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Abstract

In this paper, we focus on how to boost the multi-view

clustering by exploring the complementary information a-

mong multi-view features. A multi-view clustering frame-

work, called Diversity-induced Multi-view Subspace Clus-

tering (DiMSC), is proposed for this task. In our method, we

extend the existing subspace clustering into the multi-view

domain, and utilize the Hilbert Schmidt Independence Cri-

terion (HSIC) as a diversity term to explore the complemen-

tarity of multi-view representations, which could be solved

efficiently by using the alternating minimizing optimization.

Compared to other multi-view clustering methods, the en-

hanced complementarity reduces the redundancy between

the multi-view representations, and improves the accuracy

of the clustering results. Experiments on both image and

video face clustering well demonstrate that the proposed

method outperforms the state-of-the-art methods.

1. Introduction

Multi-view data are very common in many real world

applications because data is often collected from diverse

domains or obtained from different feature extractors. For

example, color and texture information can be utilized as d-

ifferent kinds of features in images and videos. Web pages

are also able to be represented using the multi-view features

based on text and hyperlinks. Taken alone, these views will

often be deficient or incomplete because different views de-

scribe distinct perspectives of data. Therefore, a key prob-

lem for data analysis is how to integrate the multiple views

and discover the underlying structures. Recently, some ap-

proaches of learning from multi-view data have been pro-

posed. However, most of them concentrate on supervised

or semi-supervised learning [1, 6, 22, 31], in which a val-

idation set is required. In this paper, we focus on multi-

view clustering, which is much more challenging for lack-

ing training information to guide the learning process.

The complementary principle of multi-view setting s-

tates that, each view of the data may contain some knowl-

edge that other views do not have. Therefore, multiple

views can be employed to comprehensively and accurate-

ly describe the data [30, 31]. Furthermore, some theoreti-

cal results [4, 5, 26] have shown that the independence of

different views can serve as a helpful complement to the

multi-view learning. Nevertheless, the main limitation of

the existing methods [8, 9, 12, 16, 17, 24, 25] is that they

could not guarantee the complementarity across different

similarity matrices corresponding to different views. In oth-

er words, they assume that the complementary information

is abundant across the independently constructed similarity

matrices or the views are sufficiently independent to each

other. However, we find that exploiting the specific inde-

pendently constructed matrices is insufficient, and explor-

ing the underlying complementarity is of great importance

for the success of multi-view clustering.

Figure 1(a-c) illustrates the straightforward way to com-

bine the multi-view features, which independently con-

structs the similarity matrix of each feature according to

some specific distance metric. By contrast, we consider

the complementary information of all the different views in

depth, and find that the complementary information is ex-

plored more thoroughly, while the similarity matrices of the

multi-view features are more diverse. In this paper, a nov-

el multi-view subspace clustering method, called Diversity-

induced Multi-view Subspace Clustering (DiMSC), is pro-

posed to explore the complementary information. As shown

in Figure 1(d-f), our method learns all the different sub-

space representations jointly with the help of the diversi-

ty constraint. The Hilbert-Schmidt Independence Criterion

(HSIC) is employed to measure dependence in terms of a

kernel dependence measure. With this term, we explicitly

co-regularize different views to enforce the diversity of the

jointly learned subspace representations.

The main contribution of our work is that we extend

the self-representation based subspace clustering to multi-

view setting, and propose a Diversity-induced Multi-view

Subspace Clustering method, which outperforms the related
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Figure 1. Comparison of naive multi-view subspace clustering (NaMSC) and our DiMSC. The green rectangle indicates the ground-truth

clustering. With the multi-view input (a), NaMSC independently learns the subspace representations using SMR [15] (b), which can

not ensure the complementarity across different views. In contrast, our DiMSC employs diverse subspace representations to explore the

complementary information across the multiple views, and the final clustering result (f) is obtained.

state-of-the-art methods in handling multi-view data. More-

over, we introduce a novel scheme to ensure the diversity of

different subspace representations based on HSIC. With the

inner product kernel for HSIC, our formulation is simple to

resolve and theoretically guaranteed to convergence.

2. Related Work

Most existing multi-view clustering methods exploit the

multi-view features with graph-based models. For exam-

ple, the work in [9] constructs a bipartite graph to connect

the two-view features, and uses a standard spectral cluster-

ing to obtain the 2-view clustering result. The approach

in [24] fuses the information from multiple graphs with

Linked Matrix Factorization, where each graph is approx-

imated by matrix factorization with a graph-specific factor

and a factor common to all graphs. The approaches in [17],

[25] co-regularize the clustering hypotheses to exploit the

complementary information within the spectral clustering

framework. In [16], a co-training based framework is pro-

posed where it searches for the clusterings that agree across

the different views. In Multiple Kernel Learning (MKL),

as suggested in earlier work [8], even simply combining

different kernels by adding them often leads to near opti-

mal results as compared to more sophisticated approaches

for classification. Instead of equally adding these kernels,

views are expressed in terms of given kernel matrices and a

weighted combination of these kernels is learned in parallel

to the partitioning in [12]. Note that, the similarity matrices

in these methods are independently constructed, while our

DiMSC constructs the similarity matrices jointly aiming to

promote the complementarity across different views.

Recently, the subspace clustering methods have been

proposed to explore the relationships between samples with

self-representation (e.g., sparse subspace clustering (SSC)

[10], low-rank representation segmentation (LRR) [18] and

smooth representation clustering (SMR) [15]), and be em-

ployed in numerous research areas, including face clus-

tering [29, 32], image segmentation[7], and medical im-

age analysis [11]. However, these methods only consid-

er the single view feature, where the similarity matrix is

constructed based on these reconstruction coefficients. The

work in [14] formulates the subspace learning with multi-

ple views as a joint optimization problem with a common

subspace representation matrix and a group sparsity induc-

ing norm. The work in [27] provides a convex reformu-

lation of 2-view subspace learning. There are some meth-

ods based on dimensionality reduction, which usually learn

a low-dimensional subspace from the multiple views and

then apply any existing clustering method to get the result.

The representative methods in this stream are proposed in

[3, 5], which use canonical correlation analysis (CCA) to

project the multi-view high dimensional data onto a low-

dimensional subspace. Most of these methods do not con-

sider enforcing the complementarity of different views. Al-

though the method [27] enforces conditional independence

to guarantee the complementarity while reducing dimen-

sionality, it can only be applied for 2-view setting. In con-

trast, we enforce the complementarity by directly enhancing

the dependence of different views and is not limited to the

number of views.

3. The Proposed Method

3.1. Naive Multiview Subspace Clustering

Suppose X = [x1,x2, ...,xn] ∈ R
d×n is the matrix of

data vectors, where each column is a sample vector and d is

the dimensionality of the feature space. To cluster the data

into their respective subspaces, we need to compute an sim-

ilarity matrix that encodes the pairwise similarity between

data pairs. Thus, the self-representation manner is written



in a compact matrix form:

X = XZ+E, (1)

where Z = [z1, z2, ..., zn] ∈ R
n×n is the coefficient matrix

with each zi being the new representation of sample xi, and

E is the error matrix. After obtaining the self-representation

matrix Z, the similarity matrix S is usually constructed as

[10]:

S = |Z|+ |ZT |, (2)

where | · | denotes the absolute operator. Afterwards, the

similarity matrix is used as the input of spectral cluster-

ing algorithm [19] to obtain the final clustering result. The

subspace based clustering technique has shown its power

in many image processing fields. However, the multi-view

representation is ubiquitous and, hence, extending subspace

clustering into the multi-view setting is of vital importance

for many applications.

In this paper, we firstly introduce a simple and direct

way to extend the single-view subspace clustering to multi-

view setting. As in SMR, we employ the graph regular-

ization technique, which explicitly enforces the subspace

representation to meet the grouping effect [15]. We use

X(v) to denote the feature matrix corresponding to the vth

view. Similarly, we use Z(v) to denote the learned sub-

space representation corresponding to the vth view. We

use x
(v)
ij to denote the entry of X(v) at the ith row and jth

column. Specifically, a pair of points should be close to

each other in new representation if they are close in the o-

riginal feature space. Formally, it has the following form:

||xi − xj ||2 → 0 ⇒ ||zi − zj ||2 → 0, ∀i 6= j. Therefore,

the objective function of smooth representation clustering

corresponding to the vth view turns out to be:

min
Z(v)

f(Z(v)) = ||X(v) −X(v)Z(v)||2F + α(v)Ω(Z(v)),

(3)

where α(v) are tradeoff factors and Ω(·) denotes the smooth

regularized term which is defined as follow:

Ω(Z(v)) =
1

2

n∑

i=1

n∑

j=1

w
(v)
ij ||z

(v)
i − z

(v)
j ||22

= tr(Z(v)L(v)Z(v)T ),

(4)

where tr denotes the matrix trace. W(v) = (w
(v)
ij ) is the

weight matrix measuring the spatial closeness of points.

L(v) = D(v) − W(v) is the Laplacian matrix, in which

D(v) is the diagonal degree matrix with d
(v)
ii =

∑n

j=1 w
(v)
ij .

There are lots of ways to construct W(v). In this paper, we

employ the inner product to measure the similarity, since

it is simple to implement and it performs well in practice.

Then, we have an naive multi-view subspace clustering for-

mulation by minimizing:

O(Z(1), ..,Z(V )) =
V∑

v=1

||X(v) −X(v)Z(v)||2F

+

V∑

v=1

α(v)tr(Z(v)L(v)Z(v)T ),

(5)

where V is the number of all views. This method learn-

s each subspace representation independently. Therefore,

it cannot ensure the complementarity of different views.

We call the method Naive Multi-view Subspace Clustering

(NaMSC).

3.2. Diversityinduced Multiview Subspace Clus
tering

According to the objective function (5), NaMSC only

combines multi-view representations directly, without any

constraint. Here, we explore the complementary informa-

tion across different views by enforcing the diversity of all

representations. High independence means high diversity

of two variables [20, 21]. Classical independence criteria

include Spearmans rho and Kendalls tau, which can detect

only linear dependencies. We employ the Hilbert-Schmidt

Independence Criterion (HSIC) to measure the dependence

of variables for several reasons. First, HSIC measures de-

pendence by mapping variables into a reproducing kernel

Hilbert space (RKHS) such that correlations measured in

that space correspond to high-order joint moments between

the original distributions and more complicated (such as

nonlinear) dependence can be addressed. Second, this ap-

proach is able to estimate dependence between variables

without explicitly estimating the joint distribution of the

random variables. Hence, it is of high computational ef-

ficiency. Last but not least, the empirical HSIC turns out to

be equal to the trace of product of the data matrix, which

makes our problem solvable. Our goal is to promote the di-

versity of subspace representations, and thus we employ the

HSIC to penalize for dependence between data in two rep-

resentations. Specifically, to ensure that one representation

is novel compared to another, we use HSIC to penalize for

dependence between data in the two representations.

3.2.1 Representation Diversity Term

First, we recall the definition of cross-covariance Cxy. Let

us define a mapping φ(x) from x ∈ X to kernel space F ,

such that the inner product between vectors in that space is

given by a kernel function k1(xi,xj) =< φ(xi), φ(xj) >.

Let G be a second kernel space on Y , with kernel function

k2(yi,yj) =< ϕ(yi), ϕ(yj) >. The cross-covariance is a

function that gives the covariance of two random variables

and defined as follow:

Cxy = Exy[(φ(x)− µx)⊗ (ϕ(y)− µy)]. (6)



where µx = E(φ(x)) and µy = E(ϕ(y)), and ⊗ is the

tensor product. Then, we have the following definition of

HSIC [13]:

Definition 3.1. Given two separable RKHSs F , G and a

joint distribution pxy , we define the HSIC as the Hilbert-

Schmidt norm of the associated cross-covariance operator

Cxy:

HSIC(pxy,F ,G) := ||Cxy||
2
HS, (7)

where ||A||HS denotes the Hilbert-Schmidt norm of a matrix

as:

||A||HS =

√
∑

i,j

a2ij . (8)

However, the joint distribution pxy is often unknown or

hard to estimate. Thus, the empirical version of HSIC is

induced as follow:

Definition 3.2. Consider a series of n independent obser-

vations drawn from pxy, Z := {(x1,y1), ..., (xn,yn)} ⊆
X ×Y , an estimator of HSIC, written as HSIC(Z,F ,G), is

given by:

HSIC(Z,F ,G) = (n− 1)−2tr(K1HK2H), (9)

where K1 and K2 are the Gram matrices with k1,ij =
k1(xi,xj), k2,ij = k2(yi,yj). hij = δij − 1/n centers the

Gram matrix to have zero mean in the feature space. For

more details of HSIC, please refer to the paper [13]. To en-

sure that representations in different views provide enough

complementary information, we use HSIC to penalize for

dependence between data in these new representations.

To enhance the complementary information, in our ap-

proach, we encourage the new representations of different

views to be of sufficient diversity. This amounts to enforc-

ing the representations of each view to be novel to each

other. Let X(v), Z(v) denote the features in vth view and

corresponding subspace representation, respectively. Then,

we should minimize the following objective function:

O(Z(1), ...,Z(V )) =

V∑

v=1

||X(v) −X(v)Z(v)||2F

︸ ︷︷ ︸

error

+ λS

V∑

v=1

tr(Z(v)L(v)Z(v)T )

︸ ︷︷ ︸

smoothness

+λV

∑

v 6=w

HSIC(Z(v),Z(w))

︸ ︷︷ ︸

diversity

,

(10)

where λS and λV are tradeoffs corresponding to the s-

moothness and diversity regularization terms, respectively.

Under the assumption that the data are drawn from different

subspaces, the first term ensures the relationships are con-

structed in the same subspace. The second and third terms

enforce that the learned subspace representations to meet

the grouping effect independently and diversity jointly.

Our method is not limited to one specific subspace clus-

tering method. Our method is based on SMR because SMR

is the state-of-the-art method. Nevertheless, the other sub-

space clustering algorithms, such as SSC, LRR can also be

implemented into our method.

3.3. Solving the Optimization Problem

With the alternating minimizing strategy, we can approx-

imately solve equation (10) in the manner of minimizing

with respect to one view once at a time while fixing the

other views. Specifically, with all but one Z(v) fixed, we

minimize the following objective function:

F(Z(v)) = ||X(v) −X(v)Z(v)||2F

+ λStr(Z
(v)L(v)Z(v)T ) + λV

V∑

w=1;w 6=v

HSIC(Z(v),Z(w)).

(11)

In this paper, we use the inner product kernel for HSIC,

say, K(v) = Z(v)TZ(v). For notational convenience, we

ignore the scaling factor (n− 1)
−2

of HSIC and have the

following equation:

V∑

w=1;w 6=v

HSIC(Z(v),Z(w)) =

V∑

w=1;w 6=v

tr(HK(v)HK(w))

=

V∑

w=1;w 6=v

tr(Z(v)HK(w)HZ(v)T ) = tr(Z(v)KZ(v)T )

(12)

with

K =

V∑

w=1;w 6=v

HK(w)H.

Problem (11) is a smooth convex program. Differentiating

the objective function with respect to Z(v) and setting it to

zero, we get the following optimal solution Z(v)∗ which sat-

isfies

X(v)TX(v)Z(v)∗ + Z(v)∗(λSL
(v) + λV K) = X(v)TX(v).

(13)

The above equation is a standard Sylvester equation [2]

which has a unique solution. The whole procedure of DiM-

SC is summarized in Algorithm 1.

As stated in equations (12)-(13), by using the inner prod-

uct kernel, minimizing HSIC turns out to be equivalen-

t to minimizing the trace of the product of the data ma-

trix. Then, our objective can be optimized with the similar

method to the smooth subspace clustering (Sylvester equa-

tion, Eq. (13)). Hence, it is very simple to implement and

very efficient indeed. Note that, our method is quite gener-

ic and it can be used to nonlinear universal kernels (e.g.,



Gaussian kernel). However, when incorporating nonlinear

universal kernels, it could not employ Sylvester equation as

in Eq (13) after differentiating the objective function with

respect to Z(v). Thus, the iteration of updating Z(v) is com-

putationally expensive. A solution is that the gradient de-

scent method is applied to update each Z(v) in each itera-

tion. Nevertheless, adopting nonlinear universal kernels is

quite interesting for addressing more general correlations

and we will consider it in our future work.

Proposition 3.1. The objective function (10) is guaranteed

to convergence with Algorithm 1.

Proof 3.1. Given the initialization of each Z(v), for each

iteration of optimizing problem (11), we can obtain the u-

nique solution of a standard Sylvester equation. Assume

[Z]k denote the updated value in kth iteration, then for ∀
Z(v), we have

F([Z(v)]k; [Z
(1)]k, ..., [Z

(v−1)]k, [Z
(v+1)]k, ...) ≥

F([Z(v)]k+1|; [Z
(1)]k, ..., [Z

(v−1)]k, [Z
(v+1)]k, ...).

(14)

We can decompose the original objective function (10) into

two parts, F and F̄ , where they correspond to the vth view

and all the other views, respectively. Then, it turns out to

be:

O([Z(v)]k; [Z
(1)]k, ..., [Z

(v−1)]k, [Z
(v+1)], ...) =

F([Z(v)]k; [Z
(1)]k, ..., [Z

(v−1)]k, [Z
(v+1)]k, ...)+

F̄([Z(1)]k, ..., [Z
(v−1)]k, [Z

(v+1)]k, ...).

(15)

Making a difference of the objective function between the

kth and k + 1th iteration, we have

O([Z(v)]k; [Z
(1)]k, ..., [Z

(v−1)]k, [Z
(v+1)]k, ...)−

O([Z(v)]k+1; [Z
(1)]k, ..., [Z

(v−1)]k, [Z
(v+1)]k, ...) =

F(Z
(v)
k ; [Z(1)]k, ..., [Z

(v−1)]k, [Z
(v+1)]k, ...)−

F([Z(v)]k+1; [Z
(1)]k, ..., [Z

(v−1)]k, [Z
(v+1)]k, ...) ≥ 0.

(16)

The above equality holds because the kth and (k + 1)
th

representations of the objective function have the same F̄
part. Therefore, for each iteration, the objective function is

non-increasing. Accordingly, the proposition 3.1 is proved.

The alternating minimization is carried out until conver-

gence. Since the alternating minimization can make the al-

gorithm stuck in a local minimum, it is important to have

a sensible initialization. We initialize the representation-

s of V -1 views using SMR, which is a special case (when

λV = 0 in (10)) of our method. On the other hand, if there

is no prior information on which view is more informative

about the clustering, we can start with any view. However,

if we have some a priori knowledge on this, we can start

with initializing and fixing more informative views, and op-

timize with respect to the least informative view. Since the

objective is non-increasing with the iterations, the algorith-

m is guaranteed to convergence. In practice, we monitor the

convergence is reached within less than 5 iterations.

Algorithm 1: The algorithm for solving DiMSC

Input: Unlabeled multi-view data

D = {X(1), ...,X(V )}, number of subspace k,

parameters λS and λV

for each v ∈ V do

Initialize Z(v) by solving objective function (3).

end

while not converged do

for each v ∈ V do

Obtain Z(v) by solving objective function (11).

end

end

Combine all subspace representations of each view by

S =
∑V

v=1 |Z
(v)|+ |Z(v)T |.

Perform spectral clustering using similarity matrix S.

Output: Clustering result C.

4. Experimental Results

In this section, we compare our method, DiMSC, to

the state-of-the-art methods on multi-view face clustering

datasets. We employ four public datasets.

•Yale. The dataset contains 165 grayscale images in

GIF format of 15 individuals. There are 11 images per

subject, one per different facial expression or configuration:

center-light, with glasses, happy, left-light, without glasses,

normal, right-light, sad, sleepy, surprised, and wink.

•Extended YaleB. The database contains 38 individuals

and around 64 near frontal images under different illumina-

tions for each individual. Similarly to the work in [15], we

use a part of Extended YaleB, which consists of 640 frontal

face images of 10 classes (we use the first 10 classes for

experiments).

•ORL. The dataset contains 10 different images of each

of 40 distinct subjects. For some subjects, the images were

taken at different times, varying the lighting, facial expres-

sions (open / closed eyes, smiling / not smiling) and facial

details (glasses / no glasses). All the images were taken a-

gainst a dark homogeneous background with the subjects

in an upright, frontal position (with tolerance for some side

movement).

•Notting-Hill Video Face. We also conduct our exper-

iments on a video face clustering dataset [28, 29, 23]. The

dataset Notting-Hill is derived from the movie “Notting-

Hill”. Faces of 5 main casts are used, including 4660 faces



Table 1. Results (mean ± standard deviation) on Yale.
Method NMI ACC AR F-score Precision Recall

Singlebest 0.654±0.009 0.616±0.030 0.440±0.011 0.475±0.011 0.457±0.011 0.495±0.010

FeatConcate 0.641±0.006 0.544±0.038 0.392±0.009 0.431±0.008 0.415±0.007 0.448 ±0.008

ConcatePCA 0.665±0.037 0.578±0.038 0.396±0.011 0.434±0.011 0.419±0.012 0.450 ±0.009

co-Reg SPC 0.648±0.002 0.564±0.000 0.436±0.002 0.466±0.000 0.455±0.004 0.491±0.003

co-Train SPC 0.672±0.006 0.630±0.011 0.452±0.010 0.487±0.009 0.470±0.010 0.505±0.007

Min-Disagreement 0.645±0.005 0.615±0.043 0.433±0.006 0.470±0.006 0.446±0.005 0.496±0.006

NaMSC 0.671±0.011 0.636±0.000 0.475±0.004 0.508±0.007 0.492±0.003 0.524±0.004

DiMSC 0.727±0.010 0.709±0.003 0.535±0.001 0.564±0.002 0.543±0.001 0.586±0.003

Table 2. Results (mean ± standard deviation) on Extended YaleB.
Method NMI ACC AR F-score Precision Recall

Singlebest 0.360±0.016 0.366±0.059 0.225±0.018 0.303±0.011 0.296±0.010 0.310±0.012

FeatConcate 0.147±0.005 0.224±0.012 0.064±0.003 0.159±0.002 0.155±0.002 0.162±0.002

ConcatePCA 0.152±0.003 0.232±0.005 0.069±0.002 0.161±0.002 0.158±0.001 0.164±0.002

Co-Reg SPC 0.151±0.001 0.224±0.000 0.066±0.001 0.160±0.000 0.157±0.001 0.162±0.000

Co-Train SPC 0.302±0.007 0.186±0.001 0.043±0.001 0.140±0.001 0.137±0.001 0.143±0.002

Min-Disagreement 0.186±0.003 0.242±0.018 0.088±0.001 0.181±0.001 0.174±0.001 0.189±0.002

NaMSC 0.594±0.004 0.581±0.013 0.380±0.002 0.446±0.004 0.411±0.002 0.486±0.001

DiMSC 0.635±0.002 0.615±0.003 0.453±0.000 0.504±0.006 0.481±0.002 0.534±0.001

in 76 tracks.

For all the face datasets, we resize the images into 48*48

and extract three types of features: intensity, LBP and Ga-

bor. The standard LBP features are extracted from 72×80

loosely cropped images with a histogram size of 59 over

9×10 pixel patches. Gabor wavelets are extracted with one

scale λ = 4 at four orientations θ = {0o, 45o, 90o, 135o}
with a loose face crop at a resolution of 25×30 pixels. All

descriptors except the intensity are scaled to unit norm.

(1) (2)

Figure 2. Visualization of subspace representations Z
(1) (corre-

sponding to view1), Z(2) (corresponding to view2) and similarity

matrices S. The top row is the result of NaMSC, and bottom row

corresponds to the proposed DiMSC.

We compare our approach with a number of baselines:

• Singlebest. The method makes use of the most infor-

mative view, i.e., one that achieves the best performance

with the standard spectral clustering algorithm [19].

•FeatConcate. The method concatenates the features of

all views and then applies the standard spectral clustering.

•ConcatePCA. The method firstly concatenates the fea-

tures of all views and applies PCA to extract the low dimen-

sional subspace representation. Then, it apples the standard

spectral clustering on the low dimensional representation.

•Co-Reg SPC [17]. The pairwise multi-view spectral

clustering method co-regularizes the clustering hypotheses

to enforce corresponding data points in each view to have

the same cluster membership.

•Co-Training SPC [16]. The co-training based multi-

view spectral clustering method assumes that the true un-

derlying clustering would assign a point to the same cluster

irrespective of the view.

•Min-Disagreement [9]. The method is based on spec-

tral clustering algorithm, which creates a bipartite graph and

is based on the “minimizing-disagreement” idea.

•NaMSC. Firstly, the method conducts subspace repre-

sentation learning independently using the approach in [15],

and then applies spectral clustering on the combination of

these representations.

We compare all the approaches using six evaluation met-

rics, including normalized mutual information (NMI), ac-

curacy (ACC), adjusted rand index (AR), F-score, Preci-

sion and Recall. For all these metrics, the higher value in-

dicates better clustering quality. Each metric penalizes or

favors different properties in the clustering, and hence we

report results on these diverse measures to perform a com-

prehensive evaluation. As stated above, the inner product

kernel is used for computing the graph similarity in all ex-

periments if not stated otherwise. The parameters of our

method are relatively robust.

In Figure 2, we show the visualization results on Ex-

tended YaleB. The independently learned representations of

NaMSC (top row) are less diverse than the representation-

s jointly learned with DiMSC. Subsequently, the similarity



Table 3. Results (mean ± standard deviation) on ORL.
Method NMI ACC AR F-score Precision Recall

Singlebest 0.884±0.002 0.726±0.025 0.655±0.005 0.664±0.005 0.610±0.006 0.728±0.005

FeatConcate 0.831±0.003 0.648±0.033 0.553±0.007 0.564±0.007 0.522±0.007 0.614±0.008

ConcatePCA 0.835±0.004 0.675±0.028 0.564±0.010 0.574±0.010 0.532±0.011 0.624±0.008

Co-Reg SPC 0.853±0.003 0.715±0.000 0.602±0.004 0.615±0.000 0.567±0.004 0.666±0.004

Co-Train SPC 0.901±0.003 0.730±0.005 0.656±0.007 0.665±0.007 0.612±0.008 0.727±0.006

Min-Disagreement 0.876±0.002 0.748±0.051 0.654±0.004 0.663±0.004 0.615±0.004 0.718±0.003

NaMSC 0.926±0.006 0.813±0.003 0.769±0.020 0.774±0.004 0.731±0.001 0.823±0.002

DiMSC 0.940 ±0.003 0.838±0.001 0.802 ±0.000 0.807±0.003 0.764±0.012 0.856±0.004

Table 4. Results (mean ± standard deviation) on Notting-Hill.

Method NMI ACC AR F-score Precision Recall

Singlebest 0.723±0.008 0.813±0.000 0.712±0.020 0.775±0.015 0.774±0.018 0.776±0.013

FeatConcate 0.628±0.028 0.673±0.033 0.612±0.041 0.696±0.032 0.699±0.032 0.693±0.031

ConcatePCA 0.632±0.009 0.733±0.008 0.598±0.015 0.685±0.012 0.691±0.010 0.680±0.014

Co-Reg SPC 0.660±0.003 0.758±0.000 0.616±0.004 0.699±0.000 0.705±0.003 0.694±0.003

Co-Train SPC 0.766±0.005 0.689±0.027 0.589±0.035 0.677±0.026 0.688±0.030 0.667±0.023

Min-Disagreement 0.707±0.003 0.791±0.000 0.689±0.002 0.758±0.002 0.750±0.002 0.765±0.003

NaMSC 0.730±0.002 0.752±0.013 0.666±0.004 0.738±0.005 0.746±0.002 0.730±0.011

DiMSC 0.799±0.001 0.843±0.021 0.787±0.001 0.834±0.001 0.822±0.005 0.836±0.009

matrices (the third column) are constructed by combining

these representations of different views. For the diversity

reason, the similarity matrix of DiMSC reveals the underly-

ing structure much better than that of NaMSC.

Similar to the work [16], we also report results on these

diverse measures to do a comprehensive evaluation. As

shown in Table 1, co-Train SPC performs the second best

in terms of NMI, but not the case for other metrics. Further-

more, our method outperforms the other methods in terms

of all these metrics which demonstrates the clear advance of

our method.

Table 1 and Table 2 show the face clustering result-

s on Yale and Extended YaleB datasets, respectively. On

both datasets, our approach outperforms all the baselines.

Note that the other methods achieve rather low performance

except NaMSC and our method on the Extended YaleB

dataset. The main reason is the large variation of illumi-

nation. Take the intensity feature for example, under such a

condition, self-representation based subspace clustering al-

gorithms can still work well for the advantage of the linear

combination, while the traditional distance-based method-

s will be degrade due to the varying illumination. For the

Yale dataset in Table 1, the closest published competitor is

co-Train SPC [16]. It is close to NaMSC in terms of N-

MI and ACC. Nevertheless, we improved around 2% over

NaMSC in terms of AR, F-score, Precision, and Recall. For

the Extended YaleB dataset in Table 2, co-Train SPC [16]

performs well in terms of NMI. However, they perform as

low as others in terms of other five metric. Without surprise,

Singlebest performs best among the published competitors

[9, 17, 16]. However, its performance is not even as well as

that of NaMSC. DiMSC further significantly outperforms

NaMSC thanks to its efficient utilization of diversity.

Table 3 shows the results on the ORL dataset. On this

dataset, quite a lot of approaches achieve promising per-

formance. Our method still outperforms all the alterna-

tive methods significantly. Table 4 shows the results on

the video face dataset Notting-Hill. Video face clustering

in this dataset is a more challenging task because the ap-

pearances of faces often vary significantly due to the light-

ing conditions, especially light angles which often change

drastically. Our method outperforms the closest performing

baseline, which is NaMSC with a clear large margin.

The performance improvements over NaMSC on four

datasets are 5.6%, 4.1%, 1.4%, 6.9% in terms of NMI, re-

spectively. To further demonstrate the significance of the

performance improvement, we have done the Student’s t-

test of our results. In the experiment, the output on the four

datasets of t-test are all 1, which means our method being

better than those of other methods is correct with the prob-

ability of 1-α = 0.9999. We also note that, directly concate-

nating all the features is not a proper way since it always

performs worse than that of the best single view. On the

other hand, although clustering with the best single view

achieves promising performance sometimes, it is difficult

to choose proper view adaptively.

The clustering examples of DiMSC and NaMSC are

shown in Figure 3. Limited to the space, we only show a

part of (top five best) clusters on the Yale dataset and all the

clusters on the Notting-Hill. Accordingly, it is not appro-

priate to calculate the quantitative result and compare it to

the result in Table 1. From Figure 3, it is observed that the

results of DiMSC are more promising than those of the sec-

ond best performer, NaMSC. For example, in the first row

in Figure 3(a) corresponding to the same individual, about

half of faces are wrongly clustered by NaMSC, while the



(a) Results on Yale (image face dataset)

(b) Results on Notting-Hill (video face dataset)

Figure 3. Some visual clustering results of NaMSC (in the left blue rectangles) and the proposed DiMSC (in the right green rectangles).

Each row denotes a face cluster output. The false clustering faces are highlighted by the red rectangles and the incorrect rate in each row

is approximately equal to its proportion in the clusters.
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Figure 4. Parameter tuning on Extended YaleB.
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Figure 5. Convergence results Extended YaleB.

proposed DiMSC obtains a much more accurate clustering.

We show the parameter tuning and algorithm conver-

gence on Extended YaleB as an example in Figure 4 and

Figure 5, respectively. As shown in Figure 4, the perfor-

mance is relatively low while fixing λS = 0, which demon-

strates the importance of the smoothness term. The promis-

ing performance can be expected when the parameter λS

is choose in a range (e.g., [0.01,0.03]). The parameter of

diversity term is relatively robust since the performance is

stable while λV is chosen in a wide range. The example re-

sult in Figure 5 demonstrates that DiMSC converges within

a small number of iterations, which empirically proves the

proposition 3.1.

5. Conclusions

In this paper, we considered the subspace clustering un-

der the multi-view setting to utilize the abundant represen-

tation of data. We proposed the Diversity-induced Multi-

view Subspace Clustering approach, which employed the

Hilbert-Schmidt Independence Criterion to explicitly en-

force the learned subspace representations to be novel with

each other. We have shown that the enhanced complemen-

tary information could serve as a more helpful complement

to multi-view subspace clustering. Our empirical study sug-

gests the proposed approach can effectively explore the un-

derlying complementary information of the given data and

outperform all the other multi-view clustering methods used

in the experiments.
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