska et al., 2017). Bacteriocins are much more diverse 
in mechanisms of action so these ribosomal produced molecules 
could inhibit or kill surrounding cells (Yang et  al., 2014). 
Bacteriocins could be used as a competitive advantage to eliminate 
different types of surrounding microbial cells based on the 
mechanism of action (Yang et  al., 2014). To date, there are only 
three cultured representatives within Paucibacter, which could 
be a prolific antimicrobial producer based on preliminary screenings 
and genome analyses (Pheng et  al., 2017; Chung et  al., 2018; 
Nam et  al., 2018).

MINING FOR ANTIMICROBIALS

Terrestrial mines have been heavily investigated for microbial 
communities adapted for the extreme conditions, such as pH, 
temperature, lack of sunlight, and nutrient limitation, associated 
with mining activity (Rowe et al., 2007) and acid mine drainage 
(Baker and Banfield, 2003). Many factors can affect antimicrobial 
production including oxygen, temperature, pH, carbon, nitrogen, 
and phosphorus availability (Raaijmakers et  al., 2002). 
Fermentation is the dominant metabolism that creates 
antimicrobial products (Harms et  al., 2017). If there is high 
oxygen concentration, then fermentation will not occur, thus 
causing inhibition of antimicrobial production. Microorganisms 
have optimum temperature and pH for growth and for metabolic 
activity (Nastro et  al., 2011; Wang et  al., 2011; Vijayakumari 
et  al., 2013). Temperature can affect the microorganism’s ability 
to proliferate and metabolize efficiently (Gillooly et  al., 2001). 
The enzymes produced from metabolic activity including products 
of PKSs and NRPSs can have reduced affinity for its respective 
substrates if the pH is too far from the microbe’s optimum, 
which can then cause enzymes to be less efficient (Dixon, 1953). 
Antimicrobial production can be  upregulated in environments 
with limited phosphate and nitrate availability (Bibb, 2005; Van 

Wezel and Mcdowall, 2011; Liu et  al., 2013; Van Der Heul 
et al., 2018). Some mines have been characterized to be nutrient 
limited especially in phosphate such as Sanford Underground 
Research Facility (Osburn et  al., 2014). Mining also produces 
acid mine drainage which causes a large amount of metals and 
sulfides to be introduced to the environment (Baker and Banfield, 
2003). Metal precipitates in acid mine drainage has been found 
to have an indirect effect on nutrient availability including 
phosphorus (Hogsden and Harding, 2011; Denicola and Lellock, 
2015). Further examination of mines including the abiotic factors 
could give insight into regulation of antimicrobial production.

A study conducted on an abandoned coal mine in South 
Korea found eight antimicrobial compounds from a Streptomycete 
isolate exhibited moderate activity against M. luteus, E. hirae, 
and methicillin resistant Staphylococcus aureus (MRSA) (Park 
et  al., 2014). Alkaline mines have also been found to host 
microorganisms capable of antimicrobial production (Hill et al., 
2017). A Nocardiopsis sp. isolated from alkaline mine waste 
from China produced Napthospironone A, which exhibited 
moderate activity against B. subitilis, E. coli, S. aureus, and 
Aspergillus niger (Ding et  al., 2010). This finding suggests that 
mine-sourced antimicrobials may be  used to combat emerging 
resistant strains of Bacteria such as S. aureus and E. coli. Further 
determination of what secondary metabolites are produced from 
these isolates would give tremendous insight into how the 
antimicrobial(s) affect the ecology of the surrounding environment. 
For example if the antimicrobial compounds are determined 
to inhibit surrounding microbial cells, then we could hypothesize 
that the antimicrobial producer is trying to gain access to 
surrounding nutrients or spatial resources. If the antimicrobials 
lyse surrounding cells, then we  could hypothesize a predatory 
interaction where the producer is using the lysed cell for energy 
rather than what is available in the surrounding environment.

Many mines are rich in heavy metals including copper, 
iron, nickel, cadmium, and chromium, which have been found 
to increase or decrease secondary metabolism in many 
prokaryotes and fungi (Chakrabarty and Roy, 1964; Weinberg, 
1990; Haferburg et  al., 2007). Streptomyces galbus can produce 
antifungals when their medium includes copper, zinc, or iron, 
but can experience reduction of antimicrobial production in 
the presence of cadmium (Paul and Banerjee, 1983; Raytapadar 
et  al., 1995; Haferburg et  al., 2007). Chromium has been used 
to increase actinorhodin production from Streptomyces coelicolor 
(Abbas and Edwards, 1990; Haferburg et al., 2007). Antimicrobial 
compounds that are found in the presence of metals can form 
strong complexes such as chloramphenicol in the presence of 
calcium, iron, palladium, and gold, which can further enhance 
their activity against surrounding microorganisms such as S. 
aureus, E. coli, B. subtilis, and P. aeruginosa (Al-Khodir and 
Refat, 2016). Such complex interactions between microorganisms 
and the surrounding geochemistry could drive the production 
of novel compounds not seen in model laboratory systems 
(Jose and Jebakumar, 2014; Hill et  al., 2017). Antimicrobial 
gene regulation has been studied in the model genus Streptomyces 
and found in nutrient limitation such as nitrate; antimicrobial 
production is increased (Chakraburtty and Bibb, 1997; Song 
et  al., 2004; Bibb, 2005). Many environments like mines are 
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oligotrophic and are limited in nitrate, which could therefore 
induce antimicrobial production. This hypothesis of oligotrophy 
driving antimicrobial production can be  used to target specific 
environments for putative natural antimicrobial production.

CAVING FOR UNKNOWN 
ANTIMICROBIALS

It is estimated that only 10% of all caves have been discovered 
and only half of the known caves have been explored (Ghosh 
et al., 2017). Caves contain isolated environments within Earth’s 
subsurface that are devoid of sunlight, making them an extreme 
environment for life (Northup and Diana, 2001). Low nutrients 
can encourage competition for limited resources which can 
lead to antimicrobial production to inhibit or eliminate 
surrounding microorganisms (Kuenen and Bos, 1989; Summers 
Engel et  al., 2001; Fontaine et  al., 2003; Zeppilli et  al., 2018).

The production of novel antimicrobial compounds has been 
investigated in continental and marine caves over the past 30 years 
(Ghosh et  al., 2017). Analysis of microbial community structure 
from various caves has revealed new species of actinomycetes 
(Groth et  al., 1999; Lee et  al., 2000; Jurado et  al., 2005),  
which may be  promising leads to new antimicrobial products 
(Ningthoujam et  al., 2009; Cheeptham and Saiz-Jimenez, 2015). 
For example, cave soils from Phatup Cave Forest Park and 
Phanangkhoi Cave in Thailand yielded four actinomycete-sourced 
natural product isolates that exhibited inhibition of virulent 
Bacteria and tumor cells including Bacillus cereus, MRSA, and 
breast cancer (Nakaew et  al., 2009). Over 400 actinomycetes 
isolates from soils and rocks located in Helmcken Falls Cave in 
British Columbia were screened for antimicrobial activity against 
Candida albicans, Micrococcus luteus, Mycobacterium smegmatis, 
Psuedomonas aeruginosa, Acinetobacter baumannii, Klebsiella 
pnuemoniae, and extended spectrum β-lactamase Escherichia coli 
(Cheeptham, 2013). Many Bacteria have become resistant to 
existing antimicrobials via interaction with surrounding secondary 
metabolites naturally created and from medicinal purposes thus 
increasing the need for novel or unique compounds to combat 
them (Nakaew et al., 2009; Yücel and Yamaç, 2010; Rajput et al., 
2012; Cheeptham, 2013; Montano and Henderson, 2013). Future 
analyses should focus on what types of antimicrobials are produced 
in order to determine the target for of the secondary metabolites, 
e.g., cell wall synthesis inhibition or protein synthesis inhibition. 
Upon discovery of the target, we  may be  able to determine 
what is happening in situ between the producer and the target.

Streptomyces and Nocardia isolates from Siberian carbonate 
cave deposits produced antimicrobial and antifungal compounds 
(Axenov-Gibanov et  al., 2016). These Streptomyces are one of the 
most prolific producers of antimicrobial compounds, and finding 
isolates that produce antimicrobial compounds within oligotrophic 
systems further supports the hypothesis of nutrient limitation 
driving natural product biosynthesis (Maciejewska et  al., 2017). 
Samples from Mystery Cave and Norman’s Cave in Exuma Cays, 
Bahamas were shown to contain four genera with genes specific 
for PKS and/or NRPS pathways (Hodges et al., 2012). Submarine 
caves pose a unique extreme environment for microbial communities 

including salinity gradients (Fichez, 1990; Sket, 1996), limited 
nutrients (Ghosh et  al., 2017), and anoxic conditions (Jaume and 
Boxshall, 2009). Thus far few studies have been conducted on 
microbial ecology in submarine caves that focus on antimicrobial 
production. Cave exploration for antimicrobial production can 
lead to more insight into microbial ecology in extreme environments 
and possibly novel or unique compounds (Zeppilli et  al., 2018).

DIVING INTO THE ABYSS FOR 
ANTIMICROBIAL DISCOVERY

The diversity of oceanic habitats is extensive, ranging from shallow, 
sunlit neritic zones to the eternal darkness of the hadalpelagic, 
from eutrophic coastal environments to oligotrophic gyres. 
Exploiting various environments for antimicrobial compounds 
have diversified in the past decades to include marine ecosystems 
(Figure 3), yet many of these have yet to be explored for unique 
antimicrobial products. Bioinformatic data mining has been used 
to analyze existing metagenomic datasets to identify putative 
essential PKS and NRPS domains such as those from the 2006–
2007 Galathea 3 global multidisciplinary research expedition 
(Machado et  al., 2015; Marchado, 2016; Kealey et  al., 2017). 
Within this data mining venture, a total of 21 genomes belonging 
to Alphaproteobacteria and Gammaproteobacteria were found to 
contain numerous clusters with potential antimicrobial activity 
(Machado et al., 2015). Another study that included metagenomic 
sequencing from the Rabigh coast of Saudi  Arabia recovered 
many taxa (e.g., Proteobacteria, Bacteroides, Actinobacteria, 
Cyanobacteria, Acidobacteria, and Firmicutes) that contained 
antibiotic portions of PKS and NRPS gene domains (Al-Amoudi 
et  al., 2016). This study found taxa that are not traditionally 
targeted for antimicrobial production, like actinomycetes.

Actinomycetales have received extensive research in oceanic 
environments (Zhu et al., 2014; Weber et al., 2015). Actinomycetes 
can survive a wide range of environmental conditions such 
as high pressure (maximum of 1,100  atm) (Colquhoun et  al., 
1998a,b; Kim et  al., 2006), temperatures (0–100°C) (Fergus, 
1964; Cross, 1968; Whyte et  al., 1999; Kim et  al., 2006), oxic 
or anoxic conditions (Goodfellow and Williams, 1983), and 
pH (2.8–10.5) (Williams et  al., 1971; Schippers et  al., 2002; 
Kim et al., 2006; Mehta et al., 2006). The ubiquity of actinomycetes 
has led to increasing efforts in their recovery and isolation 
from marine environments for bioprospecting potential 
antimicrobial compounds. Imada et  al. (2007) showed that the 
removal of seawater from culture media ceased antimicrobial 
production in marine actinomycetes. This finding supports the 
idea of certain conditions within a marine ecosystem upregulate 
the expression of antimicrobial production genes.

The marine environment is highly diverse and contains many 
dynamic habitats that contain specialized microbial communities. 
All environmental parameters must be considered when interpreting 
microorganisms’ function within a specific environment. The 
nutrients that are available for use can dictate which microbes 
are present and actively functioning. Physical parameters can 
affect the biogeography of microorganisms. The marine environment 
hosts many dynamic systems, which can host diverse microbial 
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communities. A comprehensive approach of analysis including 
biotic and abiotic data will give more clarity to what is driving 
microorganisms to produce antimicrobial compounds.

DRILLING DOWN TO DISCOVER 
ANTIMICROBIALS IN THE  
DEEP SUBSURFACE

The deep subsurface biosphere was generally defined as life 
present greater than 1  m below seafloor (mbsf) (Jørgensen 
and Boetius, 2007; Orsi et  al., 2013b), but has been updated 
to establish an age and depositional setting (Kirkpatrick et  al., 
2016). Subsurface microbial life is widespread, with communities 
documented in oceanic crust and sediments as deep as 2,458 
mbsf (Inagaki et  al., 2015). The deep subsurface is considered 
an extreme environment due to low and high temperatures, 
high pressure, lack of nutrient/carbon availability, and represents 
an ideal location to understand how microbial populations 
co-exist under resource-limited conditions. As depth increases, 
metabolism slows and growth rate decreases, suggesting that 
cell maintenance may be the most important factor for survival 
(Jørgensen and Marshall, 2016). How microbial communities 
survive (and possibly thrive) within this environment is an 
ongoing question that has continued to drive research there. 
To date, research in these environments has predominantly 
focused on prokaryote metabolism and biogeochemical cycling 
(Orcutt et  al., 2013; Orsi et  al., 2013b; Baker et  al., 2015; 
Long et  al., 2016; Zinke et  al., 2017; Orsi, 2018; Reese et  al., 
2018). However, no studies to date have focused on the prevalence 
of antimicrobial production or antimicrobial resistance in the 
deep subsurface biosphere.

Some studies have identified the potential for antimicrobial 
production via metatranscriptomics (Orsi et  al., 2013b; Zinke 
et  al., 2017) as well as culture-dependent techniques (Pathom-
Aree et  al., 2006). In the latter study, actinomycetes were found 
from the Mariana Trench and identified using species-specific 
primers targeting this specific taxon of microorganisms. Of the 
38 samples, over half had NRPS gene sequences and nine had 
PKS Type I  gene sequences (Pathom-Aree et  al., 2006). Some 
of the recovered gene sequences encoding for putative secondary 
metabolite production could not be  identified when compared 
to existing databases. The presence of potentially novel NRPS 
and PKS genes warrants further research to determine which 
secondary metabolites are likely produced in the deep subsurface.

Deeply buried sediments from the Peru Margin (Ocean 
Drilling Program Leg 201, Site 1229D) were used for 
metatranscriptome analyses to examine putatively active 
microorganisms functioning within the sediment. This study 
concluded that Actinobacteria were one of the dominant 
metabolically active groups, as they were represented in every 
mRNA sample from site 1229D (Orsi et  al., 2013a). Secondary 
metabolite biosynthesis was also found in every depth sampled; 
however, Actinobacteria were not the only taxa producing these 
PKSs and NRPSs (Orsi et  al., 2013b). Other notable taxa 
producing PKSs and NRPSs include Bacteroidetes, Firmicutes, 
and Proteobacteria (Orsi et  al., 2013b). Actinobacteria with 

PKSs and NRPSs were dominant in shallower samples, but 
decreased in abundance with increasing depth. The deeper 
sediment samples contained mostly Betaproteobacteria and 
Gammaproteobacteria with PKSs and NRPSs. This finding 
indicates that there are other taxa producing compounds that 
could be  novel or unique.

Assuming Actinobacteria to be  the most prolific producers 
of antimicrobials, the discovery and isolation of novel members 
of these lineages provide promise for antimicrobial activity in 
other subsurface environments (Thornburg et  al., 2010). 
Actinomycete species have been found from deep-sea environments 
including hydrothermal vent fluids within the Mariana Trough 
and Suiyo Seamount (Kysela et  al., 2005) and hydrothermal 
sediments of Guaymas Basin (Naganuma et  al., 2007). Many 
deep subsurface environments have been explored through ‘omics’ 
to analyze microbial community structure and function, but in 
doing so have also stumbled upon a hotbed of actinomycete 
lineages. Bacterial 16S rRNA gene sequences related to 
actinomycetes have been found in deep ocean water column 
and sediment (Cole et  al., 2007, 2008; Huber et  al., 2007; 
Thornburg et  al., 2010). In the course of this review, we  used 
assembled metagenomic data collected from IODP Expedition 
327 to Juan de Fuca Ridge basaltic fluids (Jungbluth et  al., 
2017), the IODP Expedition 336 to the western Flank of the 
Mid-Atlantic Ridge basaltic fluids (Meyer et al., 2016), South Africa 
Gold Mine (Lau et  al., 2014; Magnabosco et  al., 2014), and 
the Coast Range Ophiolite Microbial Observatory (Twing et  al., 
2017) and analyzed for putative antimicrobial production using 
the NaPDoS pipeline (Ziemert et  al., 2012). The western Flank 
of the Mid-Atlantic Ridge is commonly referred to North Pond 
due to the large pond of sediment located on the western side 
of the ridge above basalts (Langseth et al., 1992). The condensation 
domain of the NRPS gene was found in all deep subsurface 
data analyzed through NaPDoS (Figure 4), illustrating the 
diversity of antimicrobial-related sequences within deeply buried 
marine environments. In contrast, the ketosynthase domain of 
the PKS gene was found in all subsurface sites for fatty acid 
synthesis (Figure 5). Only samples collected from North Pond 
basaltic fluids contained ketosynthase-related sequences associated 
with antimicrobial production. Fatty acid synthesis and antibiotic 
production genes are very similar to one another, and antimicrobial 
PKSs may be derived from fatty acid synthesis genes (Hopwood, 
1999; Metz et  al., 2001; Tsai, 2018). The similarity between 
antimicrobial PKSs and fatty acid synthesis genes may explain 
why there are two distinct clades (Figure 5). Many marine 
Bacteria have expressed fatty acid synthesis genes with homology 
to PKS genes (Metz et  al., 2001), particularly within subsurface 
environments. Sedimentary (and basalt-hosted) microorganisms 
could be utilizing the PKS gene to synthesize fatty acids necessary 
for cellular structures like the cell membrane (Metz et  al., 2001; 
Selvin et al., 2016; Tsai, 2018). The deeply buried marine biosphere 
may host novel or unique antimicrobial activity that contributes 
to the intricate ecology of the system, microbe-microbe 
interactions, and habitability.

Here, we  illustrate the usefulness in metagenomic studies to 
elucidate putative antimicrobial production as well as the caveats 
of such an approach. The possibility of capturing antimicrobial 
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producing genes from solely culture-independent studies can save 
time and resources (Handelsman et  al., 1998; Banik and Brady, 
2010; Garcia et  al., 2018). Metagenomic analyses are valuable in 
that researchers can identify putative metabolic processes including 
antimicrobial production (Bergmann et  al., 2007). Although, 
DNA-based analyses is an excellent first step at identifying potential 
microbial activities, metagenomic analyses can also detect dormant, 
dead, or low metabolically active community members (Davis 
et  al., 1986; Orcutt et  al., 2013). Taken as a hypothesis-driving 
guide, metagenomics can uncover hidden potential for 
antimicrobials, but ideally metatranscriptomics, proteomics, and 
metabolomics should be performed. A combination of approaches 
to analyze antimicrobial production would be  more efficient and 
supportive. Thus far many studies have only surveyed antimicrobial 
production via gene-based (Moffitt and Neilan, 2003; Zothanpuia 
et  al., 2016; Demay et  al., 2019), culture-dependent (Nakaew 
et al., 2009; Ding et al., 2010; Cheeptham, 2013; Axenov-Gibanov 
et  al., 2016), and metagenomic studies (Machado et  al., 2015; 
Al-Amoudi et  al., 2016; Kealey et  al., 2017). Most surveying for 
antimicrobial production has previously focused on detection of 
PKS and/or NRPS domains by PCR amplification (Moffitt and 
Neilan, 2003; Ehrenreich et  al., 2005; Pathom-Aree et  al., 2006; 
Hodges et  al., 2012; Zothanpuia et  al., 2016; Passari et  al., 2018). 
This has been an enlightening approach to survey for putative 

antimicrobial production. However, this process only identifies 
one domain present within a given sample. An ‘omics’ approach 
will give the opportunity to find longer portions and possibly 
the entirety of PKS and NRPS genes. Metagenomics has become 
a more prominent source for surveying natural environments 
but is limited in determining activity. Metatranscriptomics, 
proteomics, and metabolomics would yield more concrete results 
of antimicrobial production (Orcutt et  al., 2013).

PUTTING ANTIMICROBIALS  
ON THE MAP

There is a pressing need for increased exploration of antimicrobials 
in natural environments due to the lack of information regarding 
the ecological roles of these compounds. The most favorable 
locales for bioprospecting can be  determined through microbial 
biogeography, which encompasses spatial distributions, dispersal, 
and inter- and intraspecies interactions (Martiny et  al., 2006) to 
better understand microbial communities across various 
environments (Coleman et  al., 2006). Analysis of environmental 
and geochemical parameters including temperature, salinity, pH, 
depth, nitrogen, carbon, and phosphorus can be  used to gain 
insight to why these microorganisms are producing antimicrobial 

FIGURE 4 | Phylogenetic tree of the condensation domain of the NRPS gene including sequences from terrestrial deep subsurface and marine deep subsurface 
sites. The reference sequences are from the Natural Product Domain Seeker (NaPDoS) repository. The alignment and tree were built using the NaPDoS pipeline 
(Ziemert et al., 2012). Red dots indicate bootstrap values greater than 50%.
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compounds. This data collection strategy can be  applied to each 
environment sampled for biosynthesis exploration. Each 
environment hosts a unique ecosystem that shapes how microbial 
communities interact and survive. A biogeographical approach 
not only incorporates the traditional methods of isolating bioactive 
compounds from natural environments, but also includes 
bioinformatic methods that aid in the discovery of uncultured 
microbes with the genetic potential to produce novel or unique 
antimicrobials. Assessing spatiotemporal trends in antimicrobial 
production through biogeography would provide a means to 
predict the presence and prevalence of antimicrobial compounds 
in different ecosystems. Yet, the few published studies on the 
biogeography of antimicrobial production have shown that spatial 
distributions are directly correlated with sequence differences in 
antimicrobial genes (Reddy et  al., 2014; Morlon, 2015; Charlop-
Powers et al., 2015). PKS and NRPS genes from environments 

in close proximity were more similar than those that were globally 
distant (Charlop-Powers et al., 2015), which is to be  expected.

Future antimicrobial-focused biogeography studies may benefit 
greatly from the vast quantities of publicly-available sequencing 
data, such as the creation and curation of maps of sample 
isolation sites within the eSNaPD (Reddy et  al., 2014) which 
represent hot spots for antimicrobial production. While these 
tools are useful in searching for antimicrobial producing genes, 
it must be  considered that data mining approaches are only 
good as the databases provided (Medema et  al., 2011; Ziemert 
et  al., 2012; Reddy et  al., 2014). Creating a hand-curated 
database containing each essential domain that could be present 
within the PKS or NRPS gene would be more useful to deduce 
antimicrobial production potential. Existing databases are a 
good resource for data mining; however, the results will be heavily 
dependent on the database. Constructing a comprehensive 

FIGURE 5 | Phylogenetic tree of the ketosynthase domain of the PKS gene including sequences from terrestrial and marine deep subsurface sites. The reference 
sequences are from the Natural Product Domain Seeker (NaPDoS) repository. The alignment and tree were built using the NaPDoS pipeline (Ziemert et al., 2012). 
Red dots indicate bootstrap values greater than 50%.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mullis et al. Diversity of Antimicrobials

Frontiers in Microbiology | www.frontiersin.org 14 November 2019 | Volume 10 | Article 2518

database that includes all variants of genes of interest, such 
as antimicrobial production, will give the best chance in correctly 
identifying putative functional genes (Boolchandani et al., 2019). 
Using one essential domain offers preliminary analysis of 
presence-absence; however, using multiple domain searches is 
ideal for supporting antimicrobial production from only culture-
independent data. Using a multi-domain search approach for 
antimicrobial production will give more concrete evidence of 
putative antimicrobial production. Based on the domains present 
and the organization of the domains will be  more efficient in 
determining functionality of the secondary metabolite. A single 
domain offers support of putative antimicrobial production 
because causes difficulty in determining the secondary metabolite 
that it encodes. Constructing a large-scale biogeography that 
encompasses various environments accompanied with physical 
and geochemical data can give tremendous insight into future 
exploration. A streamlined guide to antimicrobial exploration 
will offer better chances to understand microbial ecology and 
potentially discover novel compounds.

FUTURE DIRECTIONS

Generally, the microbial bioactive compounds that have been 
discovered come from actinomycetes (45%), fungi (38%), and 
unicellular eubacteria (17%) (Mahajan and Balachandran, 2012), 
but these numbers do not reflect the potential discoveries that 
remain if we  expand our studies to include underexplored 
ecosystems and additional domains of life. The studies reviewed 
here have provided a valuable foundation for antimicrobial 
exploration and bioprospecting by demonstrating the presence/
absence of the PKS and NRPS genes. However, we  know that 
for secondary metabolite biosynthesis to occur, PKS and NRPS 
antimicrobial genes necessitate every one of their three essential 
domains, yet research thus far has solely focused on one domain 
to indicate antimicrobial production. Future studies from all 
environments must incorporate all three essential domains to 
effectively demonstrate putative antimicrobial production or risk 
mischaracterizing the prospect of biosynthesis. This necessitates 
the need for more complete databases to include all domains. 
Additionally, the vast majority of studies have utilized only the 
PKS or NRPS gene (i.e., DNA) as a proxy for antimicrobial 
activity, which does not necessarily mean that it is being 
expressed. Using metatranscriptomics as a proxy for microbial 
activity and gene expression is a first step in overcoming this 
issue. Lastly, in order to delve into a more thorough understanding 
of bioprospecting, we must first establish commonalities among 

sites with high frequency of antimicrobial genes. In order to 
do this, a myriad of environments must be explored, and abiotic 
data must be collected. This will provide a more holistic approach 
to what drives putative antimicrobial production and will give 
invaluable insight into microbial ecology in natural environments.

Further exploration of antimicrobial production within microbial 
communities will not only provide a more comprehensive 
understanding of their ecology with regards to overarching factors 
such as biogeochemical cycling but also increase potential natural 
product discovery. Antimicrobial compounds are utilized by specific 
microorganisms for competition purposes to obtain vital nutrients 
and spatial resources for survival. Thus far, our knowledge of 
antimicrobials has been from studies focused on terrestrial 
environments. However, the marine deep subsurface, one of the 
largest habitats on Earth, has yet to be explored for antimicrobial 
genes and products. Understanding the ecology of microbial 
communities in harsh, remote environments can aid in determining 
the limits of life as well as microorganisms’ contributions to overall 
ecology through competition.
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