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Diversity in immunogenomics: the value and the 
challenge
Immunogenomics studies have been largely limited to individuals of european ancestry, restricting the ability 
to identify variation in human adaptive immune responses across populations. Inclusion of a greater diversity of 
individuals in immunogenomics studies will substantially enhance our understanding of human immunology.
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Current state of diversity in genomics 
studies
Genomic studies have mainly used samples 
from individuals of European ancestry, at 
the expense of learning from the largest and 
most genetically diverse populations. For 
example, 78% of individuals included in 
genome-wide association studies (GWAS) 
reported in the GWAS Catalog (https://
www.ebi.ac.uk/gwas/home) through January 
2019 are of European descent1, while Asian 
populations account for 59.5% of the 
world population based on the Population 
Reference Bureau’s World Population Data 
Sheet (https://www.prb.org/datasheets/). 
Though this is partially due to inadequate 
sampling of non-European populations, 
researchers tend to exclude data from 
minority groups when conducting statistical 
analyses2 even when diverse datasets are 
available. The limited inclusion of samples 
from diverse populations hinders the 
equitable advancement of genomic medicine 
as a result of persistent uncertainty with 
respect to the genetic etiology of disease 
across populations, as well as differential 

rates of adverse drug events, treatment 
outcomes and other health disparities.

In recent years there has been an 
increased awareness of the limited 
generalizability of findings across 
populations and the benefits for the 
discovery and interpretation of gene–
trait associations brought about by the 
inclusion of diverse populations in genomic 
studies. This has motivated the inclusion 
of diverse, multiethnic populations in 
large-scale genomic studies. For example, 
whole-genome sequencing in individuals 
of African descent3 and whole-exome 
sequencing in a southern African 
population4 have improved understanding 
of genetic variation in under-represented 
populations. Additional efforts have 
been made to establish reference genome 
datasets for research in diverse populations; 
these include the GenomeAsia 100K 
Project, Human Heredity and Health 
in Africa (H3Africa) initiative, Taiwan 
Biobank, Population Architecture Using 
Genomics and Epidemiology (PAGE) 
Consortium, Trans-Omics for Precision 

Medicine (TOPMed) program, Clinical 
Sequencing Evidence-Generating Research 
(CSER) consortium, Human Genome 
Reference Program (HGRP) and All of Us 
Research Program. However, the field of 
immunogenomics, especially that related 
to adaptive immune receptors, has yet to 
benefit from a similar growth in diversity.

The need for diversity in 
immunogenomics
Central to immunity are the repertoires of 
T cell receptors (TCRs), immunoglobulins, 
human leukocyte antigens (HLAs) and killer 
cell immunoglobulin-like receptors (KIRs). 
Thus, analyses of the loci that encode these 
molecules are critical to immunogenomics 
studies.

T cells and B cells recognize antigens 
through their TCRs and immunoglobulins, 
which are formed through the process 
of V(D)J (variable, diversity and joining 
region) recombination. Capturing the 
vast diversity of recombined, expressed 
TCR and immunoglobulin repertoires 
was not possible until the development of 
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high-throughput sequencing techniques 
in the late 2000s. Freeman and colleagues 
employed 5′ rapid amplification of cDNA 
ends (5′ RACE) PCR to amplify TCR 
cDNA and to characterize TCR repertoires5. 
Weinstein and colleagues sequenced 
an antibody repertoire in zebrafish6 in 
2009, creating the foundation of adaptive 
immune receptor repertoire sequencing 
(AIRR-seq) technologies. In 2010, Boyd 
and colleagues applied AIRR-seq to human 
immunoglobulins7. Since then, studies 
including AIRR-seq have seen exponential 
growth, and findings from these studies 
have shaped our understanding of human 
immune repertoires in different settings8.

AIRR-seq analysis and other 
immunogenomics studies offer new 
opportunities to deepen our understanding 
of the immune system in the context of 
a variety of human diseases, including 
infectious diseases9, cancer10, autoimmune 
conditions11 and neurodegenerative 
diseases12. Furthermore, AIRR-seq data 
provides information on expression 
profiles; germline V, D and J gene usage; 
complementarity-determining region 
(CDR) diversity; and, in the case of 
immunoglobulin repertoires, somatic 
hypermutation levels. There have been 
extensive efforts to explore the genetic 
diversity of the HLA and KIR systems13,14, 
and the knowledge gained from these efforts 
could be integrated into the AIRR-seq 
studies of TCR and immunoglobulin 
germline gene diversity.

As in the field of genomics, greater 
diversity in immunogenomics research 

has the potential to enable the discovery of 
novel genetic traits associated with immune 
system phenotypes that are common or 
different across populations. While evidence 
for extensive diversity in germline TCR 
and immunoglobulin genes have been 
reported in the human population15,16, 
most AIRR-seq studies that use sequencing 
to study T and B cell receptor repertoires 
have been conducted in individuals 
of European descent, leaving other 
populations under-represented17. Exclusion 
of non-European populations in genomics 
research limits our understanding of how 
pathogens have exerted selective pressures 
on immune-related genes in populations 
living in different environments, and thus on 
infectious disease manifestation18.

Germline gene diversity and databases
A critical step in AIRR-seq studies is 
germline gene assignments, which requires 
reliable and comprehensive databases 
of germline V(D)J alleles representing 
different populations. So far, such 
databases are lacking because the genetic 
regions encoding these genes have been 
exceptionally challenging to characterize 
at the genomic level. Not only do these 
loci contain a mixture of functional genes 
and pseudogenes with high similarity, but 
they are also characterized by considerable 
structural variation, with deletions and 
duplications occurring at high frequency in 
different populations. Given the complexity 
of the TCR and immunoglobulin genomic 
loci and deficits in existing germline 
databases, the determination of immune 

receptor germline gene usage from bulk 
RNA-seq or whole-genome sequencing 
is often inaccurate. Efforts to improve 
germline databases are therefore critical for 
improved coverage of diversity in immune 
repertoire analysis. Computational methods 
to infer germline TCR and immunoglobulin 
genes from AIRR-seq data are expected 
to accelerate these efforts19–24 (Table 1). 
Comparisons are also needed between 
results obtained from methods for inferring 
germline gene variants from AIRR-seq 
repertoires25 and from direct sequencing of 
genomic DNA15, such as the sequencing and 
assembly of large-insert clones (for example, 
bacterial artificial chromosome (BAC) 
and fosmid clones)16 and, more recently, 
whole-genome sequencing and targeted 
long-read sequencing26.

The most widely used reference database 
for immunogenomics data, the international 
ImMunoGeneTics information system 
(IMGT)27, has been a valuable resource. 
However, it lacks a comprehensive set of 
human TCR and immunoglobulin alleles 
representing diverse populations worldwide. 
Further uncertainty stems from descriptions 
of sample populations in databases being 
based on geography or self-identified race 
and/or ethnicity of study subjects, rather 
than genetic ancestry. As a result, we have a 
limited understanding of population-level 
TCR and immunoglobulin germline gene 
variation. However, progress is being made.

The AIRR Community (AIRR-C; http://
www.airr-community.org) is an international 
community of bioinformaticians and 
immunogeneticists that has been formed to 
develop standards and protocols to promote 
sharing and common analysis approaches 
for AIRR-seq data, including the AIRR Data 
Commons28. As a means to enrich available 
germline gene sets, the AIRR-C established 
the Inferred Allele Review Committee 
(IARC; https://www.antibodysociety.org/
the-airr-community/airr-subcomittees/
inferred-allele-review-committee-iarc) to 
review and curate new immunoglobulin 
or TCR germline genes inferred from 
AIRR-seq data. Its work is underpinned 
by the Open Germline Receptor Database, 
which provides submission and review 
workflows. IARC-affirmed sequences are 
published in this database, together with 
supporting evidence. VDJbase was also 
recently launched as a public database that 
allows users to access population-level 
immunoglobulin and TCR germline data, 
including reports and summary statistics 
on germline genes, alleles, single nucleotide 
and structural variants, and haplotypes 
of interest derived from AIRR-seq and 
genomic sequencing data. It currently 
contains AIRR-seq data from 421 human 

Table 1 | Tools for inference of germline TCr and immunoglobulin genes from  
AIrr-seq data

Tool Type of 
receptors

Type of 
inferring 
genes

Needs gene 
database for 
inference

Comment

TIgGeR19 Ig V Yes TIgGeR and Partis assign AIRR-seq reads to 
V genes from the database and report a list of 
V gene alleles (both known alleles and alleles 
with modifications)

Partis20 Ig V Yes

IgDiscover21 Ig, TCR V, J Yes IgDiscover uses the database for annotation 
of AIRR-seq reads, clusters reads with similar 
annotations, and reports both known and 
previously unobserved V genes

IMPre22 Ig, TCR V, J no IMPre infers V and J genes from clusters of 
similar AIRR-seq reads and uses a germline 
database (if available) for annotation of the 
inferred genes

IgScout23 Ig D, J no Both IgScout and MInInG-D infer D genes as 
abundant substrings of CDR3s of AIRR-seq 
reads and use a germline database (if available) 
for annotation of the inferred genes

MInInG-D24 Ig, TCR D no

Ig, immunoglobulin; TCR, T cell receptor.
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donors, representing 724 immunoglobulin 
heavy chain gene alleles. The integration 
of TCR datasets is in progress. Together 
these initiatives will help pave the way 
for the development of approaches that 
extend germline curation efforts to include 
more data types and ultimately ensure that 
population-level metadata can be more 
effectively captured and leveraged.

recommendations for the immunology 
community
The immunology community should make 
targeted efforts to include non-European 
populations in AIRR-seq and other 
immunogenomics studies. Already, AIRR-seq 
studies in more diverse populations have 
uncovered evidence for extensive genetic 
heterogeneity. For example, in a study of 
South Africans with HIV, Scheepers and 
colleagues discovered many immunoglobulin 
heavy chain variable (IGHV) alleles that 
were not represented in IMGT15, information 
of relevance to HIV vaccine design aimed 
at germline-targeting immunogens29. In a 
study in the Papua New Guinea population, 
1 new IGHV gene and 16 IGHV allelic 
variants were identified from AIRR-seq 
data30. These discoveries of alleles indicate 
the need for further population-based 
AIRR-seq datasets and the identification and 
validation of the presence of new alleles so 
that they can be added to public databases. 
It will be critical to conduct studies in 
various human populations if we are to fully 
understand how AIRR-seq can be leveraged 
to make improvements in a wide range of 
applications, including vaccine design.

Further, we suggest that extant open 
AIRR-seq datasets could be used to augment 
immunoglobulin and TCR germline 
databases and inform AIRR-seq and other 
immunogenomics studies across diverse 
populations. It may be possible in the 
future to use AIRR-seq data to infer genetic 
ancestry, but such bioinformatics methods 
are yet to be developed and thus the utility 
of genetic ancestry in this field has yet to 
be demonstrated. Conclusions about new 
germline variants discovered through 
non-targeted sequencing data, including 
RNA-seq based on short read sequences, 
should be drawn with caution owing to the 
complexity of the adaptive immune receptor 
loci26, as described above. New methodologies 
and computational approaches should 
be developed to facilitate the inclusion of 
diverse population datasets into existing 
databases, with the aim of enhancing our 
knowledge base to reflect global genomic 
immunological diversity in populations 
around the globe. Such enriched databases 
would provide researchers with baseline 
resources to design and implement the next 

generation of personalized and precision 
immunodiagnostics and therapeutics31.

At the current stage of the global 
COVID-19 pandemic, many vaccine trials 
and programs are underway worldwide, 
offering opportunities to investigate the 
role of genetic factors in vaccine-mediated 
immune responses. Such investigations will 
require careful study designs to effectively 
address potential confounding factors such 
as environmental, economic and social 
determinants of health that systematically 
differ between populations defined by 
self-identified measures of diversity and 
that are correlated with continental-level 
ancestry32. Incomplete representation of 
diverse populations limits our capacity to 
address the impact of genetics on clinical 
phenotypes, and ideally this should be 
investigated alongside non-genetic risk 
factors for disease. Different genetic 
variants in an etiologic pathway modify the 
clinical presentation of disease, and these 
effects can differ by genomic background33. 
Specific immunoglobulin germline genes, 
and in some cases alleles, have been found 
to be preferentially used in the response 
to pathogens, suggesting a degree of 
convergence in the antibody response, as 
observed for influenza9, HIV-134, Zika virus35 
and SARS CoV-236. Therefore, in addition to 
environmental factors, genetic variability in 
immune genes is likely to drive differential 
effects in vaccine effectiveness and infection 
outcomes17.

Our interdisciplinary group consists 
of leading researchers from 17 regions, 
including the United States, Canada, 
Norway, France, Sweden, the United 
Kingdom, Russia, Saudi Arabia, Israel, 
South Africa, Nigeria, Chile, Peru, China, 
Japan, Taiwan and French Polynesia, who 
share concerns about the lack of diversity 
in immunogenomics and embrace a 
need to tackle these challenges. As an 
interdisciplinary group with expertise in 
biomedical and translational research, 
population and public health genetics, 
health disparities, computational biology 
and immunogenomics, we wish to raise 
awareness about the value of including 
diverse populations in AIRR-seq and 
immunogenomics research. ❐
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