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Abstract—We establish the high SNR diversity-multiplexing
tradeoff of the fading interference channel, for a general in-
terference level and under the assumption that transmitters and
receivers are equipped with a single antenna each.

I. INTRODUCTION

Considered initially by Shannon in [1], the interference chan-
nel describes the shared medium in which two or more
transmitter-receiver pairs wishing to communicate reliably,
interfere with each other. Although the general capacity region
remains unknown in the simplest scenario with two commu-
nicating pairs, a recent result by Etkin, Tse and Wang [2]
has shed light on the particular case where both interference
and noise are additive, and noise is Gaussian. They establish
a new outer bound on the capacity region, that is shown
moreover to be achievable to within one bit/s/Hz by a simple
Han-Kobayashi [3] type scheme, for all values of channel
parameters. This characterization of the capacity region is
therefore particularly relevant in the high SNR regime, where
interference is the main factor limiting communication rates.
A refined analysis of this regime is performed in [2], showing
that the capacity region highly depends on the interference
level considered.

When two transmitter-receiver pairs wish to communicate
reliably in a wireless environment, users have to combat
channel fading, in addition to dealing with interference. It
is of interest to explore the fundamental tradeoffs in this
new context. In this paper, we focus on the interference-
limited regime (high SNR), in the scenario where the channel
variations over time are sufficiently slow, so that the fading
coefficients may be considered as fixed once and for all. If
it happens that both transmistters and receivers can get fair
estimates of the channel coefficients, then we are back to the
situation of the deterministic Gaussian interference channel
mentioned above, and Etkin et al. result applies directly; this
is summarized in Section II. On the other hand, if only the
receivers get estimates of the channel coefficients (as it may
happen when feedback links are weak, e.g.), then outage is to
be expected. In [4], it has been shown that in the context of
point-to-point communications, there is a fundamental tradeoff

between the rate at which one intends to communicate and
the rate of decrease of the outage probability with SNR (or
diversity order). In Section III, we explore this tradeoff in
detail in the context of the fading interference channel. The
obtained tradeoff highly depends on the interference level
considered, just like capacity.

II. REVIEW OF ETKIN, TSE AND WANG’S RESULT

We consider the fading interference channel

Y1 = h11 X1 + h21 X2 + Z1

Y2 = h12 X1 + h22 X2 + Z2

where Z1, Z2 are independent noise processes with i.i.d.
NC(0, N0) realizations over time and H = (hij) is the
matrix of channel path gains. We assume that the realizations
of H are held fixed over time (slow fading assumption),
with the hij being independent circularly symmetric complex
Gaussian random variables with Var(h11) = Var(h22) = 1 and
Var(h12) = Var(h21) = σ2. In addition, the transmitted signals
Xi ∈ C are subject to the power constraint E{|Xi|2} ≤ P .
For notational convenience, we moreover define

X̃i :=
1√
P

Xi, Ỹi :=
1√
N0

Yi, Z̃i :=
1√
N0

Zi,

SNR :=
P

N0
, INR :=

P

N0
σ2, gij :=

hij√
Var(hij)

.

This leads to the following equivalent representation of the
above channel:

Ỹ1 =
√

SNR g11 X̃1 +
√

INR g21 X̃2 + Z̃1

Ỹ2 =
√

INR g12 X̃1 +
√

SNR g22 X̃2 + Z̃1

where the normalized channel matrix G = (gij) has i.i.d.
circularly symmetric complex Gaussian entries with unit vari-
ance.

In the scenario where the realizations of G are revealed to both
the transmitters and the receivers, the capacity region C(G) of
the above interference channel has been recently characterized
by Etkin, Tse and Wang in [2]. More precisely, they show that



for a given fading matrix G, the following rate region is an
upper bound on C(G):

R0(G) :=
{

(R1, R2) ∈ R2
+ :

a1) R1 ≤ log
(
1 + SNR |g11|2

)

a2) R2 ≤ log
(
1 + SNR |g22|2

)

b1) R1 + R2 ≤ log
(

1 +
SNR |g11|2

1 + INR |g12|2
)

+ log
(
1 + SNR |g22|2 + INR |g12|2

)

b2) R1 + R2 ≤ log
(

1 +
SNR |g22|2

1 + INR |g21|2
)

+ log
(
1 + SNR |g11|2 + INR |g21|2

)

c) R1 + R2 ≤ log
(

1 + INR |g21|2 +
SNR |g11|2

1 + INR |g12|2
)

+ log
(

1 + INR |g12|2 +
SNR |g22|2

1 + INR |g21|2
)

d1) 2R1 + R2 ≤ log
(

1 +
SNR |g11|2

1 + INR |g12|2
)

+ log
(
1 + SNR |g11|2 + INR |g221|2

)

+ log
(

1 + INR |g12|2 +
SNR |g22|2

1 + INR |g21|2
)

d2) R1 + 2R2 ≤ log
(

1 +
SNR |g22|2

1 + INR |g21|2
)

+ log
(
1 + SNR |g22|2 + INR |g12|2

)

+ log
(

1 + INR |g21|2 +
SNR |g11|2

1 + INR |g12|2
)}

(1)

In addition, Etkin, Tse and Wang show in [2] that for any
(R1, R2) ∈ R0(G), the rate pair (R1−1, R2−1) is achievable
by a simplification of the Han-Kobayashi scheme, characteriz-
ing therefore the capacity region of the Gaussian interference
channel to within one bit, for all values of channel parameters.

The high SNR regime is also considered in [2], where the
interference level α is defined as the ratio of INR and SNR
in dB:

α :=
log INR
log SNR

Defining further r1 := R1
log SNR and r2 := R2

log SNR , the above
upper-bound (1) on the capacity region may be rewritten, in
the high SNR limit, as

r1, r2 ≤ 1
r1 + r2 ≤ max(2− α, α)
r1 + r2 ≤ 2 max(1− α, α) (2)

2r1 + r2

r1 + 2r2

}
≤ max(3− 2α, 2, 2α)

Since (1) is shown to be achieved to within one bit, this high
SNR characterization of the capacity region is tight; r1 and r2

are referred to in [2] as generalized degrees of freedom.

III. NO CHANNEL KNOWLEDGE AT THE TRANSMITTERS

Let us now consider the scenario where the channel realiza-
tions are revealed to the receivers, but not to the transmitters.
More precisely, we assume that receiver 1 gets (Ỹ1, g11, g21)
and that receiver 2 gets (Ỹ2, g12, g22). In the absence of
channel knowlegde at the transmitters, the capacity region of
the fading interference channel reduces to the single point
{(0, 0)}. Indeed, there is always a positive probability for
a given non-zero target rate pair (R1, R2) to fall outside
the capacity region. In this section, we analyze this outage
probability in detail and establish the high SNR diversity-
multiplexing tradeoff for the fading interference channel.

The outage probability is defined as the probability that a
required rate pair (R1, R2) is not in the capacity region of
the channel, namely Pout(R1, R2) := P{(R1, R2) /∈ C(g)}.
By the above mentioned result [2], we have

P{(R1, R2) /∈ R0(g)} ≤ Pout(R1, R2)
≤ P{(R1 + 1, R2 + 1) /∈ R0(g)}

Let us therefore define Pout,0(R1, R2) := P{(R1, R2) /∈
R0(g)}. By the preceding inequality, we see that Pout(R1, R2)
and Pout,0(R1, R2) behave the same when considering target
rates of the order of log SNR.

For the symmetric rate requirement, we define, with a slight
abuse of notation, Pout(R) := Pout(R, R) = P{(R, R) /∈
C(G)} and Pout,0(R) := Pout,0(R,R) = P{(R, R) /∈ R0(G)}.
Let us also define

R0,sym(G) :=
{

R ≥ 0 :

a) R ≤ log
(
1 + SNR |g11|2

)

b) 2R ≤ log
(

1 +
SNR |g11|2

1 + INR |g12|2
)

+ log
(
1 + SNR |g22|2 + INR |g12|2

)

c) 2R ≤ log
(

1 + INR |g21|2 +
SNR |g11|2

1 + INR |g12|2
)

+ log
(

1 + INR |g12|2 +
SNR |g22|2

1 + INR |g21|2
)

d) 3R ≤ log
(

1 +
SNR |g11|2

1 + INR |g12|2
)

+ log
(
1 + SNR |g11|2 + INR |g21|2

)

+ log
(

1 + INR |g12|2 +
SNR |g22|2

1 + INR |g21|2
)}

(3)

By the symmetry of the distribution of the fading coefficients
gij , we have

Pout,0(R) = P{R /∈ R0,sym(G)} (4)

The maximum achievable diversity order for a given target rate
pair (R1 = r1 log SNR, R2 = r2 log SNR) (corresponding to



a multiplexing gain (r1, r2)) is defined as

d(α, r1, r2) := − lim
SNR→∞

INR=SNRα

Pout(r1 log SNR, r2 log SNR)
log SNR

= − lim
SNR→∞

INR=SNRα

Pout,0(r1 log SNR, r2 log SNR)
log SNR

and for the equal rate case, dsym(α, r) := d(α, r, r). The main
result of the paper is given in the following theorem.

Theorem 1. A) For an interference level α, the diversity
order of the fading interference channel with equal target
multiplexing gains r1 = r2 = r is given by

dsym(α, r) = min
{

da(α, r), db(α, r), dc(α, r), dd(α, r)
}

where

da(α, r) := (1− r)+ ∀α
db(α, r) := 2(1− r −min(r, α

2 ))+ + (α− 2r)+

dc(α, r) := 2(1− r −min(r, α))+ + 2(α− r)+

dd(α, r) := max((1− 3r
2 )+ + (1− 3r)+ + 2(α− 3r

2 )+,

d0(3r + min(3r, 2α)))

and d0(x) := max(0, min(3− x, max(1, 2− x)))

B) In the case of non-equal target multiplexing gains r1 and
r2, the diversity order is given by

d(α, r1, r2) = min
{

da(α, r1), da(α, r2), db

(
α,

r1 + r2

2

)
,

dc

(
α,

r1 + r2

2

)
, dd

(
α,

2r1 + r2

3

)
, dd

(
α,

r1 + 2r2

3

) }

Note that the curves da(α, r), db(α, r), dc(α, r), dd(α, r)
correspond to each bound in (3).

Part A of the theorem is illustrated on Figures 1a and 1b. The
function d(α, r) is first represented for three particular values
of α on Figure 1a.
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Figure 1a: function d(α, r)

The level curves of the function d(α, r) are then represented
on Figure 1b. At the bottom of the figure (r = 0), d takes
uniformly the value 1 for all values of α and decreases more
or less rapidly to zero as r increases, depending on the value
of α. At the top of the figure, one recognizes the w-shaped
curve obtained in [2] for the high SNR symmetric capacity,
along which the diversity order is zero. On the other hand, the

region where only bound a) is effective (i.e. where interference
is not limiting diversity) appears also clearly on the figure.
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Figure 1b: level curves of d(α, r)

Part B of the theorem is illustrated on Figure 2. The level
curves of the function d(α, r1, r2) are represented for different
values of α. At the lower left corner of the figures (r1 =
r2 = 0), d takes uniformly the value 1 for all values of α
and then decreases as r1, r2 increase. Depending on the value
of α, one recognizes the shapes of the high SNR capacity
region obtained in [2], along which the diversity order is zero.
More interestingly, one can tell from the slope of the level
curve which of the bounds among a1, a2, etc. is effective at a
given multiplexing gain pair (r1, r2) (except for the distinction
between bounds b1, b2 and c).
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Proof of Theorem 1. A) We follow here the line of analysis
developed in [4]. Let Aij := |gij |2. Clearly, the Aij are i.i.d.
exponential random variables with parameter 1. The outage
probability (4) may then be rewritten as

Pout,0(R) =
∫

D(A)

e−A11−A12−A21−A22 dA11 dA12 dA21 dA22

where D(A) := {Aij ≥ 0 : R /∈ R0,sym(A)} and R0,sym(A)
stands for the same interval as that defined in (3), with the
random variables |gij |2 replaced by Aij . Let us make further
the change of variables Aij = SNR−βij , whose Jacobian is
given by dAij = (− log SNR) SNR−βij dβij . This leads to

Pout,0(R) =
∫

D(β)

p(β11, β12, β21, β22) dβ11 dβ12 dβ21 dβ22

with

p(β11, β12, β21, β22) = (log SNR)4 SNR−β11−β12−β21−β22

× e−SNR−β11−SNRβ12−SNR−β21−SNR−β22

and D(β) = {βij ∈ R : R /∈ R0,sym(β)}, where again
R0,sym(β) stands for the same interval as that defined in (3)
with the |gij |2 replaced by SNR−βij . Following the analysis
and notations1 of [4], we further observe that

Pout,0(r log SNR)
.=

∫
eD(β)

SNR−β11−β12−β21−β22 dβ11 dβ12 dβ21 dβ22

where D̃(β) := {βij ≥ 0 : r log SNR /∈ R0,sym(β)}. After
some ananalysis, and remembering that INR = SNRα, we see
that D̃(β) may in turn be replaced in the high SNR limit by

D̂(β) :=
{

β11, β12, β21, β22 ≥ 0 :

a) (1− β11)+ ≤ r

or b) ((1− β11)+ − (α− β12)+)+

+ max((1− β22)+, (α− β12)+) ≤ 2r

or c)max((α− β21)+, (1− β11)+ − (α− β12)+)
+ max((α− β12)+, (1− β22)+ − (α− β21)+) ≤ 2r

or d) ((1− β11)+ − (α− β12)+)+

+ max((1− β11)+, (α− β21)+)

+ max((α− β12)+, (1− β22)+ − (α− β21)+) ≤ 3r
}

Using then Laplace’s integration method, we obtain

Pout,0(r log SNR) .= SNR−min bD(β) β11+β12+β21+β22

which leads to the following expression for the diversity order:

dsym(α, r) = min
bD(β)

β11 + β12 + β21 + β22

This optimization problem may be solved separately for the
four constraints a, b, c and d. Namely,

dsym(α, r) = min
{

da(α, r), db(α, r), dc(α, r), dd(α, r)
}

1f(SNR)
.
= g(SNR) if limSNR→∞

log f(SNR)
log SNR = limSNR→∞

log g(SNR)
log SNR

where
a) da(α, r) = min β11 subj. to (1− β11)+ ≤ r

b) db(α, r) = min β11 + β12 + β22

subj. to ((1− β11)+ − (α− β12)+)+

+ max((1− β22)+, (α− β12)+) ≤ 2r

c) dc(α, r) = min β11 + β12 + β21 + β22

subj. to max((α− β21)+, (1− β11)+ − (α− β12)+)
+ max((α− β12)+, (1− β22)+ − (α− β21)+) ≤ 2r

d) dd(α, r) = min β11 + β12 + β21 + β22

subj. to ((1− β11)+ − (α− β12)+)+

+ max((1− β11)+, (α− β21)+)
+ max((α− β12)+, (1− β22)+ − (α− β21)+) ≤ 3r

and we have omitted the constraints βij ≥ 0 for readability.
The solving of these four optimization problems leads to

a) β∗11 = (1− r)+, so da(r) = (1− r)+

b) β∗11 = β∗22 = (1− r −min(r, α
2 ))+, β∗12 = (α− 2r)+,

so db(α, r) = 2(1− r −min(r, α
2 ))+ + (α− 2r)+

c) β∗11 = β∗22 = (1− r −min(r, α))+, β∗12 = β∗21 = (α− r)+,

so dc(α, r) = 2(1− r −min(r, α))+ + 2(α− r)+

d) if 3r ≤ 2α, then
β∗12 = β∗21 = (α− 3r

2 )+, β∗11 = (1− 3r
2 )+, β∗22 = (1− 3r)+,

so dd(α, r) = (1− 3r
2 )+ + (1− 3r)+ + 2(α− 3r

2 )+,

if 3r > 2α, then
dd(α, r) = max((1− 3r

2 )+ + (1− 3r)+ + 2(α− 3r
2 )+,

d0(3r + min(3r, 2α)))

which is the result claimed in part A of the theorem 2.
B) It is straightforward to check that the diversity order
for non-equal multiplexing gains r1 and r2 is obtained by
replacing r by r1 and r2 respectively in bound a; 2r by r1+r2

in bounds b and c; and 3r by 2r1+r2 and r1+2r2 respectively
in bound d. This completes the proof of the theorem. ¤
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