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Abstract— Starting with a simple generative model and the
assumption of statistical independence of the underlying com-
ponents, independent component analysis (ICA) decomposes a
given set of observations by making use of the diversity in the
data, typically in terms of statistical properties of the signal.
Most of the ICA algorithms introduced to date have considered
one of the two types of diversity: non-Gaussianity—i.e., higher-
order-statistics—or, sample dependence. A recent generalization
of ICA, independent vector analysis (IVA), generalizes ICA to
multiple data sets and adds the use of one more diversity, de-
pendence across multiple data sets for achieving an independent
decomposition, jointly across multiple data sets. Finally, both ICA
and IVA, when implemented in the complex domain, enjoy the
addition of yet another type of diversity, noncircularity of the
sources—underlying components.

Mutual information rate provides a unifying framework such
that all these statistical properties—types of diversity—can be
jointly taken into account for achieving the independent decom-
position. Most of the ICA methods developed to date can be
cast as special cases under this umbrella, as well as the more
recently developed IVA methods. In addition, this formulation
allows us to make use of maximum likelihood theory to study
large sample properties of the estimator, derive the Cramér-
Rao lower bound (CRLB) and determine the conditions for the
identifiability of the ICA and IVA models. In this overview paper,
we first present ICA, and then its generalization to multiple data
sets, IVA, both using mutual information rate, present conditions
for the identifiability of the given linear mixing model and derive
the performance bounds. We address how various methods fall
under this umbrella and give examples of performance for a
few sample algorithms compared with the performance bound.
We then discuss the importance of approaching the performance
bound depending on the goal, and use medical image analysis as
the motivating example.

I. INTRODUCTION

Data-driven methods typically start with a simple latent

variable model—of which the linear mixing has been the

most common—and decompose a given set of V -dimensional

P observations, typically arranged as a P × V observation

matrix, into two matrices, a P ×M mixing matrix and an

M × V component/source matrix using a suitable cost. Since

in this very general form, this is not a well defined problem,

usually additional constraints are imposed on the mixing
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and/or component matrices such as sparsity and non-negativity.

ICA is based on the assumption of statistical independence

of the underlying components, and because this is a strong

assumption, it enables a solution subject to only scaling

and permutation ambiguities. Independence is also a natural

assumption in many problems and a set of features that are

statistically independent can be easily used for many tasks.

This is the reason for the popularity of ICA and its wide use

in areas as diverse as biomedicine, communications, finance,

geophysics, and remote sensing, see e.g., [1]–[3]. In this

overview paper, we use mutual information rate to provide a

common umbrella for ICA such that the two most commonly

used types of diversity to achieve ICA, dependence of samples

and higher-order-statistics are both taken into account.

There are numerous applications where not only one set

of observations but multiple data sets, which have some de-

pendence among them, need to be jointly analyzed. Examples

include analysis of medical data such as functional magnetic

resonance imaging (fMRI) and electroencephalography (EEG)

collected from multiple subjects, remote sensing data such

as hyperspectral images where each pixel provides spectral

information over multiple frequency bands, analysis of muti-

sensor or multi-modality data that provide complementary

information, and multi-subject biometric data, among many

others. In all of these cases, the underlying components within

the data sets, and hence the observations themselves, exhibit

statistical dependence, which is another form of diversity to

exploit. One approach to analyze these multiple data sets is

to perform an individual ICA on each data set separately.

Since most applications require matching of the corresponding

components from each data set, one should then use a per-

mutation algorithm to align the estimated components/sources

since the ordering of the sources cannot be determined by

ICA. Such an approach becomes computationally prohibitive

as the number of data sets and sources increases, but more

importantly, it fails to take advantage of the additional di-

versity, statistical dependence across multiple data sets while

performing the analysis. An approach for ICA of multiple data

sets, called Group ICA, which is introduced in the context of

fMRI analysis [4], temporally concatenates multiple data sets,

and after a dimension reduction step, performs ICA on this

concatenated data set and then reconstructs the estimates for

each data set separately. As we demonstrate in this paper, while

practical and useful, using a common subspace for performing
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ICA is likely to lead to information loss. Multi-set canonical

correlation analysis (MCCA) [5] alleviates the problem by

making full use of all the available data and has found wide

application, see e.g., [6], [7]. It can be also shown to achieve

joint blind source separation [8]. However, MCCA makes

use of only second-order-statistics (SOS) and constrains the

demixing matrix to be orthogonal, hence limiting the search

space for the optimal solution.

IVA generalizes the ICA problem to multiple data sets in

such a way that it allows making full use of the statistical de-

pendence across multiple data sets, and can take not only SOS

but higher-order-statistics into account as well, and includes

MCCA as a special case. Using the IVA framework, one can

exploit the statistical dependence of each source across multi-

ple data sets leading to performance beyond what is achievable

with single-set ICA algorithms applied separately to each data

set. Additionally, IVA automatically aligns dependent sources

across the data sets hence bypassing the need for the use

of a second permutation algorithm for the task. The original

formulation for IVA [9] assumes that sources across data sets

have no second-order dependence, and uses a multivariate

Laplacian model for the source component vector (SCV)—

which is defined in Figure 3(a). In this overview paper, we

present a more general formulation for IVA, show that just

like ICA, IVA can be cast using mutual information rate and

thus all three key statistical properties, sample dependence

within a source, source dependence within an SCV as well as

higher-order-statistics are taken into account [10]. We give the

identifiability conditions and present results on large sample

properties using maximum likelihood theory for both ICA

and IVA, and in the process, discuss the parallels between

the two approaches in terms of the role statistical dependence

plays. We emphasize the fact that it is the SOS that determine

identifiability for both ICA and IVA, and that the correlation

structure defines the diversity needed for establishing an

independent decomposition for both, and discuss the parallels

for the two. The results for identifiability and large sample

properties do consider another important diversity type, which

is nonstationarity of the sources. Finally, application of ICA

and IVA to medical image analysis is discussed highlighting

the importance of diversity in these studies.

II. INDEPENDENT COMPONENT ANALYSIS (ICA)

We consider the basic noiseless ICA problem based on

instantaneous mixing where there are as many sources as

mixtures—the most common case, the overdetermined one,

also the case in fMRI analysis, can be easily reduced to this

form using order selection as in [11], [12]. The linear mixing

model is then written as

x(v) = As(v), 1 ≤ v ≤ V, x(v), s(v) ∈ R
N (1)

where v is the sample index such as voxel, pixel, or time.

The estimates are given by u(v) = Wx(v), which can be

also written in matrix form as U = WX, where u
⊤
n ∈ R

V is

the nth row of U = WX, i.e., U = [u1, . . . ,uN ]⊤, and

X,U ∈ R
N×V . Since we consider the more general case

that includes sample dependence in the ICA formulation and

would like to keep the notation as simple as possible, we

make the following definitions. We use x(v) ∈ R
N to refer

to the random vector that contains the N mixtures xn(v),
1 ≤ n ≤ N , and xn ∈ R

V to denote the transpose of the

nth row of the observation matrix X ∈ R
N×V . When the

reference is to a random quantity rather than observation, it

will be clear from context.

In ICA, we assume that the sources sn(v) in s(v) =
[s1(v)s2(v) . . . sN (v)]⊤ are statistically independent, and

make use of different properties of the signal, such as non-

Gaussianity, sample dependence, geometric properties, or non-

stationarity of the signal, i.e., diversity in some form [1,

Chapter 1]. Among those, the most commonly used type

of diversity has been non-Gaussianity—higher-order-statistics

(HOS)—of the sources. Most of the popular ICA algorithms

such as Infomax [13], FastICA [14], and joint approximate

diagonalization of eigenmatrices (JADE) [15] as well as many

of the variants of maximum likelihood (ML) techniques with

different approaches for approximating the source density,

such as [16], [17], all fall under this umbrella. Even very recent

surveys—such as [18]—primarily consider ICA algorithms

within this group. As a result, in the community, most often,

fundamental results such as those for identifiability always

consider this more limiting view of achieving ICA. It has been

hence commonly noted that ICA can identify only a single

Gaussian source. As we note next, this is true only when non-

Gaussianity is the only form of diversity that is considered.

Besides those making use of non-Gaussianity, another im-

portant group is algorithms that make use of linear dependence

among the samples, hence SOS. These include the algo-

rithm for multiple unknown signal extraction (AMUSE) [19],

second-order blind identification (SOBI) [20], and weights-

adjusted SOBI (WASOBI) [21] among others. In this case, we

use a random process rather than a random variable model for

the sources, and use sn(v) where v is an index such as time,

pixel, or voxel. In this paper, we use v for voxel, as medical

image analysis, i.e., volume data will be our main motivating

example.

Algorithms using only non-Gaussianity form a major por-

tion of the ICA algorithms developed to date, while those using

sample dependence come in second. An obvious question one

may ask is “Why not make use of both types of diversity,

non-Gaussianity and sample dependence together, at the same

time?”. As one would expect, this approach leads to algo-

rithms with better performance than those using only one type

of diversity as demonstrated in [22]–[26]. In addition, use of

these two types of diversity jointly allows for more relaxed

conditions for the identifiability of the ICA model in (1).

This is our main goal in this section, to show how mutual

information rate helps bring most of the ICA algorithms under

one umbrella and helps determine identification conditions

along with performance bounds so that the performance of

various algorithms can be compared against this benchmark.

A. Cost Function

Mutual information is a natural cost for ICA since the goal is

the maximization of independence among the source estimates
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u = Wx, and has been used commonly when providing a

general umbrella for approaches based on use of HOS. Here,

using the random process notation as in (1), we write the nth

source estimate as un(v) = w
⊤
n x(v), where w

⊤
n is the nth

row of the demixing matrix W. We can then write the mutual

information rate as

Ir(W) =

N
∑

n=1

Hr(un)−Hr(u)

=

N
∑

n=1

Hr(un)− log | detW| −Hr(x) (2)

and take into account both HOS and sample dependence to

achieve ICA. In (2), we used the Jacobian expression ps(u) =
ps(Wx) = pX(x) |detW|

−1
, and hence the last term Hr(x)

is a constant with respect to W, it can be replaced by C
resulting in

Ir(W) =

N
∑

n=1

Hr(un)− log | detW| − C (3)

where Hr (un) is the entropy rate, which is Hr (un) =
limv→∞ H [un(1), . . . , un(v)] /v and the entropy1 is written

as H(un) = −E
{

log psn(w
⊤
n x)

}

. When the process is

stationary, we have Hr (un) = limv→∞ H(un(v)
∣

∣un(v −
1), . . . , un(1)). Since entropy rate measures the per sample

density of the average uncertainty of a random process,

minimization of (3) makes use of both HOS—through the

minimization of missing information, entropy—and sample

dependence by making samples easier to predict by increasing

sample dependence, i.e., decreasing the entropy rate. The

term log | detW| acts as a regularization term preserving

the volume across the directions of source estimation. Since

entropy is not scale invariant, i.e., H(x) 6= H(αx) for α 6= 1,

without the regularization term, the cost function could be

minimized by simply scaling the source estimates. Mutual

information rate hence provides a broad umbrella under which

one can study the properties of ICA algorithms by taking into

account both HOS and sample dependence, the two types of

diversity most commonly used for ICA.

When we constrain the demixing matrix to be orthogonal,

i.e., let WW
⊤ = I, we have | det(W)| = 1, and the cost in

(3) reduces to

Jr(W) =

N
∑

n=1

Hr (un)− C (4)

which maximizes the negentropy rate, the information-

theoretic distance of a random process from that of a Gaussian

for each source, under a variance constraint.

For a given set of observations, X ∈ R
N×V , we can

maximize the likelihood given by

LICA(W) =

N
∑

n=1

log psn(un) + V log | detW| (5)

where un ∈ R
V is the transpose of the nth row of U = WX,

1In the rest of the paper, we refer to differential entropy simply as entropy
since discrete-valued random variables are not considered in this paper.

i.e., U = [u1, . . . ,uN ]⊤. By the general asymptotic equiparti-

tion property [27], as V → ∞, the maximization of likelihood

function LICA(W) becomes equivalent to the minimization of

the mutual information rate cost in (2). This is true if the

probability density function (pdf) psn(un) used in the ML

formulation exactly matches the true pdf, which is implied

when using mutual information rate as the cost. When there

is a mismatch between the estimated pdf through likelihood

and the true one, there is a bias that can be represented by

the relative entropic—Kullback-Leibler—distance of the true

density to the estimated. Using a flexible density model such as

those employed by the two algorithms introduced in Section II-

C, autoregressive mixture of Gaussians (AR-MOG) [24], and

entropy rate bound minimization (ERBM) [25], decreases this

bias. At this point, and for the performance discussion in

the next section, we assume that the source pdf is known.

In Section II-C, we discuss different ways of estimating the

source pdf during adaptation, which lead to a number of

different ICA algorithms that can all be studied under the

mutual information rate minimization umbrella. In [17], a

distinction is made between a true ML scheme that estimates

the pdf and one that uses a fixed distribution where the latter

is called a quasi ML procedure.

In the rest of the development, to simplify the discussion, we

assume that all variables are zero mean so that the definitions

of correlation and covariance matrices coincide.

B. Identification Conditions and the Performance Bound

Given the log likelihood in (5), we can compute the Fisher

information matrix (FIM) using the expected value of its

Hessian, which tells us how informative the given set of

observations are for the estimation of the demixing matrix W.

The FIM also plays a key role in determining the identification

conditions of the ICA model as well as the lower bound on

the unbiased estimator, the Cramér-Rao lower bound (CRLB).

We consider the FIM locally around the optimal point, G =
AW = I, hence have un = sn. Due to the invariance of the

induced CRLB2 with respect to G, the CRLB only depends

on the statistics of the sources.

By making use of the independence of the sources, one

can show that the FIM has a block diagonal structure with N
scalars and N(N − 1)/2 matrices that are 2 × 2. The scalar

diagonal entries are all positive, and hence, the properties

of the FIM are determined by the 2 × 2 matrices—pairwise

interaction of sources—given by

J
ICA
m,n =

[

κm,n 1
1 κn,m

]

, 1 ≤ m < n ≤ N, (6)

where

κn,m = trace
(

E
{

ψ(sn)ψ
⊤(sn)

}

Rm

)

,

ψ(sn) = −
∂ log psn(sn)

∂sn
∈ R

V , and Rn = E{sns
⊤
n } ∈ R

V×V .

Hence, the FIM is a function of the key source statistics,

the two types of diversity the formulation in (5) takes into

2Since the quantity being estimated is W rather than G, the estimated
bound is actually the induced CRLB following [28].
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account, sample dependence and HOS. In addition, source

nonstationarity is another type of diversity and the form in (6)

considers the use of this third type of diversity as well since

here the definitions are with respect to the complete source

vector of dimensionality V , which matches the dimension

of the samples in the given observation. The quantity ψ(·)
is called the score function and is defined as the derivative

with respect to the source estimate un. This is a slightly

different definition than in traditional ML theory where the

score function is defined with respect to the parameter.

Since the blocks J
ICA
m,n, 1 ≤ m < n ≤ N are the diagonal

blocks of a covariance matrix, the FIM, they are positive semi-

definite, and since FIM is block diagonal, they determine

the condition for positive definiteness of the whole matrix.

Evaluating the condition for which J
ICA
m,n becomes singular

hence yields the non-identifiability condition for the ICA

model—subject to the scaling and permutation ambiguities.

It can be shown that JICA
m,n remains positive definite as long as

there are no two sources that are Gaussian with proportional

auto-covariance matrices, i.e., we do not have two Gaussians,

sm and sn in the mixture that satisfy Rm = δ2Rn [1,

Chapter 4]. Hence in the presence of this simple correlation

diversity, i.e., when Rm 6= δ2Rn, even Gaussian sources are

separable using ICA when sample dependence and HOS are

both considered. In addition, this result also includes use of

nonstationarity as diversity—to keep the notation simple we

have not included a time index in the definition of the auto-

covariance matrices.

For algorithms that only take sample dependence into

account however, for algorithms such as AMUSE, SOBI,

and WASOBI, any two sources—not only Gaussians—with

“similar” covariance matrices cannot be separated [19], [28].

Obviously, using these algorithms, i.i.d. sources cannot be sep-

arated either. When the sources are i.i.d., or when only HOS

are taken into account implicitly assuming i.i.d. samples—as

is the case in most of the ICA algorithms—then effectively, we

have Rl = σ2
l I for l = n,m. In this case, we can only identify

a single Gaussian source since the correlation diversity is no

longer available. This is the commonly known condition for

the identifiability of the ICA model since the majority of ICA

algorithms only exploit non-Gaussianity. However, as we note

here, it is important to remember that this condition is true only

for a specific case, and now there are effective algorithms that

can take into account multiple types of signal diversity.

Using the expression in (6), we can write the CRLB as

var(wm,n) ≥
1

V

(

κm,n − κ−1
n,m

)−1
. (7)

Assuming that the mixtures are whitened such that

E{XX
⊤} = I and σsn = 1, we can calculate the CRLB

using the normalized interference-to-signal-ratio

ISR =
1

N(N − 1)

N
∑

m,n=1,m 6=n

E{g2m,n} (8)

where gm,n are the entries of G = AW, which we plot in Fig-

ure 1 along with performances of two algorithms introduced

in the next section against this bound.

C. Algorithms

Mutual information rate in (3) can be minimized using

relative/natural gradient updates [29], [30] as

W(l + 1) = W(l) + µ(I− E{Ψ(U)U⊤})W(l) (9)

where Ψ(U) = [ψ1(u1), . . . ,ψN (uN )]⊤ ∈ R
N×V , µ > 0 is

the step size, l is the iteration index, and the score function

ψn(·) is defined in (6). In the update in (9), we include the

complete source estimate matrix U = W(l)X as we consider

sample correlation, rather than the commonly used random

vector notation as in [29], [30]. The form of this update is

the same as the one proposed in [31] based on nonlinear

decorrelations, the original approach for achieving ICA [32].

The bound given in (7) assumes that the exact density of

each source is known. In order to approach this bound, a num-

ber of density matching methods are proposed, in particular

for the i.i.d. case, where the problem is simpler as we need to

estimate a univariate rather than the multivariate score ψn(·) in

(9). Solutions for the i.i.d. case include both parametric and

nonparametric approaches as in efficient variant of FastICA

(EFICA) [33] and non-parametric ICA (NP-ICA) [16], as

well as a semi-parametric approach, ICA by entropy bound

minimization (EBM) [34].

EBM uses an efficient entropy estimator where rather than

estimating the entropy directly, an upper bound is estimated

among a number of competing candidates determined by the

maximum entropy principle and by a finite number of pre-

specified measuring functions. Available prior information can

be used in the selection of measuring functions, and even a

simple selection of two odd and two even functions leads to a

flexible algorithm that provides robust performance in a num-

ber of scenarios [34]. In [25], the flexible EBM density estima-

tion strategy is combined with an invertible filter model such

that both non-Gaussianity and sample dependence are taken

into account to derive entropy rate bound minimization—

originally introduced as full blind source separation—and

hence to directly minimize (3). Other approaches that take

both types of diversity into account are Markovian ICA [22]

where the Markovian source model is adopted, autoregressive

mixture of Gaussians [24], entropy rate minimization using

an AR source model driven by GGD (ERM-ARG) [35],

and MULTICOMBI [23] where either non-Gaussianity or

sample dependence is taken into account by switching between

the EFICA and WASOBI algorithms. All of these solutions

assume stationarity of the sources.

The decoupling of the source estimates by assuming an

orthogonal W introduced in Section II-A leads to negentropy

rate as the cost, and greatly simplifies the score/density match-

ing problem as the estimation for a given source then does

not interact—and hence complicates—the estimation of others.

This is the approach used in the FastICA algorithm [14], which

is noted for its fast convergence. In [33], generalized Gaussian

distribution (GGD)

p(s) ∝ exp(−|s|2β) (10)

has been used as the source model to derive EFICA. Be-

sides helping with density estimation, the assumption of
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improvement in performance as the role of HOS (β moves away from
1) and as sample correlation (value of a) increase.
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Fig. 2. Performance of nine algorithms using different types of
diversity—either HOS or sample dependence, or both—in separation
of a mixture of sources that come from a rich density. Note the best
performance by algorithms making use of both types of diversity.

orthogonality provides a number of other advantages such

as making second-order algorithms such as Newton-variants

become more practical and allowing for easier implementation

of constrained ICA [36]. However, this decoupling through

constraining W to be orthogonal also limits the search space

for the demixing matrices thus also limiting the achievable

performance [37]. The decoupling approach given in [38],

[39], transforms the matrix optimization problem to a series

of vector optimization problems without having to constrain

the matrix to be orthogonal. Here, it is also important to

remember that the commonly used whitening step for the

observations implies an orthogonal demixing matrix only when

the number of samples V → ∞, and hence does not guarantee

an orthogonal demixing estimate unless it is embedded into

the update mechanism. This decoupling approach is used in

the EBM and ERBM algorithms that employ flexible density

models for each source estimate. Finally algorithms that only

make use of sample dependence, and hence SOS, such as

AMUSE, SOBI, and WASOBI jointly diagonalize multiple

covariance matrices in order to determine an estimate for W

rather than directly maximizing the likelihood (5). A second-

order ICA approach based on ML with a Gaussian density

model is given in [40], and it is shown that besides this

ML-based algorithm, WASOBI approaches the CRLB as well,

when the sources are stationary AR processes.

Example: Diversity, CRLB, and the Performance of two Algo-

rithms: To demonstrate the role of diversity in attaining opti-

mal performance while designing an algorithm, we consider a

simple example, separation of two linearly mixed sources, an

i.i.d. source drawn from a GGD (10) and a second source, a

first-order AR process generated by a Gaussian process ν(v)
such that s(v) = as(v− 1)+ ν(v). GGD assumes the form of

a Gaussian for β = 1, is super-Gaussian when 0 < β < 1 and

sub-Gaussian when β > 1. Hence as β moves away from 1,

the role of HOS increases, and similarly, the role of sample

dependence increases as |a| → 1. In Figure 1, we plot the

CRLB given by (7) using the ISR (8). First note that for

finite ISR, it suffices for one of the sources to have sample

correlation—nonzero a—when both are Gaussian. The widely

referenced and repeated condition for the real case that says

“with ICA, one can identify only a single Gaussian” hence is

true only when sample dependence is not taken into account—

or is absent in that the samples are i.i.d., which rarely is

the case in practice. In the same figure, we also show the

performance of two algorithms that make use of both sample

dependence and HOS: one that exactly matches the underlying

source models, entropy rate minimization using AR model

with a GGD driving process (ERM-ARG) [35] and the more

flexible ERBM algorithm [25]. The results are shown for 1000

samples and 500 independent runs. While we observe that the

exact match provides the best performance, the flexible ERBM

does a decent job in approaching the bound as well and does

not use prior information like the ERM-ARG.

Example: Performance Comparison in Separation of Natural

Sources: In Figure 2, we show ISR of nine different algorithms

in separation of ten artificially mixed images from [41] to

demonstrate the performance of different algorithms in sepa-

ration of sources that come from a rich class of distributions.

Since for small sample sizes, there were a number of unstable

runs, the results are plotted using median rather than the mean.

The algorithms used in the comparison are JADE, EFICA,

Robust Accurate Diirect ICA aLgorithm (RADICAL) and

ICA-EBM that exploit the HOS, WASOBI that uses sample

dependence, AR-MOG, ERM-ARG, and ERBM that use both,

and finally MULTICOMBI that uses both but one at a time.

The advantage of making use of both diversity jointly is clear

as well as the superior performance of two algorithms that use

flexible density models, AR-MOG and ERBM—though the

performance of AR-MOG deteriorates with decreasing sample

size due to its complexity.

III. INDEPENDENT VECTOR ANALYSIS (IVA)

In many applications, not only a single but multiple data

sets with dependence among them need to be jointly analyzed.

Examples include analysis of medical data such as fMRI and

EEG from multiple subjects or at different conditions, data
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from multiple frequency bins when solving the convolutive

ICA problem in the frequency domain, and analysis of muti-

sensor or fusion of multi-modality data with complementary

information. IVA generalizes the ICA problem to multiple data

sets so that one can take advantage of this additional type of

diversity, the one across multiple data sets when achieving the

decomposition.

Next, we show that IVA can be formulated using mutual

information rate minimization like ICA but now with the

addition of one more diversity, dependence among sources

across data sets. Also, as in the case of ICA, we consider the

general case that does not constrain the demixing matrices to

be orthogonal, and as such, IVA generalizes CCA and MCCA

[5] as well, both through incorporation of statistics higher than

two and also by allowing a general nonorthogonal demixing

matrix. Using this general formulation, we give the general

conditions for identifiability of the IVA model as well as the

performance bounds. The ICA result, as expected, becomes a

special case when the number of data sets is set to one. We

then present current algorithms for achieving IVA, and address

the challenges in the area.

A. Cost Function

The IVA problem is defined similar to ICA except that we

now have K data sets, each containing V samples, and formed

from linear mixtures of N independent sources,

x
[k](v) = A

[k]
s
[k] (v) , 1 ≤ k ≤ K, 1 ≤ v ≤ V (11)

where A
[k] ∈ R

N×N , k = 1, . . . ,K are invertible mixing

matrices. The problem is finding K demixing matrices W
[k]

such that sources for each data set can be estimated through

u
[k](v) = W

[k]
x
[k](v) for k = 1, . . . ,K as shown in

Figure 3(a).

For K data sets X
[k] ∈ R

N×V , we can recover the source

estimates for each data set using U
[k] = W

[k]
X

[k], and by

defining augmented matrices X and S, write the problem as






X
[1]

...

X
[K]






=







A
[1]

0 0

0
. . . 0

0 0 A
[K]













S
[1]

...

S
[K]






⇐⇒ X = AS

(12)

where

A = ⊕
K
∑

k=1

A
[k].

The estimates are given by U = WX and the demixing

matrix is also block diagonal, W = ⊕
∑K

k=1 W
[k]. The

decomposition is performed on this augmented matrix X so

that the dependence of components of the source matrices S[k]

across data sets can be taken into account. In this model, the

components within each S
[k] are assumed to be independent

while we allow for dependence across corresponding compo-

nents of S[k] in multiple data sets. In fact, it is this additional

dependence that IVA takes advantage of, and the following

definition helps clarify the idea and is key for the whole

development to follow.

We define the source component vector (SCV) for the nth

SCV sn as

sn(v) =
[

s[1]n (v), s[2]n (v), . . . , s[K]
n (v)

]⊤

∈ R
K

i.e., by concatenating the nth source from each of the K
data sets, or similarly, define the source component matrix

(SCM) Sn shown in Figure 3(a), through concatenation of

each row of S
[k] as Sn = [s

[1]
n , s

[2]
n , . . . , s

[K]
n ]⊤. The SCV

takes into account sample dependence through the inclusion

of index v in its notation and we use both definitions, SCV

and SCM, in the discussion to follow. As an example, in

the fMRI analysis we introduce in Section IV, the nth SCM

contains the spatial activation maps of the nth source, such

as the motor component, for all K subjects in the study.

One would expect the activation maps of different subjects

to be statistically dependent, as for each subject, voxels at

corresponding locations would show comparable levels of

activation. This is the additional diversity that the general IVA

formulation makes use of when achieving the decomposition.

It is, however, important to note that while IVA makes use of

this additional diversity, it does not require that it exists, and

in its absence, reduces to individual ICAs on each data set.

This additional diversity is also what helps with the resolution

of permutation ambiguity among the sources estimated across

the data sets. The identification condition we introduce in the

next section specifies when all the sources in an IVA model

can be identified, and is a quite relaxed condition. However,

identification of sources does not imply that the sources will

be aligned as well, and sources across data sets—components

of each SCV—can be aligned only if the sources across the

data sets are statistically dependent [10].

At this point it is also useful to note that the IVA formulation

is a special case of the multidimensional ICA (MICA) problem

[42], also defined as an independent subspace problem [43].

Though MICA is not necessarily defined for multiple data sets

as IVA, we can use the augmented matrix definition in (12)

to understand how MICA considers a more general model.

For the MICA formulation, the mixing matrix is not assumed

to have a block diagonal form and the number of components

within each SCV can be different. Hence the problem is one of

finding independent subspaces where in each, there might be

different number of dependent components. There are many

challenges for solving the general MICA problem. A major

one among them is determining the number of subspaces and

components within each SCV. A recent overview of MICA

is given in [44] where an effective solution is offered for the

multivariate-Gaussian case. Assuming the correct number of

components within each SCV can be determined, MICA then

identifies the independent subspaces and does not identify the

individual components within each subspace, i.e., the com-

ponents within an SCV like IVA does. The IVA formulation

provides enough additional restrictions to the MICA formula-

tion so as to achieve identifiability of individual components

while still creating a more general framework than ICA.

Since W has far fewer non-zero parameters than its full

KN ×KN dimension implies, we define W ∈ R
N×N×K , a

three-dimensional array, to denote the set of parameters to be

estimated.
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Given the definition of an SCV, we formulate the IVA

problem similar to that of ICA in (3) as

I IVA
r (W) =

N
∑

n=1

Hr (un)−
K
∑

k=1

log
∣

∣

∣
det
(

W
[k]
)
∣

∣

∣
− C (13)

where the main difference is that we are now seeking to

minimize the mutual information among SCVs rather than

individual sources. To provide a clear view of the role of this

additional diversity, we rewrite (13) as

I IVA
r (W) =

N
∑

n=1

(

K
∑

k=1

Hr(u
[k]
n )− Ir (un)

)

−

K
∑

k=1

log
∣

∣

∣
det
(

W
[k]
)∣

∣

∣
−C.

(14)

Without the second term
∑N

n=1 Ir(un), the expression in (14)

is exactly equivalent to the sum of the cost in (3) across K data

sets, hence performing independent ICAs on each data set. It

is this second term, sum of mutual information within each

SCV,
∑N

n=1 Ir(un) that takes the diversity across data sets

into account. The minimization of (14) hence increases mutual

information among components of an SCV, thus making use

of the natural dependence among data sets.

If we consider no sample dependence—hence the cost is

mutual information (I) rather than mutual information rate

(Ir)—and use the multivariate Gaussian model for the SCV,

we have H(un) = (1/2) log
[

(2πe)K
∏K

k=1 λ
[k]
n

]

where λ
[k]
n

is the kth eigenvalue of the covariance matrix of the nth SCV,

then (13) reduces to

I IVA-G(W) =
NK log(2πe)

2
+

1

2
log

(

N
∏

n=1

K
∏

k=1

λ[k]
n

)

−

K
∑

k=1

log
∣

∣

∣
det
(

W
[k]
)
∣

∣

∣
− C. (15)

This is exactly equivalent to the generalized variance method

(GENVAR) cost function proposed for achieving multiset

canonical correlation analysis [5] when we constrain the

demixing matrices to be orthogonal hence eliminating the term
∑

k log
∣

∣det
(

W
[k]
)∣

∣ but imposing a constraint on the sum of

estimates, hence the eigenvalues. In [5], five cost functions

are introduced for maximizing correlation among linearly

transformed multiple data sets, which in our IVA formulation

are the SCVs. The cost functions introduced in [5] all have

the common objective of estimating W
[k] such that the SCV

covariance matrix becomes as ill conditioned as possible,

since this maximizes the correlation among the components

within an SCV. Obviously the term log
(

∏N

n=1

∏K

k=1 λ
[k]
n

)

achieves this goal when we let the sum of the eigenvalues be

constant, i.e., constrain the demixing matrix. In (15), the term
∑

k log
∣

∣det
(

W
[k]
)
∣

∣ achieves this purpose and is written using

the theoretically well justified cost of mutual information.

For given X
[k], k = 1, . . . ,K, we can write the likelihood

as

LIVA(W) =

N
∑

n=1

log (pn(Un)) + V

K
∑

k=1

log
∣

∣

∣
det
(

W
[k]
)∣

∣

∣

where now the score function for the source component matrix

X[k]

1

2

K

S[k]

...
...

=

...

=

=

...







A[k]

(

Sn

sample dependence

source 

dependence

(a) IVA of multiple data sets and the two key signal properties available in
addition to HOS: sample dependence and dependence among sources within a
source component matrix Sn
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(b) Role of three types of diversity on performance
in terms of induced CRLB (Normalized ISR)

Fig. 3. For the IVA problem given in (a), note the improvement in
performance shown in (b) as the values of σ (source dependence) and a

(sample dependence) increase and shape parameter moves away from 1, i.e.,
role of HOS increases.

Un is written as

Ψ
IVA
n (Un) = −

∂ log pn (Un)

∂Un

∈ R
K×V . (16)

Now, we can proceed as in ICA to derive the performance

bound and determine the conditions for the identifiability of

the IVA model by working within ML theory.

B. Identification Conditions and the Performance Bound

We evaluate the FIM by the expected value of the Hessian of

LIVA at the optimal point G = ⊕K
k=1WkAk = ⊕K

k=1Gk = I,

which is now KN2 × KN2 in dimension, since W has a

total of KN2 parameters. Since, the IVA formulation replaces

the sources with SCMs that are mutually independent, and

each SCM includes K components, the FIM is again block

diagonal but now with N block matrices that are K ×K and

N(N − 1)/2 matrices of dimension 2K× 2K. The properties

are again determined by the latter blocks, those that describe

the interaction of now the SCMs, the 2K×2K block matrices

J
IVA
m,n ,

[

Km,n IK

IK Kn,m

]

∈ R
2K×2K

where {Km,n}k1,k2
= (1/V )E

{

(

ψ
IVA,[k1]
m

)T

S
[k1]
n

(

S
[k2]
n

)T

ψ
IVA,[k2]
m

}

when m 6= n, ψ
IVA,[k]
n = (ΨIVA

n )⊤ek, where Ψ
IVA
n is given

in (16), the subscript for the identity matrix I denotes its

dimension, and ek is the kth basis vector. Again, the FIM

is a function of the key SCM statistics, and in this case, all

three types of diversity—sample dependence, dependence

within an SCM, and the HOS—that are considered in this
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IVA formulation. Since the SCM is written for V samples,

i.e., is K × V , nonstationarity is taken into account as well.

The FIM is a block diagonal matrix for this case as well

and the identification condition for the IVA model is obtained

by evaluating when J
IVA
m,n remains positive definite. It is shown

that [10], [45] identification of the IVA model in (11) is pos-

sible as long as no two SCMs have α-Gaussian components

for which Rm,α = (IV ⊗D)Rn,α (IV ⊗D), for 1 ≤ m 6=
n ≤ N , where D ∈ R

Kα×Kα is any full rank diagonal matrix,

Kα the number of α-Gaussian components, Rn = E{SnS
⊤
n },

and ⊗ is the Kronecker product. An α-Gaussian component is

defined as the subset of rows of an SCM that are independent

from the others and have multivariate Gaussian distribution,

and α refers to the index of this subset within {1, . . . ,K}, and

Rn,α refers to the covariance matrix of the matrix formed from

the α-Gaussian rows of an SCM. Hence, it is again a second-

order condition that determines the identifiability of the model,

and the major role played by the source covariance matrix in

ICA is now replaced by the SCM covariance matrix. As in the

case of ICA, the result holds for the use of nonstationarity as

a diversity type.

A useful special case to consider is when the samples are

i.i.d., which is equivalent to considering V = 1 so that IV is a

scalar and unity and we now consider SCVs where each entry

is a random variable rather than SCMs or an SCV with entries

that are random processes. This is the basic assumption in most

ICA algorithms where only HOS are taken into account and

it leads to practical and effective solutions that work well for

most cases, including many where the samples are actually

dependent. However, for ICA, with the i.i.d. assumption, we

can only identify a single Gaussian source. For IVA, however,

the condition for this case is more general and now we can

identify the IVA model as long as there are no two α-Gaussian

SCVs for which Rm,α = DRn,αD ∈ R
Kα×Kα . Hence

the identification of multiple Gaussians is possible with IVA

provided that the covariance diversity is available, in the sense

that covariance matrices of sources that are Gaussian across

data sets are not essentially identical, i.e., satisfy Rm,α 6=
DRn,αD ∈ R

Kα×Kα .

Finally, for K = 1, the condition reduces to that for ICA and

we cannot identify any two Gaussians that have Rm = δ2Rn,

δ 6= 0 where now the covariance is defined for a single source

rather than an SCV. A comparison of these two conditions

reveal the dual nature of the role of diversity in these two

cases, diversity in the form of source dependence for IVA

versus sample dependence in ICA. The diagonal matrix D for

IVA and δ2 for ICA are present in the conditions simply due

to the inherent scaling ambiguity of the problem. The given

identification conditions for the i.i.d. case coincide with those

derived assuming a multivariate Gaussian model in [46], [47]

since they are determined by second-order statistics.

The CRLB for IVA is given by

var
(

w[k]
m,n

)

≥
1

V
e
⊤
k

(

Km,n −K
−1
m,n

)−1
ek (17)

which has a similar form to (7), and again similarly, can

be computed using the sum of ISR values, now defined as

ISR[k]
m,n = E

{

(g
[k]
m,n)2

}

.
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(a) Shape parameter β is assumed to be known
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(b) Shape parameter is selected from β = {0.5, 2}

Fig. 4. Performance of two IVA algorithms that take source dependence and
HOS into account for separation of three GGD sources of dimension K = 5
with shape parameter β and a random covariance matrix compared to the
induced CRLB (normalized ISR) for different sample sizes.

Example: Role of Three Types of Diversity for IVA: The

simple example shown in Figure 3(b) plots the CRLB in

terms of ISR for two sources and two data sets, where the

first set of sources—common to both data sets—is drawn

from a multivariate GGD, which is Gaussian when the shape

parameter β = 1, and has super-Gaussian marginals for

0 < β < 1 and sub-Gaussian for β > 1. Second set of

sources are an i.i.d. Gaussian and a first-order AR process

s(v) = as(v − 1) + ν(v) where ν(v) is a white Gaussian

process. Hence, the AR parameter a characterizes influence

of sample correlation and the shape parameter β of non-

Gaussianity, i.e., HOS. Finally we introduce correlation for

the first group of sources through a correlation coefficient σ.

As observed in Figure 3(b), performance—as measured by the

ISR—improves as sample source correlation and dependence

across data sets—values of a and σ respectively—increase,

and as the sources become more non-Gaussian—i.e., as the

value of β moves away from 1. We also note the condition for

identifiability of the IVA model in that when the sources are

all Gaussian (β = 1) and i.i.d., a finite ISR is still possible as

long as there is correlation among the sources, in this example

introduced only to the first set of GGD sources through σ.

C. Algorithms

In algorithm development, while it is desirable to consider

together all types of diversity expressed in the cost (13),
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current solutions available for the problem only take HOS

and source dependence across data sets into account, primarily

due to computational and modeling challenges. Hence, they

minimize mutual information rather than mutual information

rate. A generalization of joint diagonalization proposed in

[48] is the only solution we know of that exploits sample

dependence for the joint source separation problem in addition

to the other two diversity, HOS and source dependence.

We write the relative/natural gradient updates for IVA to

minimize the mutual information—hence not accounting for

sample dependence—as

W
[k](l + 1) = W

[k](l) + µ(I− E{ψIVA,[k](u[k])⊤})W[k](l)
(18)

where now the score function has the simpler form ψIVA,[k] =

−

[

∂ log p1(u1)

∂u
[k]
1

, . . . , ∂ log pN (uN )

∂u
[k]
N

]⊤

. Again, a key problem is

the estimation of the score function, i.e., the source pdf, during

the adaptation. For IVA, as opposed to ICA, all solutions to

date have emphasized parametric methods as nonparametric

approaches can easily become prohibitive for the multidimen-

sional case.

IVA is originally formulated for solving the convolutive

ICA problem in the frequency domain [9], which is an

application where resolution of the permutation ambiguity

across frequency bins is critical to the success of the solution.

Hence, the main application domain that is considered has

been separation of acoustic sources resulting in an emphasis

on models attractive for this case starting with the multivariate

Laplace model [9], [49]. In [50], mixture of Gaussians is

proposed where the noisy IVA problem and an online solution

are considered as well. However these solutions fail to consider

all-order statistical dependence within an SCV and in certain

cases constrain the demixing matrix to be orthogonal/unitary

as in [50], [51]. As discussed earlier, constraining the demixing

matrix limits the performance and the decoupling trick intro-

duced in Section II-C allows for advantages of orthogonality

without having to constrain the matrix, and provides a number

of additional advantages such as easier density matching,

better convergence properties, and enabling easier derivation

of second-order iterative algorithms. In (18), a single step

size µ is used to update the entire demixing matrix while

each row corresponds to a different source as in the case

of ICA. In [47], a number of algorithms—including vector

gradient descent and vector Newton algorithms—are derived

using the decoupling trick so that the demixing matrices are

not constrained to be orthogonal. They are then implemented

using a multivariate Gaussian SCV model to derive a class of

algorithms called IVA-G, and later using a the Kotz family

[52] that includes the GGD, and hence Gaussian and Laplace

as special cases. All of these solutions account for all-order

statistical dependence for an SCV.

Iterative approaches to optimizing the IVA cost function are

subject to similar convergence issues as iterative algorithms

for ICA. It is shown that the Hessian matrix for the IVA cost

with the multivariate Gaussian model always remains positive

definite [47] and thus IVA-G has very desirable convergence

properties. Hence, it is a good candidate for initialization of
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Fig. 5. Spatial ICA of fMRI data. Note the presence of both sample
dependence and HOS as form of diversity.

other algorithms, and is used for initializing the solution of

IVA with multivariate Laplace implemented as in [9] for the

results we present in Section IV. For non-Gaussian sources, it

is known that local minima exist in the cost function. These

local minima correspond to demixing solutions which have

different permutations across data sets [10]. Thus, even if a

local minimum occurs, it is observed that the sources within

each data set have been separated but the dependent sources

across data sets are not aligned. This issue is addressed in [53]

for the special case of spherical and super-Gaussian sources.

Example: Performance of Two IVA Solutions: In Figure 4, we

show the CRLB for separation of sources that are drawn from

a multivariate GGD, and the performance of the IVA algorithm

of [52] for different sample sizes. We implement two versions

of the algorithm, one that estimates the covariance matrix but

assumes that the true shape parameter β is known, and a

second version that selects one of two β = {0.5, 2} during the

adaptation, which is a practical implementation. As expected,

in both cases, the performance improves approaching the

CRLB as the number of samples increase. In addition, while

the first “clairvoyant” version of the algorithm in Figure 4(a),

as expected, provides better performance, the second and

practical implementation shown in Figure 4(a) provides quite

satisfactory performance as well.

In terms of algorithms that only make use of linear de-

pendence across multiple data sets, MCCA is the oldest,

an extension of CCA [54] defined for two data sets. The

algorithms given in [5] assume orthogonal demixing and

are deflationary in nature such that each row of weights

are estimated sequentially. IVA using multivariate Gaussian

model also makes use of only linear dependence and can be

derived within a ML framework [47], [55]. Since CCA can

be achieved using generalized eigenvalue decomposition, it

can also be posed as a diagonalization problem, which can

be readily extended to achieve IVA using generalized joint

diagonalization [48]. A review of extensions of CCA to include

nonlinear dependences is given in [45].

IV. APPLICATION TO MEDICAL IMAGE ANALYSIS

FMRI has enabled us to directly study temporal and spatial

changes in both the healthy and the diseased brain as a

function of various stimuli, and has contributed greatly to

our understanding of the most complex organ of the human

body. Relatively low image contrast-to-noise ratio of the blood

oxygenation level dependent fMRI signal, head movement,
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Infomax EBM ERBM
Infomax EBM ERBM

Number of voxels
overlapping with the mask 2386 3291 3328

Sensitivity of t-map
with the DMN mask 0.73 0.82 0.82

Estimated t-values on
time regression coefficients −0.18 −1.10 −2.08

Fig. 6. Estimated t-maps for DMN using Infomax, EBM, and ERBM, and
quantitative measures of their performance.

and undesired physiological sources of variability (cardiac,

pulmonary) make detection of the activation-related signal

changes difficult. The standard approach for the analysis of

fMRI data has been correlating the time-series data with an

assumed reference signal, i.e., performing a simple linear

regression as implemented in the popular statistical parametric

mapping (SPM) software [56]. Even though it is robust, use of

such a reference time course requires prior information, which

most often is not reliable, and more importantly, in most cases

it simply is not available. This is the case for data are acquired

when subjects are at rest or performing naturalistic behavior

such as watching a movie. Hence, following its first application

to fMRI analysis [57], ICA has become an attractive solution,

and is now widely used for fMRI analysis—for a recent review

on ICA of fMRI, see [58].

Spatial ICA finds systematically non-overlapping, tempo-

rally coherent brain networks without constraining the tem-

poral domain, hence can effectively recover functional net-

works. Functional connectivity refers to temporal correlations

between spatially distinct regions of the brain, and ICA has

been very effective in the study of networks of such intrinsic

activity, since it naturally takes all the voxels into account

when achieving the decomposition and provides a summary

statistics for brain activity as well as its modulation across

time. Besides, the linear superposition assumption holds for

fMRI, see e.g., [59], and the data-driven nature of ICA helps

minimize unrealistic assumptions about the temporal domain

and brain hemodynamics.

Figure 5 shows the application of ICA to fMRI analysis

for finding spatially independent components, which has been

by far the most common use of ICA for the problem. The

observation matrix X ∈ R
T×V is formed by flattening the

volume image data of V voxels at each time point. The time

dimension is typically reduced from T , typically in the 100s,

to N , a value around 30–60 to improve the estimation perfor-

mance. Information-theoretical criteria (ITC) using principal

component analysis (PCA) is most commonly employed for

this step [11], i.e., to determine the dimensionality of the signal

subspace, usually with a correction for dependence among the

samples (voxels) [12] so that a better estimate of ML can

be used for the ITC. The spatially independent components—

activation maps—form the sources, and the columns of the

mixing matrix correspond to the temporal modulation of

the corresponding source in the given time frame, [1, T ]. In

Figure 5, we show a sample time course after reconstruction to

its original dimension T , and its corresponding Z-thresholded

spatial activation map.

Example: Taking Sample Dependence and HOS in ICA of

fMRI Data: The activation maps, the underlying independent

sources, are typically super-Gaussian since they include heavy

tails due to active voxels, those with high intensity values, and
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PCA

ICA Reconstruction
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2
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1

2

K

...
...

... ...

(a) Multi-subject fMRI analysis with Group ICA

Subject-level
PCA

1

2

K

1

2

K

... ...
...

IVA

(b) Multi-subject fMRI analysis with IVA

Fig. 7. Group ICA and IVA for multi-subject fMRI analysis. Note how IVA
avoids projecting multi-subject data to a common space after subject-level
PCA as well as the additional back-reconstruction step of Group ICA.

include sample dependence due to point spread function as

well as low pass filtering, a common preprocessing step used

for fMRI data. Hence, it would make sense to account for

both types of diversity, HOS and sample dependence, when

performing ICA of fMRI data. In Figure 6, we show the

performance of three ICA algorithms in estimating the default

mode network (DMN): (i) Infomax that uses a sigmoidal

nonlinearity, a good match to super-Gaussian sources; (ii)

EBM that uses a flexible density model, and (iii) ERBM

that combines the flexible density estimation of EBM with

a filtering approach to account for sample dependence. DMN

is part of intrinsic networks, and one that has received much

attention lately as it is regarded to be an important biomarker

for different disorders. It activates preferentially when indi-

viduals focus on internal tasks, when the mind is wandering,

and hence it is expected to be negatively correlated with the

task time-course, when data are collected during a task. In this

example, the data are collected from 20 subjects performing

the auditory oddball task [60]. As shown in the Figure, all three

algorithms have competitive performance, however both EBM

and ERBM estimate more voxels than Infomax that correlate

with the DMN mask. Also, when we perform a t-test on the

multiple regression coefficients of the estimated time courses

to determine their task-relatedness, ERBM yields the highest

negative value for DMN, hence highest negative correlation

with the task, indicating best performance using this metric

[60].

Since the need to jointly analyze data from multiple subjects

is inherent to most problems in medical data analysis, follow-

ing the introduction of ICA for fMRI analysis [57] and its

success, a simple but effective method, called Group ICA [4],

is introduced for multi-subject fMRI data analysis. Group ICA

performs a first-level dimension reduction at the individual

subject level, and then temporally concatenates dimension-

reduced subject data, to perform a second-level PCA to find

a common subspace for data from all subjects. Then a single

ICA is performed after which individual subject maps and

time-courses are reconstructed as shown in Figure 7(a). There

are a number of approaches for reconstructing the subject

maps, which are evaluated and discussed in detail in [61]
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Fig. 8. A group analysis study using fMRI-like data. IVA leads to better
performance especially with increasing group variability, hence role of source
dependence.

as well as a number of ways to perform concatenation of

data sets [62]. While robust and practical, the projection

to a common subspace of data from different subjects can

potentially cause loss of information in terms of subject

variability. In the application of IVA to fMRI analysis shown

in Figure 7(b), individual subject data are directly analyzed

following the subject-level dimension reduction. Hence, all

individual subject maps are estimated concurrently, and are

aligned across subjects when there is dependence among them.

This is typically the case for all components of interest,

i.e, components corresponding to meaningful functional areas

such as DMN and motor areas, since these naturally have

statistical dependences across subjects. Components related to

artifacts such as the motion artifact, however, might not be

aligned for all subjects as these are less likely to have a similar

dependence structure across subjects, and are more likely to

be subject-specific. Next we demonstrate the advantage of IVA

over the widely used Group ICA approach with two examples,

one with simulated fMRI-like and a second one using real

fMRI data.

Example: Capturing Subject Variability with IVA: To test the

ability of IVA in capturing subject variability, we use the fMRI

simulation toolbox, SimTB [63], and generate 10 components

shown in Figure 8(a) for two groups, with 12 subjects in each.

For each subject, components are randomly generated with

small variations in terms of translation, rotation, and spread.

For the first component, however, we introduce significant

difference in terms of spread between the two groups of

subjects, so as to simulate a typical difference in brain network

volume change between the healthy and patient groups found

in fMRI studies. The difference in spread is kept at two levels,

one indicating a smaller difference between the groups, and

a second one with greater difference in spread. Then, the

performance is tested between the two approaches: Group

ICA using Infomax with a nonlinearity matched to Laplacian

pdf and IVA using a multivariate Laplacian model following

IVA Group ICA

(a) Default Mode Network

IVA Group ICA

(b) Frontal

Fig. 9. Sample estimated spatial maps for IVA and Group ICA for two
components. Note the higher activation levels and spatial extent of the
estimated maps using IVA.

initialization with IVA-G, which we call IVA-GL [64]. In

Figure 8(b), we show the receiver operating characteristics

curves for the detection of the difference between the two

groups at two levels of spread. To obtain the reference map,

we perform a two-sample t-test between the two simulated

groups, which is thresholded at 0.05 significance. By changing

the threshold for t-values, we plot the receiver operating char-

acteristics by counting the number of voxels within (Ntrue) and

outside the reference map (Nfalse). The ratios of these values

to the total number of voxels within the map and outside,

respectively, yields the true positive—detection power—and

false alarm values. IVA performs better than the Group ICA

approach at both lower and higher group variability, and its

performance improves when there is higher group variability.

Because with higher group variability, diversity in terms of

source dependence has more statistical power, improving the

performance of the IVA approach.

Example: Performance of IVA and Group ICA with Real fMRI

Data: To test the performance of IVA for the analysis of real

fMRI data from subjects that exhibit significant variability, we

used data collected from patients who suffered a stroke that

primarily affected their motor areas. Data were collected while

subjects performed a motor task that had alternating cycles of

rest (30 sec) and task (24 sec), which was squeezing a ball.

After standard preprocessing using SPM [56] as in [62], data

from 10 subjects in two sessions, hence providing a total of

20 data sets, are analyzed using the two approaches for multi-

subject analysis, Group ICA and IVA with the same algorithms

as in the previous example, IVA-GL and Infomax with a

nonlinearity matched to a Laplace pdf implemented using
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Group ICA of fMRI Toolbox (GIFT) [65]. In Figure 9, we

show the t-maps thresholded at a significance level of 0.05. As

clearly observed from the figures, for both components, IVA

leads to better estimation of the functional areas as indicated

by more connected regions and better correlation with the

masks generated for these areas as discussed in [66].

V. DISCUSSION

In this paper, we provided an overview of ICA by emphasiz-

ing two types of diversity, HOS and sample dependence, which

have been the two most typically used for achieving ICA. By

using mutual information rate, we showed that a number of

ICA approaches can be brought under one umbrella. We then

introduced IVA that extends ICA to multiple data sets, and

presented a general formulation for IVA that adds a third type

of diversity, dependence of sources across data sets to these

two. We emphasized the parallels between ICA and IVA in the

way diversity plays a role for both and discussed how a number

of existing algorithms fit as special cases under this umbrella.

Even though this is a rather broad umbrella, this has been a

partial survey given the vast activity in the area. For example,

algorithms that explicitly compute HOS such as JADE as well

as those that make use of other types of diversity such as

nonstationarity, noncircularity, and geometrical properties are

not considered. Nonstationarity, however, is taken into account

in our discussion on identifiability and it has been used with

other types of diversity in algorithm development for example

along with HOS in [67], and HOS, and sample dependence in

[68].

Another important diversity type—which we could not

discuss here due to space constraints—is non-circularity of

the signals when ICA or IVA is implemented in the complex

domain, which can be also studied under the mutual informa-

tion rate umbrella [69]. Since it is the second-order-statistics

that determine identifiability for ICA and IVA, again in this

case, it is the impropriety, second-order noncircularity, that

plays a key role. A random vector x is called second-order

circular—or, proper—if its complementary covariance matrix

E{xx⊤} vanishes. For improper signals, identification of i.i.d.

Gaussians is possible if all circularity coefficients are distinct

using strongly uncorrelating transform [70], and in addition, if

we make use of HOS and sample dependence, it can be shown

that the identification conditions we have given here become

more relaxed. Then the ICA problem becomes non-identifiable

only when there are Gaussian sources with both the covariance

and complementary covariance matrices that are proportional,

and proportional through a complex constant for the latter, as

implied by the analyses in [71], [72]. A conjecture for IVA

would be that the condition given here will also include the

complementary covariances of SCVs. As one would expect,

with the addition of each new type of diversity, identification

becomes easier, a broader class of signals can be separated

using ICA or IVA. A recent review of complex-valued ICA

can be found in [69], and a comprehensive review of the field

of blind source separation in the book [1].

ICA has found a fruitful application in fMRI analysis and

IVA promises to be another attractive solution. ICA has been

widely applied to fMRI and EEG analyses, two domains

where the linear superposition assumption of ICA holds. A

recent review [58] underlined the now wide use of ICA

for fMRI analysis by showing the exponential growth in

publications on the topic following its first application in 1998

[57]. An interesting recent claim was that ICA for fMRI has

been successful because the widely used algorithms Infomax

and FastICA—with kurtosis nonlinearity—select for super-

Gaussian sources, hence it is sparsity that determines the final

decomposition, and not independence [73]. A response to the

article [74] showed that the examples in [73] were flawed and

with the correct interpretation of underlying models in ICA, it

is indeed independence that achieves a useful decomposition

of the fMRI data. Still, it is worth noting that Infomax has

been the most widely used algorithm for fMRI analysis, first,

due to historical reasons—it was the first algorithm used—and

then because its simple fixed score function is a good match

for the fMRI sources and provides robustness. However, as

the examples we give in this paper demonstrate, maximizing

independence by using an algorithm with a flexible density

matching mechanism can lead to improved performance. In

addition, the fact that there is good support for the inherent

linear superposition assumption of the basic ICA model of

(1) suggests that the spatial maps can be regarded as hidden

variables in the model, just like audio sources in a cocktail

party problem. In these cases, maximizing the independence

though flexible density matching, and making use of multiple

types of diversity to approach the performance bound is

meaningful. In applications such as data fusion, however, the

approach is mostly exploratory in that the sources do not

necessarily have physical meaning, they primarily help explain

the data, relationships among modalities. Then, in this case,

using a robust algorithm such as Infomax might be sufficient,

as discussed in detail in a review on data-driven fusion [75].

The formulation of IVA we present here provides an

attractive framework for joint blind source separation with

numerous potential applications. These include those where

MCCA has been applied such as medical data analysis and

fusion, hyperspectral data analysis, blind equalization, and of

course the first motivation for the IVA formulation, solution

of the convolutive ICA problem. Among many others, multi-

modality data fusion is an important application area for IVA

as it would extend the successful application of MCCA [76]

to include HOS without constraining the demixing matrix.

IVA also presents number of challenges and interesting venues

for future research. The well defined structure of IVA might

allow a more flexible solution to the multidimensional ICA—

also called subspace ICA—problem where components within

each independent subspace are allowed to have dependences.

Estimation of the density during adaptation—to truly approach

the CRLB and improve performance—is a more difficult task

than for ICA. The multivariate nature of the pdf makes the

problem more challenging especially when the goal is not only

modeling flexible marginals but also taking dependence among

the components of an SCV into account. Hence, if successfully

extended to the multivariate case, a flexible density model like

EBM can achieve this desired balance, and potentially allow

one to also account for sample dependence in the model and
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estimate an SCM. This is not to say there are not challenges

for ICA either. The performance of most ICA algorithms

deteriorate when the number of sources increases as well as

the noise level. The noisy and the undetermined cases still

deserve much attention, and also the problem of nonlinear

ICA. Hence, even though the field of blind source separation

has now reached a maturity, there are still a good number of

important challenges and problems that require our attention.
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