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Abstract: Hydrogels are three-dimensional networks with a variety of structures and functions
that have a remarkable ability to absorb huge amounts of water or biological fluids. They can
incorporate active compounds and release them in a controlled manner. Hydrogels can also be
designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic
stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have
been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when
obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source
of inspiration for new structures and new functionalities of more and more competitive materials.
Natural compounds present a series of physico-chemical and biological characteristics suitable for
biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity.
Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices
in the human body. This paper discusses the main advantages of the presence of biomolecules
(polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural
compounds and their specific properties are emphasized. The most suitable applications will be
highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture,
wound dressings, 3D bioprinting, foods, etc.
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1. Introduction

Hydrogels are three-dimensional (3D) crosslinked networks with solid-like prop-
erties, able to retain a high amount of water or biological fluids and to maintain their
structural and functional integrity in various environmental conditions or under the ac-
tion of external stresses (temperature, mechanical forces, light, electric or magnetic field,
etc.). The networks are generated by physical, chemical, dynamic chemical, or combined
crosslinking methods [1–3]. The physical crosslinking can be provided by different intra-
and intermolecular interactions, such as hydrogen bonding, van der Waals interactions,
hydrophobic interactions, or physical entanglements, without covalent crosslinking. On
the other hand, chemically crosslinked hydrogels are formed due to the covalent or ionic
bonds between the polymeric chains, and this involves the use of some crosslinking agents
(molecules that contain two or more reactive sites able to be attached to specific functional
groups) [4–7].

Natural or synthetic macromolecules, as well as various combinations of them, can
be used to create hydrogels [6–13]. Hydrogels prepared from natural macromolecules,
including polysaccharides and proteins, are suitable for a variety of applications due to
their biochemical similarity with the human extracellular matrix (ECM). An additional
benefit is that degradation products are recognized and further metabolized by the body.
They present desirable characteristics for biomaterial design, such as low toxicity, bio-
compatibility, biodegradability, and availability, which are essential for biomedical- and
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therapeutic-related applications [11–15]. Hydrogels that include synthetic compounds
present the advantages of control over the synthesis processes, definite molecular weights
and chemical structures, and good mechanical properties. However, they have limited
biocompatibility and biodegradability compared to natural polymers [2].

Different sources for extraction of natural polymers have been reported in the liter-
ature [16,17]. Most of these polymers come from sources such as animals, plants, and
algae, but alternative biopolymers can also be obtained through microbial or enzymatic
processes [18]. Polysaccharides are widely used for biomedical applications because of
their biocompatible nature, diverse architectures, and ability to form gels in well-defined
conditions [2,15]. Of particular interest are amphiphilic polysaccharides able to develop
hydrophobic associations in self-healing hydrogels that recover their original structure and
properties after the action of an external stress [19].

On the other hand, peptides are relatively easily synthesized and, in some cases, man-
ufactured. As building blocks for various biomaterials, peptides have several advantages:
they are composed of nonpolar, polar, or charged amino acids, allowing a certain level
of prediction of self-assembly properties through the meticulous selection of the peptide
sequence [20]. As endogenous molecules, they reduce the risk of adverse effects. They can
range from short to long and more flexible chains, ensuring the construction of diverse
structural arrangements, from solid crystals to soft, disordered materials. Furthermore,
peptides can generate smart materials responsive to external stimuli such as temperature,
pH, or the presence of specific molecules.

Different biomimetic materials are continuously designed using native, modified,
and synthetic (macro)molecules as building blocks. These materials are inspired by the
biological role of polysaccharides, proteins, and peptides in nature. A challenge assumed by
researchers is the design of novel peptide/polymer materials with targeted properties [21].
The novel strategies involve either the design of peptide amphiphiles or the replication of
protein secondary structural motifs, such as α-helix and β-sheet. Many efforts have been
focused on peptides folding into β-sheets (amyloid-like structures [22]) and also on the
rational design of α-helical folding (proteins/peptide stabilization) [23].

Over the years, scientists have improved some chemical and physical features of
hydrogels, such as self-healing ability, viscosity, and physical strength in order to enhance
their biofunctionality and to extend their applicability [24,25]. The conjugation of bio-
macromolecules with synthetic or natural polymers gives a diverse and broad class of
materials [26].

Polysaccharides and proteins/peptides present valuable properties that make them
suitable for various challenging applications. The paper aims to briefly present a selection
of the most significant natural compounds used in the design of numerous cutting-edge
materials with applications in various fields. The discussion focuses on hydrogels based
on natural polymers associated with active compounds with physiological implications
and applicability. Thus, chitosan and its derivatives, hyaluronic acid, cellulose, gellan gum,
xanthan gum, alginate, carrageenans, and pullulan are among the main polysaccharides
that will be discussed in this paper (Scheme 1). At the same time, other biocompounds,
including proteins and peptides, will be addressed.
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Scheme 1. The main types of biomolecules used in the development of hydrogels (discussed in the
present paper).

2. Polysaccharides—From Structural Aspects to Multifunctional Hydrogels

Carbohydrates, also denoted as sugars, are biomolecules that exist in abundance in
nature, with monosaccharides as the basic structural units, including from three to nine
carbons and a carbonyl group (aldehyde in aldoses or ketone in ketoses). Cyclic monosac-
charides are linked via α or β glycosidic bonds resulting in linear or branched chains with
carbon, hydrogen, and oxygen, usually in the ratio of 1:2:1, (CH2O)n: for n < 20 the struc-
tures are denoted as oligosaccharides; when n > 20 the long chains are considered polysac-
charides. Among oligosaccharides, some trisaccharides are well known, such as maltotriose
and nigerotriose—3 glucose units joined by α(1→4) or α(1→3) glycosidic links, respectively,
maltotriulose (glucose-α(1→4)–glucose-α(1→4)-fructose) or raffinose (galactose-α(1→6)-
glucose-α(1→2)fructose). Additionally, oligo- and polysaccharide chains, composed of
monosaccharides linked by chemical bonds, are referred to as glycans. These glycans are
present in cells, mediating various interactions (cell–cell, cell–matrix, and cell–molecules).
Deep theoretical and experimental investigations allow a better understanding of carbohy-
drate structures and their specific interactions in various environments and self-assembling
phenomena [16,27]. Modern techniques and new approaches are available for these studies,
such as nuclear magnetic resonance (NMR) spectroscopy [27,28], atomic force microscopy
(AFM) [29–32], infrared (IR) spectroscopy [33,34], liquid or gas chromatography [35–38],
capillary electrophoresis [39–41], mass spectrometry [42–44], molecular modeling [31,45,46],
or analytical techniques [47].

A high diversity of polysaccharides is found in nature with different types of gly-
cosidic linkages, which induce unique physico-chemical characteristics and functional
versatility [16,17,48]. From a structural point of view, a common building block is repre-
sented either by a pyranose or a furanose carbohydrate ring. According to their origin,
polysaccharides can be grouped as follows [17,48,49] (Scheme 1):

− Animal polysaccharides: chitin (CT)/chitosan (CS), hyaluronic acid (HA), etc.;
− Plant polysaccharides: cellulose (CELL), starch, pectin, gum arabic, brea gum, etc.;
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− Bacterial polysaccharides: gellan (GG), xanthan gum (XG), dextran (Dex), etc.;
− Marine (algal) polysaccharides: alginate (Alg), carrageenan (Carr), agar, agarose, etc.;
− Fungal polysaccharides: pullulan (PULL), scleroglucan, schizophyllan.

Some of these polysaccharides are discussed further. The structural aspects are briefly
presented at the beginning of each section, and some recent research on polysaccharide-
based hydrogels is then highlighted.

2.1. About Polysaccharide Chain Stiffness

The properties of polysaccharides, their gelation behavior, and specific hydrogel
properties are strongly correlated with characteristic conformational aspects. Each polysac-
charide has a peculiar structure that influences chain flexibility, usually determined in
the unperturbed state [50–52]. For charged polysaccharides, it was found that a decrease
of intrinsic viscosity ([η]) in aqueous solutions, caused by salt addition, depends con-
siderably on the chain structure. From the dependence of [η] on the ionic strength, I, a
dimensionless parameter B was simply defined, and it can be considered as a criterion
for discussing a polysaccharide’s chain stiffness [53]. For water soluble polyelectrolytes, a
correlation between B and Kuhn length was found [52]. Now, it is generally accepted that
the Smidsrød–Haug parameter, B, quantifies the relative stiffness of biopolymers at fixed
ionic strength, I (typically 0.1 M NaCl) [52,54–56].

Figure 1 illustrates the chain flexibility (based on the stiffness parameter) for different
polysaccharides discussed in this review.
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Pullulan and dextran chains in solution adopt various random coil conformations 
due to independent rotations around the bridge oxygens, and their backbone is very 
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Figure 1. A comparative image of chain flexibility for different polysaccharides. B represents the
stiffness parameter reported for polysaccharides at fixed ionic strength (0.1 M NaCl): xanthan gum
(XG) [57], deoxyribonucleic acid (DNA) [53], alginate (Alg), M-block [52], κ-carrageenan (κ-Carr) [54],
chitosan (CS) [58], carboxymethyl cellulose (CMC) [52], hyaluronic acid (HA) [52], gellan gum
(GG) [52], oxidized pullulan (OxyPULL) [59], and dextran sulfate (DEX-SO4) [53]. Adapted with
permission from [54], copyright 2019, Elsevier.

According to values of the B parameter, XG helices [57,59] and mechanical inflexible
DNA [53] present high stiffness. Chain stiffness decreases progressively for semiflexible
Alg [53], k-Carr [54], CMC [52], or CS [58]. Flexibility increases for PULL, dextran, and
their derivatives [53,60–62].

Pullulan and dextran chains in solution adopt various random coil conformations due
to independent rotations around the bridge oxygens, and their backbone is very flexible
(entropic driven) [40,60–62]. It was found that Alg flexibility is influenced by its structure,
consisting of β-D-mannuronate (M-block) and α-L-guluronate (G-block) in different ratios.
The unperturbed dimensions (influenced by the freedom of rotation around single bonds
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along the polymer chain and the geometry of the structural units) increase from MG-
blocks to MM-blocks, and the highest values were obtained for GG-blocks [63]. Thus, the
following B values were reported for different Alg structures: 0.033 for M-block and 0.038
for G-content of 0.36 and 0.065 for polyalternating structure [52,53,55,63]. XG [57,64,65],
κ-carr [54,66,67], or GG [52,68] in solution present either ordered conformations, as single or
double helices, or flexible coil conformation in disordered state. The adopted conformation
is mainly influenced by temperature and ionic strength. These aspects will be discussed in
the next sections.

2.2. Animal Polysaccharides
2.2.1. Chitosan and Its Derivatives

Chitosan (CS) is a polysaccharide obtained by deacetylation of chitin, composed of
glucosamine and N-acetyl-glucosamine units [69]. CS has been reported to be the second
most abundant biopolymer in the world [70] and the most extensively used natural cationic
biomaterial [71]. Due to the protonated primary amine groups, chitosan is soluble in low
pH (acid) medium but insoluble in neutral or high pH (alkaline) solutions. Acetic, formic,
hydrochloric, and lactic acids are among the most frequently used to improve the solubility
of chitosan. Strong acids, such as sulfuric and phosphoric acid, are not recommended
because of their degradative effect on chitosan chains [72]. In terms of properties, CS
is a nontoxic, nonimmunogenic, biocompatible, and biodegradable biopolymer, widely
recognized for its bacteriostatic, fungistatic, hemostatic, and antiulcerous activity [73–76].

Due to the low water solubility of chitosan, its methylated derivatives have been pre-
ferred when developing materials for healthcare industries [77,78]. Biological properties of
carboxymethyl chitosan (CM) include antioxidant, antimicrobial, and apoptosis inhibitory
activity. Therefore, they have been used in wound healing applications, cancer therapy,
gene therapy, biosensors, and drug or bioactive component delivery [79–81].

Figure 2 shows the structures of CS and some CM derivatives.
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Being a cationic polysaccharide, the antimicrobial properties of chitosan are related
to the electrostatic interactions between multiple negatively charged cell walls of some
bacteria and its multiple positively charged chains [82]. The antimicrobial effect of chi-
tosan and its derivatives against bacteria, yeasts, or filamentous fungi has been demon-
strated in many studies [83,84]. For example, a recent study describes the synthesis of
a chitosan-monoaldehyde-based hydrogel with antifungal properties for wound healing
applications [85]. The hydrogels were highly porous with an average pore diameter of
approx. 80 µm and a swelling rate controlled by the crosslinking density and medium
pH. During 21 days of testing, the hydrogels showed a progressive weight loss in the
presence of lysozyme up to 35%. They proved a noncytotoxic effect on normal human
dermal fibroblasts using MTS test.

2.2.2. Hyaluronic Acid and Derivatives

Hyaluronic acid (HA) is a biodegradable and nontoxic heteropolysaccharide that is
part of the glycosaminoglycan family and consists of repeated disaccharide units, β-1,4-D-
glucuronic acid and β-1,3-N-acetyl-D-glucosamine. The molecule has a hydrophilic nature,
with a simple, linear chemical structure maintained by glycosidic bonds and hydrogen
bonds (Figure 3) [86]. HA presents suitable biophysical properties that naturally exist in the
ECM, synovial fluid that surrounds cartilage, joints, and skin tissues [12,87], being able to
mediate the biological and structural properties, such as matrix organization, wound repair,
cellular signaling, or morphogenesis [88]. HA is synthesized by most cells in the human
body. However, mesenchymal cells are believed to be the predominant HA source [86,89].
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The molecular weight of HA varies within a large range, from oligosaccharides
(<103 g/mol) with low molecular weight (103 g/mol–2.5 × 104 g/mol) and medium
length chains (2.5 × 104 g/mol–106 g/mol) to high molecular weight (>106 g/mol) and
very high molecular weight (>6 × 106 g/mol) [90]. Depending on its molecular weight,
HA displays different performances suitable for different applications. For example, high-
molecular-weight HA presents an anti-inflammatory effect by stimulating the production
and migration of cytokines, while very high-molecular-weight HA can affect the skin
regeneration process by limiting the nutrient supply and inhibiting endothelial cell pro-
liferation [91]. Molecular weight influences the viscosity, gelation time, elastic modulus,
and molecular diffusion, as well as the degradation process. The optimal molecular weight
of HA for in-situ-forming hydrogels was found around 5 × 105 g/mol. This hydrogel
promoted cell proliferation and in vitro vascular network formation [92].
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Due to its anti-inflammatory, antiaging, and biocompatible properties, HA is used in a
wide range of biomedical and cosmetic applications, such as skin and cartilage repair, tissue
regeneration, wound healing, cell culture, 3D bioprinting, drug delivery, and various cos-
metics [93–98]. Additionally, thanks to the functional groups in its structure, HA supports
chemical changes to tailor physico-chemical properties for drug-carrier functions [86,99].

Viscosupplementation, also known as HA injection, represents a treatment for symp-
tomatic osteoarthritis by improving the biomechanical functions of the tendons or/and
joints. Intra-articular application can be used either as augmentation after surgical pro-
cedure, in order to treat osteochondral lesions, or as alternative to surgical interventions
for patients with early phase osteoarthritis [100]. Besides HA injections, oral prepara-
tions of HA have been reported to lower pain and improve life quality of patients with
osteoarthritis [101].

Unfortunately, they cause different side effects, including gastrointestinal reactions
or renal dysfunction. Over the years, different materials have been developed for os-
teoarthritic therapy based on HA in combination with collagen, another natural component
of ECM [102,103]. Another deficiency of HA hydrogels is low mechanical strength and sus-
ceptibility to degradation by hyaluronidase. To overcome such problems, various strategies
have been used for structural modification, such as physical, chemical, or multiple crosslink-
ing, as well as the introduction of reactive and functional molecules or moieties [93,104].

Hyaluronic acid biphasic fillers containing crosslinked microspheres that were in-
cluded in a solution of free HA chains were designed to correct facial defects [105]. The
nanoparticle size decreases with increasing molecular weight of HA due to more prepon-
derant intramolecular crosslinking as compared with an intermolecular one, determining
a change of rheological behavior, i.e., a more pronounced fluid-like behavior. The vis-
coelastic moduli were tailored using an optimum chain length; for example, for a sample
of 6.97 × 105 g/mol, porous microspheres were obtained, and G’ ranging from 211 Pa to
420 Pa and G” was found between 129 Pa and 214 Pa, as a function of volume fraction
of crosslinked HA, whereas particle texturing feel scaled between 7 and 9. In contrast,
no pores on the surface of microspheres were observed from high molecular weight HA
(>106 g/mol) (Figure 4) [105].
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Figure 4. SEM images of crosslinked HA microspheres (a–d) for HA of 6.97 × 105 g/mol. Images
(b–d) show the hollow structure inside the microsphere. The index 24 refers to sample’s morphol-
ogy after 24 h. Adapted from [105], https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013587/
(accessed on 26 April 2023).

Wound healing is also a common application for HA-based materials [106,107]. Re-
cently, new hydrogels composed of chitosan derivatives (N-succinyl chitosan [45] or
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gallic-acid-grafted quaternized chitosan [107]) and oxidized hyaluronic acid were reported.
Self-healing ability and flow behavior, as well as wound healing efficiency and in vivo
hemostasis performances of these materials demonstrated great potential for wound heal-
ing applicability [106,107].

2.3. Plant Polysaccharides
Cellulose and Derivatives

Cellulose (CELL) is the most abundant and relatively cheap renewable resource pro-
duced by plants, agro-residues, algae, tunicates, or bacteria [108]. CELL is a linear, semi-
flexible polymer, constituted from several hundred to over tens of thousands of glucose
units, organized in crystalline and amorphous phases as microfibrils or fibers (Figure 5).
The strong intra- and intermolecular hydrogen bonds at different length scales, Van der
Waals and hydrophobic interactions [109] between cellulose chains, as well as the crys-
talline structure, give high stiffness and strength to native CELL and make this biopolymer
insoluble in water or classical organic solvents. CELL is soluble in NaOH solutions [110],
NaOH/urea, NaOH/thiourea solutions [111,112], and some green solvents, such as ionic
liquids or deep eutectic solvents [111,113].
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Intermolecular interactions at different structural levels are very complex, generating
various packing arrangements in four crystalline allomorphs: cellulose I, II, III, and IV. The
native form is cellulose I found in all plant cell walls, as a combination of two allomorphs:
Ia and Ib. Cellulose II is obtained from cellulose I during an irreversible process of regen-
eration or alkali treatment. Cellulose III results at low temperatures from cellulose I or
cellulose II in an ammoniacal aqueous solution or using an organic amine. Cellulose IV is
obtained from thermal treatment of cellulose III in glycerol [109].

Cellulosic samples present both crystalline and amorphous domains, and their ratio
depends on CELL provenience and sample history. The functionalization of CELL is
strongly influenced by its structure, and, for chemical reactions, the available sites are either
the amorphous regions or the surface of crystallites.

Very often, the term nanocellulose is used, and it refers to isolated anisotropic (crys-
talline) nanostructures obtained after alkaline treatment, bleaching, and hydrolysis (acid,
enzymatic, or subcritical water hydrolysis) [114] applied to the raw biomass. The maximum
yield of recovered nanocellulose from cellulose material is about 70–80%, corresponding
to a total yield of 20–30% from the original bioresource [114]. Nanocellulose denotes ei-
ther cellulose nanocrystal (CNC), cellulose nanofibers (CNF), or bacterial nanocellulose
(cellulose produced by bacteria) with a high aspect ratio (length to width ratio from tens
to hundreds).

CELL is an ideal source for preparing green hydrogels with excellent water absorption
capacity, at relatively low cost. Due to difficulties related to its dissolution, the use of CELL
is still limited. The most appropriate approach is its functionalization by modifying the
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-OH groups of the parent structure into ether (metyl-, ethyl-, hydroxyethyl-, hydroxypropyl
methyl-, carboxymethyl-, or hydroxypropyl cellulose) or ester (cellulose acetate, cellulose
acetate phthalate, or cellulose acetate butyrate) derivatives. Some of the most important
ones are briefly presented below.

Hydroxypropyl methylcellulose (HPMC) is a thermosensitive, biocompatible deriva-
tive, able to form transparent hydrogels with good stability and viscoelasticity, suitable
for the development of various biomaterials, such as scaffolds, films, or membranes [111].
It was recently used as a matrix component for improving the delivery of hydrophobic
bioactive compounds, such as quercetin [115].

Hydroxyethyl cellulose (HEC) is a cellulose ether soluble in water mainly used for the
fabrication of biocompatible and biodegradable hydrogels for wound dressing [116,117],
3D printing and wearable electronic devices [118], and in pharmaceuticals and cosmetics,
as a stabilizer, thickener, or coating agent [111].

Carboxymethyl cellulose (CMC) presents carboxylic groups along the cellulosic back-
bone, which confers high water solubility and chemical reactivity. This derivative is an
ideal candidate for obtaining hydrogels with high absorption in physiologically relevant
solvents [119], as well as mechanical strength and biodegradability [120]. The high poten-
tial of CMC hydrogels in various applications was presented in recent papers [120–124]:
wound dressings, foods, water decontamination by removal of toxic dyes, and agricultural
applications (holding water in soil or targeted delivery of agrochemicals).

Hydroxypropyl cellulose (HPC) is a biocompatible cellulose derivative used in many
applications, such as thickening or binding agents in pharmaceutics, foods, and cosmetics.
HPC is soluble at low temperatures and develops hydrophobic interactions at increasing
temperatures, a phase separation occurring above 40 ◦C. At room temperature, semidiluted
and concentrated HPC aqueous solutions form an isotropic phase. Above a certain concen-
tration, HPC chains are organized in an ordered liquid crystalline phase with a cholesteric
structure. The elasticity of viscoelastic HPC fluids is attributed to a high extent to the
orientational distortion of the director in the nematic phase, whereas the contributions
of chain entropy and interfacial tension are considerably smaller [125]. HPC was used to
prepare hydrogels that maintain adequate moisture for wound healing [126].

Due to the hierarchical structure of CELL, its materials present unique characteristics,
such as high strength, low density, biocompatibility, and excellent mechanical and barrier
properties. CELL-based systems are pseudoplastic and exhibit thixotropy, self-healing
ability, and liquid crystalline properties [127–135]. These exceptional properties of CELL
have attracted considerable interest not only for paper and boards, but also for design of
new functional materials for a wide range of applications, including hydrogels; aerogels
and coating films; 3D printing materials; drug-delivery vehicles; rheological modifiers;
biomedical, healthcare, and food applications; oil and gas industry applicaitons; packag-
ing; various environmentally friendly nanocomposites; hygiene and absorbent products;
electronics; textiles; filtration; etc. High-performance materials based on nanocellulose or
cellulose derivatives are a hot subject debated in a huge number of research articles and
reviews (see for example [108,110,114,127,136–141]).

2.4. Bacterial Polysaccharides
2.4.1. Gellan Gum

Gellan gum (GG) is produced through the microbial fermentation of Gram-negative
Sphingomonas elodea bacteria in sugar-rich media. It is a linear, anionic polysaccharide based
on a tetrasaccharide repeating unit (Figure 6), with an average molecular weight of about
5 × 105 g/mol. In solution, GG chains form a three-fold double helix from two left-handed
chains; the glyceryl groups stabilize the interchain associations through hydrogen bonds.
In their native state, some acetate residues can be located on the periphery of the double
helix [68,142–144].
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Gellan is one of the most studied biomolecules due to its ability to form stable net-
works by aggregation of double helices at temperatures below 40 ◦C, when divalent ions
are added to its solution (Figure 7). Low pH and monovalent cations promote aggregation
and gelation by decreasing the negative charges or by binding the double helices in coordi-
nation sites around carboxylate groups [68,143,144]. Furthermore, some anions in aqueous
solutions are able to induce changes in the conformation of GG. A preferential affinity of I−

for GG ordered conformation was recently discussed [145].
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The gelation of GG is thermoreversible and occurs around 40 ◦C through aggregation
of double helices, being influenced by polysaccharide concentration [146] or nature and
concentration of cations [147,148]. The mechanical and rheological properties of the GG
gel are influenced by the degree of acylation: acetylated GG leads to elastic, flexible, and
transparent soft gels [146,149], while low-acetyl or deacylated GG gives brittle gels. Their
strength/hardness can be enhanced by microwave heating [150].
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GG also forms hydrogels with multivalent cations, able to absorb a high amount of
water or body fluids or to encapsulate drugs or cells in interstitial spaces among polymer
chains involved in ordered structure [151,152].

Due to its peculiar properties, GG is mostly used as a suspending, stabilizing, thicken-
ing, and gelling agent in various applications: foods, pharmaceuticals, cosmetics, toiletries,
biomedicine, tissue engineering, or microbiology [153,154].

The high number of hydroxyl and free carboxyl groups in each repeating unit makes
GG a versatile component for improving the rheological and biological properties of
materials [142,153,154]. GG-based gels or interpenetrated networks, obtained by using GG
in the presence of other biomolecules, such as chitosan, sodium Alg, CELL, PULL, XG, agar,
starch, gelatin, silk fibroin, etc. [143,153,155] or by functionalization [156,157] presented
enhanced properties.

Various 3D printing strategies use GG for biofabrication of materials with com-
plex shapes for tissue engineering applications [154]. It was shown that 10% gelatin-
methacryloyl in the presence of 0.5% GG is a suitable system for cartilage
bioprinting [158,159]. The addition of a small amount of GG (below 0.5% GG) enhanced
the printability by inducing yield stress behavior, thus increasing the shape fidelity. High
GG content (>0.5% GG) determines an increase of yield stress value and makes difficult the
cell encapsulation [158]. The yield stress values, shear thinning, thixotropy, and viscoelastic
behaviors of inks correlated with cell viability represent key characteristics for the bioprint-
ing process [140]. Cell viability is negatively influenced by increased shear forces, and a
preliminary rheological characterization is required for successful bioprinting [140,160].

Synergistic multicomponent polysaccharide hydrogels, such as Alg/GG/XG networks,
present high swelling ability, consistency, and thermal stability, being of interest for the
restructuring of foods or in nutraceutical delivery [161]. GG and locust bean gum (LBG)
double networks with pH-sensitive LBG borate-ester bonds and hydrogen bonds between
GG double helices showed shape memory, self-healing properties, and improved me-
chanical behavior as compared with single polysaccharide gels [162]. These materials are
appropriate for soft robotics and biomedicine.

Gelation of low acyl GG in the presence of low methoxyl citrus pectin (30.4% methoxyl)
provided more rigid hydrogels with narrow meshes (6.1–11.7 nm) and slower chain
dynamics (relaxation time, λ, in the range 16.7–55.2 s) as compared with GG (λ from
18.4 s to 29.3 s). GG predominates in the junction zones and in the presence of Ca2+ pectin
contributes to network enhancement through additional interactions. This system formed
by biomolecules is suitable for biomedical applications, such as vehicles for drug deliv-
ery [163]. In the presence of calcium cations, a pH-sensitive gelling effect is observed for
pectin solutions [164].

The application of GG-based hydrogels has been extended in many fields, from
vehicles for drug delivery to cell delivery for rejuvenating tissue [151]. Composite hydrogels
with other biopolymers (such as salecan, S) were obtained from aqueous solutions using
physical methods (in the presence of 10 mM CaCl2 and 0.25 M NaOH) [103]. Rheological
investigations revealed the formation of elastic hydrogels, with yield stress, shear thinning
behavior, and self-healing ability (Figure 8).

Short aromatic peptide derivatives, such as 9-fluorenylmethoxycarbonyl (Fmoc), and
short peptides, such as Fmoc-Gly-Gly, self-assembled through hydrogen bonds with GG or
agarose with the formation of viscoelastic gels, are suitable as substrates for cell cultures.
These hybrid networks presented good cell viability on fibroblasts and in vivo biocompati-
bility [166]. It was recently shown that the encapsulation of anthocyanins with gelatin/GG
gum avoids degradation and maximizes their release in the small intestine [167].
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2.4.2. Xanthan Gum

Xanthan gum (XG) is a microbial exopolysaccharide produced by Gram-negative
bacteria of the Xanthomonas genus that has attracted high interest due to its functional
properties as a thickening or gelling hydrocolloid [168,169]. The primary structure of XG is
composed of five repeating units, including a segment of two units of β-(1-4)-D-glucose,
which are linked at positions one and four (similar to cellulose), and a trisaccharide side
chain consisting of two mannose residues with a glucuronic acid residue between them is
attached at C-3 at each second unit (Figure 9). The proximal mannose residue (which is
close to the main chain) may be linked to an acetyl group at C-6, and the terminal mannose
residue (distal to the main chain) may attach a pyruvate group between C-4 and C-6.
The pyruvate and acetyl groups were not identified in all repeating units; their content is
influenced by fermentation conditions. For example, high pyruvate content was induced by
the presence of citric acid [170], and low pyruvate XG was obtained by reducing the amount
of phosphate or magnesium in the growth media [171]. Furthermore, the fermentation
conditions influence the acetyl to pyruvyl ratio on the outer mannose [172]. Thus, the
primary structure of the xanthan chains and the type of substitution at the outer mannose
unit (acetate or pyruvate) influence the stability of the xanthan conformation. It was shown
that segments rich in units that are acetylated on the outer mannose stabilize the xanthan
conformation [173].

Most of the practical applications of XG are related to peculiar rheological properties
that are strongly influenced by primary and secondary structures. Depending on the
temperature, ionic strength, pH, or shear rate, XG adopts in aqueous media either rigid
helical ordered conformation or flexible conformation as disordered coil [64,65]. Ordered
conformation presents the side chains folded and associated with the main backbone by
hydrogen bonds (i.e., methyl group of acetate residues binds to hemiacetal oxygen atoms
of alternate D-glucose residues from the main chain). Thus, the acetyl groups stabilize
the ordered conformation [174]. The side chains are no longer associated in the disor-
dered state as a result of the repulsion electrostatic interactions between COO− groups
from pyruvate residues. Under favorable conditions, a coaxial antiparallel 51 double he-
lix is formed through an enthalpically-driven process [64]. Even after deacylation, XG
chains are involved in intramolecular hydrogen bonding associations between alternate hy-
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droxyl groups at C-3 and the adjacent hemiacetal oxygen atoms of the D-glucosyl residues.
An increase of apparent viscosity and viscoelastic moduli during temperature rise from
25 ◦C to ~35 ◦C may be attributed to the breakdown of the two alternate intramolecular
associations in the side chains. When the helix-to-coil transition is initiated, the overall dy-
namic is less influenced by the backbone. At higher temperatures (>45 ◦C), the disordered
conformation is extended, and the chains interpenetrate forming entanglements with strong
electrostatic and noncovalent interactions, which determine a sharp increase of rheological
parameters [175–177]. Figure 10a presents the variation of the elastic modulus (G’) as a
function of the temperature for XG aqueous solutions equilibrated at 4 ◦C and heated with
a constant heating rate of 1 ◦C/min. For temperatures below T1, G’ slowly decreases by
raising temperature, a tendency more pronounced for concentrations below 1%. Above
T1, G’ sharply increases by several orders of magnitude, faster as the concentration of the
solution becomes higher.

Gels 2023, 9, 376 13 of 49 
 

 

 
Figure 9. Chemical structure of xanthan gum. 

Most of the practical applications of XG are related to peculiar rheological properties 
that are strongly influenced by primary and secondary structures. Depending on the 
temperature, ionic strength, pH, or shear rate, XG adopts in aqueous media either rigid 
helical ordered conformation or flexible conformation as disordered coil [64,65]. Ordered 
conformation presents the side chains folded and associated with the main backbone by 
hydrogen bonds (i.e., methyl group of acetate residues binds to hemiacetal oxygen atoms 
of alternate D-glucose residues from the main chain). Thus, the acetyl groups stabilize the 
ordered conformation [174]. The side chains are no longer associated in the disordered 
state as a result of the repulsion electrostatic interactions between COO− groups from 
pyruvate residues. Under favorable conditions, a coaxial antiparallel 51 double helix is 
formed through an enthalpically-driven process [64]. Even after deacylation, XG chains 
are involved in intramolecular hydrogen bonding associations between alternate hy-
droxyl groups at C-3 and the adjacent hemiacetal oxygen atoms of the D-glucosyl resi-
dues. An increase of apparent viscosity and viscoelastic moduli during temperature rise 
from 25 °C to ~35 °C may be attributed to the breakdown of the two alternate intramo-
lecular associations in the side chains. When the helix-to-coil transition is initiated, the 
overall dynamic is less influenced by the backbone. At higher temperatures (>45 °C), the 
disordered conformation is extended, and the chains interpenetrate forming entangle-
ments with strong electrostatic and noncovalent interactions, which determine a sharp 
increase of rheological parameters [175–177]. Figure 10a presents the variation of the 
elastic modulus (G’) as a function of the temperature for XG aqueous solutions equili-
brated at 4 °C and heated with a constant heating rate of 1 °C/min. For temperatures be-
low T1, G’ slowly decreases by raising temperature, a tendency more pronounced for 
concentrations below 1%. Above T1, G’ sharply increases by several orders of magnitude, 
faster as the concentration of the solution becomes higher. 

Figure 9. Chemical structure of xanthan gum.

Gels 2023, 9, 376 14 of 49 
 

 

 
Figure 10. The elastic modulus for XG aqueous solutions: (a) different concentrations, at increasing 
temperature (heating rate of 1 °C/min); (b) concentration of 2%, denatured at different tempera-
tures and then rapidly cooled to 4 °C. Adapted with permission from [175], copyright 2020, Else-
vier. 

Above T1, XG undergoes a transition from ordered conformation to disordered state, 
and this process ends at a temperature T2, when the random coil conformation prevails. 
Higher concentrations (c) suppose more released macromolecules, and thus the disor-
dered coils appear at a slightly lower temperature. It was observed that the difference ΔT 
= T2 − T1 scales as c0.5; also, around T1, the viscoelastic moduli G’ and G” scale as c2.5, and 
above T2 they vary as c3 [175]. 

After the disruption of XG structure either due to high shear or temperature, struc-
ture recovery is very slow and incomplete in aqueous solutions (Figure 10b) or in the 
presence of a low amount of salt. Recovery becomes faster and complete in high-salt en-
vironments [175,178]. A complete ordered conformation was obtained for NaCl concen-
trations higher than 0.01 M. The salt is recommended to be added into the XG solution 
prior to thermal treatment [168]. This shifts the transition temperature to higher values 
[175], ensuring the stability of xanthan-based formulations, such as suspensions or 
creams. 

For a high pyruvated, single-stranded XG, no molecular increase occurred during 
the conformational change induced by salt addition, showing that this process takes 
place through intramolecular interactions [179]. The salt presence increases the transition 
temperature by reducing the effective charge of the xanthan chains. A linear relationship 
between the natural logarithm of the salt concentration and the reciprocal temperature 
was observed [180]. 

In aqueous solutions, XG displays high viscosity even at low concentrations [57], 
making this polysaccharide a valuable thickening or stabilizing agent of high interest in 
food, agriculture, drilling fluids (coil industry), paint, detergents, cosmetic and pharma-
ceutic products (creams, pastes), etc. [168,181,182]. 

However, in ordered state, XG is not able to undergo any chemical transformations 
[183] or to form networks using usual gelation methods [184]. Beyond a critical polymer 
or salt concentration, XG chains aggregate in disordered state determining an increase of 
viscoelastic parameters, as discussed above (Figure 10a) [175]. Yield stress behavior (liq-
uid-like behavior only above a certain shear stress value) and rheopectic effects (an in-
crease of the apparent viscosity before reaching a steady state) were observed for con-
centrated solutions of XG at 25 °C [181]. 

XG forms multifunctional hydrogels with other natural compounds, such as gelatin 
[185,186], CS [187], GG [188], collagen [189], and alginate [190]. A synergistic and com-
plex gelation occurs when XG is mixed with gelatin B (GB) [186], both biomolecules with 
specific coil-to-helix transitions for temperatures TXG above 60 °C and TGB below 30 °C, 
respectively, slightly influenced by concentration. The complex gelation mechanism 

Figure 10. The elastic modulus for XG aqueous solutions: (a) different concentrations, at increasing
temperature (heating rate of 1 ◦C/min); (b) concentration of 2%, denatured at different temperatures
and then rapidly cooled to 4 ◦C. Adapted with permission from [175], copyright 2020, Elsevier.

Above T1, XG undergoes a transition from ordered conformation to disordered state,
and this process ends at a temperature T2, when the random coil conformation prevails.
Higher concentrations (c) suppose more released macromolecules, and thus the disordered
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coils appear at a slightly lower temperature. It was observed that the difference ∆T = T2 − T1
scales as c0.5; also, around T1, the viscoelastic moduli G’ and G” scale as c2.5, and above T2
they vary as c3 [175].

After the disruption of XG structure either due to high shear or temperature, struc-
ture recovery is very slow and incomplete in aqueous solutions (Figure 10b) or in the
presence of a low amount of salt. Recovery becomes faster and complete in high-salt
environments [175,178]. A complete ordered conformation was obtained for NaCl concen-
trations higher than 0.01 M. The salt is recommended to be added into the XG solution prior
to thermal treatment [168]. This shifts the transition temperature to higher values [175],
ensuring the stability of xanthan-based formulations, such as suspensions or creams.

For a high pyruvated, single-stranded XG, no molecular increase occurred during
the conformational change induced by salt addition, showing that this process takes
place through intramolecular interactions [179]. The salt presence increases the transition
temperature by reducing the effective charge of the xanthan chains. A linear relationship
between the natural logarithm of the salt concentration and the reciprocal temperature was
observed [180].

In aqueous solutions, XG displays high viscosity even at low concentrations [57], mak-
ing this polysaccharide a valuable thickening or stabilizing agent of high interest in food,
agriculture, drilling fluids (coil industry), paint, detergents, cosmetic and pharmaceutic
products (creams, pastes), etc. [168,181,182].

However, in ordered state, XG is not able to undergo any chemical transforma-
tions [183] or to form networks using usual gelation methods [184]. Beyond a critical
polymer or salt concentration, XG chains aggregate in disordered state determining an
increase of viscoelastic parameters, as discussed above (Figure 10a) [175]. Yield stress be-
havior (liquid-like behavior only above a certain shear stress value) and rheopectic effects
(an increase of the apparent viscosity before reaching a steady state) were observed for
concentrated solutions of XG at 25 ◦C [181].

XG forms multifunctional hydrogels with other natural compounds, such as gelatin [185,186],
CS [187], GG [188], collagen [189], and alginate [190]. A synergistic and complex gelation
occurs when XG is mixed with gelatin B (GB) [186], both biomolecules with specific coil-
to-helix transitions for temperatures TXG above 60 ◦C and TGB below 30 ◦C, respectively,
slightly influenced by concentration. The complex gelation mechanism proposed by the
authors is depicted in Figure 11. Near the isoelectric point of GB (pH range between
4.5 and 5.5) and above TXG, soluble GB/XG complexes are formed (Figure 11a), decreasing
the charge density of XG. For temperatures between TGB and TXG, the soluble complexes
assemble into interpolymer complexes (Figure 11b), where XG presents an ordered structure.
The interpolymer complexes form large associate structures stabilized by GB molecules.
Temperatures below TGB determine enhanced local GB concentration promoting the triple
helix formation and gelation of GB. An increase of G’ over time suggested the formation
of an elastic network consisting of mixtures of GB and XG helices (Figure 11c). These
transitions (coil-to-helix and helix-to-coil) are thermoreversible [186].

3D porous bio-inks that mimic the physical and mechanical properties of soft tissue
scaffolds were obtained from xanthan gum/nanocellulose [191], revealing viscoelastic
properties that allow good control of printed structure composed of multiple layers with
high resolution and shape fidelity. The addition of cellulose nanocrystals significantly
enhanced the mechanical properties of composite hydrogels (the elastic and compressive
moduli of a few kPa, similar to soft tissues). For bioprinting applications, a deep rheological
investigation of bio-inks and analysis of the viscoelastic parameters are needed to ensure
shape fidelity and high quality in correlation with cell viability of the 3D constructs [140].
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2.5. Marine (Algal) Polysaccharides
2.5.1. Alginate

Alginate (Alg) is a polysaccharide derived from brown algae constituted from long
linear chains of block copolymers of (1,4)-linked β-D-mannuronate (M) and α-L-guluronate
residues (G). Generally, the term of alginate denotes all alginic acid derivatives and their
salts. Frequently, it is used as the salt derivative—sodium alginate (Figure 12)—that is water
soluble and able to form stable solutions and gels, less sensitive to temperature as compared
with other polysaccharides [192,193]. Depending on the source or extraction conditions,
the molecular weight of Alg is usually in the range of 3.2 × 104 to 4 × 105 g/mol [194]. The
Alg solutions behave as thixotropic and pseudoplastic fluids [30] regardless of the algal
sources [192]. The M/G ratio and the number of repeating G-blocks depend on the Alg
origin and influence network formation and gel characteristics [195–197].
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The viscoelastic properties of Alg-based hydrogels can be tuned by varying the molec-
ular weight, varying the length and distribution of M and G blocks or M/G ratio, selecting
the appropriate crosslinking method (ionic or covalent), or using chemical modification of
alginate chains [192,194,198,199]. The strength of Alg gels improves with increasing the
molecular weight up to 2.4 × 105 g/mol (corresponding to a value of intrinsic viscosity of
4.8 dL/g); above this limit the effect is negligible, regardless of Alg concentration [200].

Many pharmaceutical, biomedical, and food applications are based on the ability of
Alg to undergo a sol–gel transition in the presence of divalent or multivalent cations, a
process independent of temperature. Therefore, a three-dimensional network results, which
is insoluble in water and thermally irreversible due to the increase of the rotation barrier
around glycosidic bonding [192,201,202].

The M sequences from Alg are soft and elastic and determine a delay in the gelation
process. Alg chains with high M content (M/G > 1) form elastic gels, while gels with low
M content (M/G < 1) are compact, hard, and brittle [203–205]. An ultrasound treatment
applied to Alg chains increases hydrophobic interactions and interfacial activity. At the
same time, the M/G ratio is diminished, determining an increase of chain stiffness [143].

Ion-induced Alg gelation occurs mainly by electrostatic interactions between the–COO−

groups and divalent or multivalent cations (Ba2+, Cu2+, Sr2+, Fe2+, Zn2+, Mn2+, Al3+,
Fe3+, etc.), with the formation of polyelectrolyte complexes [194,206]. The gel strength
is influenced by the ionic radius of the cations (as for example Ba2+ and Sr2+ form a
stronger gel as compared with Ca2+ ions) [207]. The most studied ion-induced gelation
is crossinking Alg macromolecules in the presence of Ca2+. The intermolecular junctions
are formed by chelation of Ca2+ between G-blocks by a bimolecular mechanism (the gel
strength increases with the square of Alg concentration) [200] through the so-called “egg-
box” association [7,194,208–211]. Strong interactions of cations with COO− groups of
guluronic acid from different chains occur in the cavities formed by pairing up of the
successive G sequences forming two-fold structures that create cavities to hold Ca2+ in the
binding sites [7,194,210,212]. Ca2+ cations coordinate with six oxygens (O2, O3, O6) from
two neighbouring G units and with one to three oxygens of H2O and form a stable “egg-box”
structure [210,213]. Further, the G blocks adopt helix conformations and contribute to the
formation of polysaccharide networks [194,209,210,214]. Various studies have discussed
three successive steps of G-block gelation in the presence of of Ca2+ ions governed by
electrostatic interactions, according to the “egg-box” model [209,215–219]. These include
the interaction of Ca2+ with a guluronate unit resulting in monocomplexes; the pairing of
monocomplexes into “egg-box“ dimers; and the lateral association of the “egg-box“ dimers
into multicomplexes. The Alg chains are zipped by simultaneous intracluster associations
of “egg-box“ dimers and intercluster separation. The excess of Ca2+ neutralizes the negative
charges of Alg, hindering the association between “egg-box“ dimers [209].

When alginate and divalent cations are mixed directly, gels form almost instantly,
and it is difficult to assess the gelation kinetic; in addition, the structure of the network
is heterogeneous. To overcome this difficulty, rheometers with modified geometries were
adopted for the experimental investigations. In situ real-time gelation kinetics of Alg
were monitored by using a custom-made rheometer geometry (a custom-made lower
plate combined with an upper commercial cone) that allowed injecting CaCl2 into the
sample during the rheological measurements [220]. A continuous increase of viscoelastic
moduli and stiffness of hydrogels was observed by increasing alginate concentration up
to 3 wt.%. For a given Alg concentration, a balance between the supplied volume and
the available Ca2+ cations was suggested. For example, keeping constant the sample
volume (0.15 mL) and alginate concentration (2 wt.%), the hydrogel stiffness could be
tuned through the concentration of the crosslinker (G′ increased by a factor of seven when
CaCl2 concentration was increased from 37.5 mM to 150 mM). A dimensionless parameter,
i.e., the ratio [mole Ca2+]/[mole COO−], was defined and considered proportional to the
fraction of intermolecular crosslinks [221]. This parameter was used for monitoring in situ
gelation of Alg using rheological measurements. Different procedures for Alg gelation were



Gels 2023, 9, 376 17 of 48

applied, assuming either internal or external mechanisms [222], that determined different
distributions of crosslinking points and thus different properties of the gels. The internal
gelation procedures used inactive forms of Ca2+ (such as insoluble salts) as crosslinkers,
prolonging the initiation stage of gelation [32,222,223]. The mechanical properties of these
gels (network strength and elasticity) were improved by the addition of glucose as a
cosolute (up to 30%) [224]. The external crosslinking method supposed the direct exposure
of Alg chains to active forms of Ca2+ [222,224], leading to greater matrix strength, stiffness,
and permeability than with internally crosslinked gels. This last method is preferred
for many applications, such as coating or drug encapsulation [222]. Spherical shaped
microparticles as pH-responsive drug carriers for therapeutic applications were obtained
by internal gelation of Alg, but their application is not appropriate for longer release times,
when further reducing of the surface porosity or hydrophilicity of the microspheres are
necessary [223].

In situ gelation was monitored by using filter paper impregnated with CaCl2 solution
on a Petri dish placed on the lower plane of the rheometer. Alg solution was loaded onto a
semipermeable membrane positioned on the filter paper, and the gelation was monitored
through the viscoelastic parameters [225]. When gelation was completed, a new filter paper
impregnated with ethylenediamine tetraacetic acid or sodium citrate allowed determination
of the gel stiffness in the presence of calcium chelators.

By controlling the characteristics of Alg chains and obtaining methods, a wide range
of mechanical properties are accessible using Alg-based hydrogels. Generally, the shear
modulus ranges from 0.02 to 40 kPa, and the compression modulus of alginate gels was
found in the range of less than 1 kPa to more than 103 kPa [226]. The nanoporous network,
which is formed by ionic crosslinking, is inert to cells and provides an appropriate mechan-
ical microenvironment for cells [198], drug delivery matrices for therapeutic agents, and
applications in wound dressing and 3D bioprinting [227]. In addition, among the divalent
cations, calcium is the most suitable for high-absorbent alginate hydrogels used in various
environmental and biomedical applications [7].

Alginate hydrocolloids are used as thickeners, emulsifiers, stabilizers, or pharma-
ceutical additives for foods, beverages, or biomaterials for medical and pharmaceutical
industries [192]. The chelation, gelation, and hydrophilic properties of alginates have
increased the interest for their use in food, cosmetics, and biomedical applications [210,227].
Alginate-based hydrogels with tunable properties are suitable platforms for biomaterials
used in regenerative medicine or as bioresponsive drug delivery systems. They present
structural similarities to ECMs, being frequently used for 2D or 3D cell cultures. As with
the ECM model in cell biology or bioengineering studies, these versatile structures al-
low a better understanding of fundamental cell processes: interactions between cells and
ECMs (elasticity or stiffness), cell–ECM adhesion, spreading, growth, proliferation, mi-
gration, differentiation, organoid formation, etc. ECM viscoelasticity can regulate these
processes [228–230]. The elastic modulus for natural tissues varies from hundreds of Pas-
cals in brain or fat tissue up to tens of GPa in bone [230]. Viscoelasticity can be evaluated
through rheological studies by examining stress relaxation in response to deformation,
creep in response to loading, or the ratio between dissipation to accumulation energy
(quantified by the loss tangent, tanδ, in dynamic oscillatory tests). Most ECMs and tis-
sues submitted to a deformation display substantial stress relaxation over a timescale of
10–104 s and tanδ (as the ratio between the viscous, G”, and elastic, G’, moduli) value
around 0.1 [229,230]. The stress relaxation can be controlled by mixing different ratios of
high- and low-molecular-weight alginate samples, or by coupling with short poly(ethylene
glycol) chains [193].

Hydrogels obtained from Alg with molecular weights of 2.8 × 104 g/mol (fast relax-
ing), 7 × 104 g/mol (medium relaxing), and 2.8 × 105 g/mol (slow relaxing); different
arginine–glycine–aspartate ligand densities (between 1.5 × 10−7 M and 1.5 × 10−3 M); and
calcium crosslinking densities (from 8 mM to 33 mM) presented the values of initial elastic
modulus from 3 kPa to 20 kPa. The values of τ1/2 (the time required for the stress to drop
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to half of its initial value) obtained for stress relaxation in compression and shear tests were
about 103 s in slow relaxing gels, 180 s in medium relaxing gels, and 70 s in fast relaxing
gels. The loss tangent value decreased from approx. 0.08, registered for fast relaxing gels,
to about 0.06, obtained for slow relaxing networks [229].

The deposition of type II collagen and aggrecan in slow relaxing Alg-based hydrogels
was limited to the region adjacent to the cells [193]. A more interconnected cartilage matrix
with a higher area of type II collagen and aggrecan deposition was obtained in the faster
relaxing gels. Displacements were evidenced in fast relaxing hydrogels, which are opaquer,
whereas no movements were observed in slow relaxing hydrogels. Faster stress relaxation
in the hydrogels promotes the formation of wider areas of cartilage matrix and fabrication
of more extended interconnected cartilage matrices [193].

By conjugating peptides (Arg-Gly-Asp) to Alg, cell adhesion and spreading were
facilitated [198]. Cell adhesion on surfaces is an important concept in the field of tissue
engineering due to the improvement of cell proliferation properties [231]. RGD is a protein-
derived peptide motif with cell adhesion capacity found in natural ECM elements, such
as fibronectin, collagen, and tenascin C. The tripeptide sequence is the most effective lig-
and for integrin-mediated cell adhesion. The biological process involves a cascade of four
overlapped reactions, which are cell attachment, spreading, actin-skeleton formation, and
focal-adhesion formation [231,232]. The reactions are important for transmitting signals
related to cell behavior and the cell cycle [232]. An RGD cell-recognition motif has been
attached or blended with natural materials, such as gelatin, alginate, chitosan, cellulose, ker-
atin, and elastin, or with synthetic materials, such as polyvinyl alcohol and polyacrylamide,
in order to enhance cell adhesion and provide better biocompatibility [233,234].

Using physical and/or chemical crosslinking, Alg provides versatile structures with
a wide applicability range, from scaffolds for tissue engineering, wound dressings, and
vehicles for bioactive agents (drugs, proteins, and antimicrobial or antioxidant agents) to
sensors and actuators [192,235–238].

Conductive, self-healing, and stretchable hydrogels with dynamic covalent bonds were
obtained from boronic-acid-modified alginate (Alg-BA) and oligomerized epigallocatechin
gallate (OEGCG) for implantable electronics (Figure 13) [239].

Cotton gauze was coated with Alg, glycerol (as plastifiant), and tannic acid (antimi-
crobial and antioxidant agent) for wound dressing applications [240]. Glycerol addition
destroys the intermolecular hydrogen bonds between Alg chains and determines a continu-
ous decrease of shear viscosity with increasing the glycerol concentration. This material
showed cell viability and antibacterial activity (>95% viable colony reduction) against
S. aureus and E. coli.

Alg is used frequently for 3D bioprinting due to its biological and tunable rheological
properties. In the presence of Ca2+, low concentrations of Alg form weak networks able to
maintain cell viability during bioprinting [241]. An amidic alginate derivative crosslinked
with 1,3-diaminopropane forms hydrogels with stiffness and viscoelasticity suitable for
nucleus pulposus replacement (G’ > 10 kPa) [242]. Viscoelastic moduli (G’ and G”) of
hydrogels were monitored over time to evidence structural changes by loading different
shear stress values corresponding to daily activities. The results have shown behavior
comparable with non-degenerated human nucleus pulposus. The viscoelastic moduli (G’
and G”) presented closed values before and after the dynamic stress tests. The dehydration
of hydrogels during these tests was of max. 15% [242]. The potential of Alg hydrogels for
spinal cord injury treatment was discussed in a recent review [243].

The use of single-component Alg hydrogels presents some limitations due to poor
mechanical properties, limited biodegradation, or dissolution due to releasing divalent ions.
Some inconveniences were improved with Alg oxidation [244] or by preparing new materials
using Alg in combination with other natural polymers, proteins, or peptides [245–249].
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By incorporating a small amount of cellulose or oxidized cellulose nanofibers into the
alginate/gelatin hydrogels, their printability (shear thinning and thixotropic behavior) and
mechanical properties (tensile and compressive stress) were improved [247,250].

2.5.2. Carrageenans

Carrageenans (Carr) denote a group of sulfated linear polysaccharides (extracted from
red algae) that present in their structure alternating units of D-galactose and
3,6-anhydro-galactose linked by α-1,3 and β-1,4-glycosidic linkage. There are different
types of carrageenans that differ by their degree of substitution on their free hydroxyl
groups and the position of sulphate groups within the structural units. Other carbohydrate
residues that may be found in the Carr structure are glucose, xylose, and uronic acids, and
as substituents methyl ethers and pyruvate groups can be also present [251,252]. Thus,
the following forms have been identified: Kappa (κ)-, Iota (ι)-, Lambda (λ)-, Mu (µ)-, Nu
(ν)-, and Theta (θ)-Carr. The most investigated and used forms are the gels of κ-Carr and
ι-Carr. Furthermore, λ-Carr is used as thickening agent. Due to their rheological (thicken-
ing/gelling) and biological (antiviral, immunomodulatory, antitumoral, and anticoagulant)
properties, these carrageenans are used not only in food and pharmaceutical industries,
but also in cosmetics and tissue engineering [252].

κ-Carr (Figure 14), a copolymer of (1→3) linked β-D-galactose-4-sulfate and (1→4)
linked 3,6-anhydro-α-D-galactose, with about 25% (w/w) sulphate and 34% (w/w)
3,6-anhydro-D-galactose [252], is able to undergo reversible gelation induced by tem-
perature, pH, or presence of cations, and it is used in the food industry as a gelling or
thickening agent. The network includes single or double helices (Figure 15) with the sul-
phate groups towards their external side [253]. In the presence of cations, the network
strength is considerably improved due to conformational ordering aggregation [54,254].
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A specific behavior of κ-Carr chains is the ability to form thermoreversible gels in the
presence of electrolytes; the effect is more pronounced for alkaline metal counterions of high
atomic number [66]. The intrinsic viscosity, [η], of κ-Carr in aqueous solutions (random
coils) was found to be 48 dL/g [54]. In 0.1 M solutions of monovalent salts, the values
differ considerably. In the presence of NaCl, the single helix is formed and [η] = 6.23 dL/g,
whereas in NaI a double helix conformation is favored and [η] = 11.41 dL/g (dissimilar
counter-ion, I−, viscosity approx. double as compared with Cl−). The shielding effect is less
pronounced in the presence of I−, and the double helix is stabilized by the presence of I− in
the solvent. In CsI solution, there is dissimilar cation and counter-ion and [η] = 17.92 dL/g
(three times higher value), suggesting the formation of associates consisting of aggregates
of helices (Figure 16) [54]. Anions and cations influence the behavior of κ-Carr in a different
manner, and counter-ions are more efficient as compared with co-ions in inducing coil-
to-helix transitions. In the presence of the same cation, Na+, the effect of I− is more
pronounced as compared with Cl− one, and I− causes an increased stiffness in the ordered
conformation of κ-Carr [67].

It was shown that in 0.1 M aqueous solutions of mixed salts (NaI and CsI), κ-Carr
helices associate into superhelical rigid rods in a certain domain of salt composition (above
a critical mole fraction of Cs, f Cs > 0.4) [255]. In the presence of NaI, the double helices
formed by the adjacent spiral chains contain sulfate groups oriented towards their external
parts [251]. The change of the conformational-associative properties of κ-Carr was executed
with progressive modifications of the ionic environment. Thus, the stepwise association of
κ-Carr helices was followed in NaI solutions by adding an increasing amount of CSI [54].
Under specific conditions of polymer and salt concentration, the helices aggregate and
lead to gelation [256]. Gels with low values of viscoelastic moduli were also obtained
above 0.9% (w/w) κ-Carr in presence of NaI, although this salt is known to impede the
gelation of κ-carr. It was shown that κ-Carr gelation occurs in two different ways [257]:
coil-to-helix-to-gel or coil-to-helix-to-superhelical-rod-to-gel. The first way is a reversible
association of helical dimers in solutions of NaI or in NaI and low content of CsI. The
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second type of gelation supposes the formation of superhelical rods, and the values of the
viscoleastic moduli increase [258].

Gels 2023, 9, 376 21 of 49 
 

 

of high atomic number [66]. The intrinsic viscosity, [η], of κ-Carr in aqueous solutions 
(random coils) was found to be 48 dL/g [54]. In 0.1 M solutions of monovalent salts, the 
values differ considerably. In the presence of NaCl, the single helix is formed and [η] = 
6.23 dL/g, whereas in NaI a double helix conformation is favored and [η] = 11.41 dL/g 
(dissimilar counter-ion, I−, viscosity approx. double as compared with Cl−). The shielding 
effect is less pronounced in the presence of I−, and the double helix is stabilized by the 
presence of I− in the solvent. In CsI solution, there is dissimilar cation and counter-ion and 
[η] = 17.92 dL/g (three times higher value), suggesting the formation of associates con-
sisting of aggregates of helices (Figure 16) [54]. Anions and cations influence the behavior 
of κ-Carr in a different manner, and counter-ions are more efficient as compared with 
co-ions in inducing coil-to-helix transitions. In the presence of the same cation, Na+, the 
effect of I− is more pronounced as compared with Cl− one, and I− causes an increased 
stiffness in the ordered conformation of κ-Carr [67]. 

0.00 0.01 0.02 0.03 0.04 0.05
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

    0.1M NaCl
[η] = 6.23 dL/g

       0.1M NaI
[η] = 11.41 dL/g

     0.1M CSI 
[η] = 17.92 dL/g

  water
  0.1M CsI
  0.1M NaI
  0.1M NaCl

ln ηrel

c (g /dL)

     water
[η] = 48 dL/g

random coils

single helix

double helix

aggregates of helices

 
Figure 16. Viscosity of dilute solutions of κ-Carr in aqueous solutions and in presence of 0.1 M 
monovalent salts. Adapted with permission from [54], copyright 2019, Elsevier. 

It was shown that in 0.1 M aqueous solutions of mixed salts (NaI and CsI), κ-Carr 
helices associate into superhelical rigid rods in a certain domain of salt composition 
(above a critical mole fraction of Cs, fCs > 0.4) [255]. In the presence of NaI, the double 
helices formed by the adjacent spiral chains contain sulfate groups oriented towards their 
external parts [251]. The change of the conformational-associative properties of κ-Carr 
was executed with progressive modifications of the ionic environment. Thus, the step-
wise association of κ-Carr helices was followed in NaI solutions by adding an increasing 
amount of CSI [54]. Under specific conditions of polymer and salt concentration, the 
helices aggregate and lead to gelation [256]. Gels with low values of viscoelastic moduli 
were also obtained above 0.9% (w/w) κ-Carr in presence of NaI, although this salt is 
known to impede the gelation of κ-carr. It was shown that κ-Carr gelation occurs in two 
different ways [257]: coil-to-helix-to-gel or coil-to-helix-to-superhelical-rod-to-gel. The 
first way is a reversible association of helical dimers in solutions of NaI or in NaI and low 
content of CsI. The second type of gelation supposes the formation of superhelical rods, 
and the values of the viscoleastic moduli increase [258]. 

The cations, such as K+, Rb+, Cs+, and NH4+ stabilize the helix and stimulate gel for-
mation. In the coil state, the presence of Na+, Li+, H+, or (CH3)4N+ delays or cancels the 
network formation [66]. The disordered state is reached by increasing the temperature 
and by cooling the solution at room temperature until the coil-to-helix transition occurs. 
At constant ionic strength, the gelling temperature is found in the following order: Rb+ > 

Figure 16. Viscosity of dilute solutions of κ-Carr in aqueous solutions and in presence of 0.1 M
monovalent salts. Adapted with permission from [54], copyright 2019, Elsevier.

The cations, such as K+, Rb+, Cs+, and NH4
+ stabilize the helix and stimulate gel

formation. In the coil state, the presence of Na+, Li+, H+, or (CH3)4N+ delays or cancels
the network formation [66]. The disordered state is reached by increasing the temper-
ature and by cooling the solution at room temperature until the coil-to-helix transition
occurs. At constant ionic strength, the gelling temperature is found in the following order:
Rb+ > Cs+ > K+ > NH4

+ ≥ (CH3)4N+ > Na+ > Li+ [67], which corresponds with the ability
of cations to enhance gelation [173] and only shows slight variation for bivalent counte-
rions: Ba2+ > Ca2+ > Sr2+ > Mg2+ > Zn2+ > Co2+ [259]. Ca2+ binds between the double
helices (rather than the single ones) and confers high thermal stability to κ-Carr. The
dimerization is similar to that occurring for Alg—the so-called “egg-box” structure with
a single array of cations between two chains. Ca2+ can be replaced with monovalent
cations: K+ acts indirectly by suppressing charge, and the thermal stability is lower as com-
pared with Ca2+. The effect of Na+ addition is different; it decreases the thermal stability
of the helix–helix aggregates and lowers the order–disorder transition point [260]. The
cation concentration required to induce the coil-to-helix transition increases in the order:
Rb+ < Cs+ ≈ K+ < Na+ < Li+ [253], whereas the resulting gel strength is in the opposite
order [261]. Thus, it was supposed that divalent cations determine direct crosslinking
between κ-Carr helices, and monovalent cations bind only single sulphate groups along
κ-Carr chains. There were more junction zones in divalent-cation-invoked gels. Ca2+ in the
presence of K+ showed a synergistic effect in mechanical properties [253].

2.6. Fungal Polysaccharides
Pullulan

Pullulan (PULL), an exopolysaccharide produced by certain fungi, such as Aureoba-
sidium pullulans, presents in its structure maltotriose units connected through α-(1→4)
glycosidic bonds, the consecutive maltotriose units being linked to each other by α-(1→6)
glycosidic bonds (Figure 17).
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Due to its unique properties, such as chain flexibility, solubility in water, high adhesion
to biological surfaces, ability to form transparent, thin edible films, biocompatibility, and
biodegradability, it is extensively used as a food ingredient, in packaging, in cosmetics
or dermatocosmetics, as a pharmaceutical excipient for protein stabilization, in biomed-
ical applications as hydrogels for drug delivery systems, for wound healing, for tissue
engineering applications, and for wastewater remediation [262–268].

In physiological conditions, PULL and bovine serum albumin (BSA) form complex
structures mediated by Na+ cations. Due to favorable intermolecular interactions, more
than one macromolecule of BSA is incorporated into the PULL coil resulting a mixed coil
that increases the viscosity and the osmotic pressure of biological fluids, two important
physiological and clinical parameters [269].

In combination with other biomolecules, PULL is incorporated into wound dressings,
inducing antimicrobial, antioxidant, and nonimmunogenic properties. For example, syner-
gistic hyaluronic acid-grafted pullulan succinate and chitosan physical networks present
antibacterial activity and accelerate skin wound repair [270]. In addition, the clinical po-
tential of biocompatible porous pullulan/dextran hydrogels for mice survival after liver
failure was recently demonstrated [271].

The oxidation of PULL is a way to convert its neutral macromolecules into polyelec-
trolytes with valuable properties that allow expansion of application ranges. However,
such chemical reactions can also lead to severe chain degradation depending on the reaction
conditions and polysaccharide structure [272–275].

PULL and its derivatives present improved properties and are suitable for drug delivery
systems [263,267,276], wound dressings, or tissue engineering applications [277–281]. A
glutathione and pH dual-responsive drug delivery system composed of CM and oxidized
PULL hydrogel was used to encapsulate methotrexate (an anticancer drug) [282,283] loaded
on mesoporous silica nanoparticles [282].

3. Proteins

Proteins, the building blocks of life, are well known for their diverse functions. Their
main advantage is that primary structure might predict function, supramolecular assembly,
and proper protein folding [284]. Hydrogels based on natural proteins have received a
lot of attention in the past two decades [285]. Besides well-studied collagen hydrogels,
keratin, elastin, and silk hydrogels have been increasingly investigated. These smart
biomaterials show a high potential in a vast range of applications, from food to cos-
metic and pharmaceutical industries. Collagen, keratin, and elastin are the main com-
ponents in the natural ECMs (Scheme 2), and these proteins are used in most tissue
engineering applications.
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3.1. Collagen

Collagen (Coll) is the most abundant protein in nature, and it plays both functional
and structural roles, such as promoting cell migration and proliferation, an important
component of connective tissue, ligaments, tendons, and blood vessels [289]. There are at
least 29 known forms of Coll classified according to their functions and homology. Type I
is the most studied and widespread collagen form. This type comprises about 90% of the
protein in human connective tissue, mainly responsible for bone development and organ
support [285].

For cancerous tissues, the mechanical (elasticity and viscosity) and structural (mi-
crostructure and Coll density) characteristics of ECM modulate the behavior of cancerous
breast cells [290,291]. In mammary tumors, an increase of Coll fibril diameter and a
crosslinking mediated by lysyl-oxidase take place, determining a higher tissue stiffness
as compared with the normal one [292]. Investigations have shown that cluster forma-
tion in tumor cells is regulated by the fibril bending stiffness controlled by intrafibrilar
crosslinking [290]. Figure 18 shows the cluster formation for a tumor model (breast cancer
cell line MCF-7) as a function of the elastic modulus. An increase of the fibril diameter or
intrafibrillar crosslinking of Coll I, using 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide
as a crosslinker, reduced the cluster occurrence of MCF-7 cells (Figure 18a). A nonlinear
decrease in the fraction of clusters (Figure 18b) and average cluster size (Figure 18c) occurs
when the elastic modulus matrix increases (Figure 18b,c). Thus, these results evidenced
the correlation between cancer cell phenotypes and the mechanical properties of the Coll
fibrils [290].
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(blue) and actin filaments (green). (Scale bar: 100 µm). (b,c) Quantitative analysis of cell clustering 
of MCF-7 cells. Cells without contact to other cells were assigned as single cells. Fraction of clusters 
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Figure 18. Correlation between Coll I fibril bending stiffness and cell clustering of MCF-7 cells.
(a) The confocal laser scanning microscopy images of MCF-7 breast cancer cells cultivated in 3D
Coll I matrices with fibril diameters of 660 nm and 850 nm and with postmodification by different
concentrations of the crosslinker (from 0 to 500 mM) after 5 days of cultivation. Images show nuclei
(blue) and actin filaments (green). (Scale bar: 100 µm). (b,c) Quantitative analysis of cell clustering of
MCF-7 cells. Cells without contact to other cells were assigned as single cells. Fraction of clusters
(ratio of number of cell clusters and single cells) (b) and cluster size (c) were plotted as a function of
matrix elastic modulus, E. Dashed line in (c) depicts the simple model of cluster formation limited by
matrix bending energy (gray dashed line). Data are shown as mean ± SD; *—significance level of
p < 0.05. Adapted with permission from [290], copyright 2019, Elsevier.

Mechanical strength of Coll materials has been reported as insufficient as compared
to the native Coll, due to the lack of crosslinking [293]. Hybrid hydrogels were created
by fusing collagen with other (macro)molecules in order to enhance their mechanical
properties. A variety of studies have evidenced a synergy between Coll and HA in the
conception of hydrogels with enhanced mechanical properties for biomedical purposes.

A recent study describes a convenient method for obtaining an injectable hydrogel
suitable for cartilage regeneration by rapid thiol/maleimide chemical reaction and thiol oxi-
dation reaction as the primary and secondary self-crosslinking networks. Subsequently, iso-
lated chondrocytes were appended into the HA hydrogel for cartilage expansion and type
I collagen (Coll I) was supplementarily added for mechanical strength improvement [294].
Addressing a similar topic, another group of scientists managed to prepare bone marrow
mesenchymal stem-cells-laden HA-Col I hydrogel using an enzymatic crosslinking for
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tissue engineering applications. Briefly, the Coll I and HA precursor solutions were mixed,
and the crosslinked process was initiated by adding horseradish peroxidase and hydrogen
peroxide as a substrate. Hydrogel strength and formation rate depend on the substrate
concentration (a higher concentration of H2O2 leads to fast formation of the hydrogel). The
study reported good biocompatibility and physico-chemical properties of the prepared
hydrogel. Additionally, in vivo exploratory research revealed that hyalin cartilage repair
could be possible [295]. Hyaluronate/Coll hydrogels can also be prepared in situ for su-
tureless corneal defect repair. The procedure involves a bio-orthogonal strain-promoted
azide-alkyne [3+2] cycloaddition reaction between HA-azide and dibenzocyclootyne-Coll
intermediate solutions. The main advantage of this type of hydrogel formation is that it
can be made under ambient conditions, without chemical catalysts and initiators, heat, or
light. In addition, the obtained hydrogel is highly transparent and displays comparable
optical and physical properties with natural corneal stroma [296].

Coll/CS hybrid crosslinked hydrogels can overcome the weak points of mono-
biomolecular hydrogels in terms of degradation and mechanical properties. In a recent
study, a Coll/CM hydrogel was prepared via 1-ethyl-3-[3-dimethylaminopropyl] carbodi-
imide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as chemical crosslinkers.
This is a low-cost and easy method to obtain new amide bonds between the reactants.
The hydrogel synthesis was performed by mixing the Coll/CM substrate solutions with
EDC/NHS as coupling agents. Further, RGD peptide was additionally included into the
mixture in order to enhance the scaffold’s biocompatibility and adhesiveness. These gels
were recommended for cartilage regeneration [297]. Crosslinked Coll can absorb high
amounts of water and can act as a self-standing electrolyte membrane in an aqueous
electrolyte used for electrochemical devices [298].

3.2. Keratin

Keratin is the major protein of hair, nails, wool, hooves, and horns. This protein has a
high resistance to common proteases, such as pepsin or trypsin, and is rich in cysteine (Cys),
proline (Pro), glycine (Gly), and serine (Ser). Furthermore, keratin is insoluble in water,
weak acids, organic solvents, and alkaline solutions [299]. The stability and stiffness of this
natural protein are based on its high content of Cys residues (7–20%), which can easily
form intra- and interchain disulfide bonds. These bonds can be physically or chemically
dislocated to create water-soluble keratin extracts. The ability of proteins to dissolve in
water is crucial when creating materials for biomedical applications. For example, wound
dressings are one of the most appreciated applications for keratin-based materials [300].
According to a recent study, an innovative wound dressing hydrogel-loaded with vitamin C
was conceived based on keratin, XG, and gelatin. Firstly, the keratin/XG/gelatin hydrogel
was obtained using glycerol as a crosslinking agent. Initially, for the adsorption process, the
hydrogel was submerged into a vitamin C solution for 24 h. Afterward, the loaded material
was analyzed by in vitro hydrogel degradation and used for release studies, cytotoxicity
studies, and Coll staining procedures. It is known that vitamin C is involved in post-
translational modification of collagen in fibroblasts. As the study concluded, the vitamin
C released from the hydrogel increased the Coll maturation process in the cells [301]. A
wound dressing with antibacterial properties based on the combination between CMC and
keratin from human hair was provided by another study. The main function of the dressing
was to deliver topical antibiotic clindamycin [302,303], which is effective against burn as
well as skin and tissue infections caused by S. aureus. The hydrogel was tested for in vitro
clindamycin release, antibacterial activity, antibiotic impact on fibroblast attachment, and
viability. Overall, the results showed good antibacterial activity, more than 90% cellular
viability, and proliferation [302].

A research team developed novel techniques for manufacturing an injectable keratin
hydrogel for hemostasis and drug delivery in wound healing applications. The crosslinking
strategy was based on a dynamic exchange reaction between Au(I)-thiolates (Au-S) and
the keratin’s disulfide bonds (S-S) under physiological pH conditions. The advantage of
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this method is the harnessing of the existing thiol groups in keratin, without the need for
any structural modification. Moreover, the results of rheological tests, in vivo hemostatic
evaluation, and wound healing tests demonstrated a promising hemostatic and efficient
wound healing effect [304]. Among wound healing and hemostatic applications, keratin
hydrogels were also used in human hair disorders. For this cosmetic purpose, the keratin-
based hydrogels were filled with halloysite nanotubes [305,306], which are nanofillers for
biopolymeric matrices. As reported in the literature, halloysite–protein composites are used
in several applications, such as sustained release of bioactive molecules, dye removal, and
enzyme immobilization. Thus, these active principles are recommended to be incorporated
into haircare formulations [305].

3.3. Elastin

Elastin is an essential protein responsible for the resilience and elasticity of native
ECM and organs [285,307]. Moreover, it is predominant in tissues that require extension
and relaxation repeatedly, such as lungs, blood vessels, ligaments, and skin [308]. The
precursor of elastin is tropoelastin, which is a soluble monomer secreted by elastogenic
cells. Tropoelastin crosslinking is achieved using enzymatic catalysis to form insoluble
mature protein [309].

Due to its resilience, elastin can form hydrogels with high porosity and high levels
of cell penetration [310]. Elastin-based materials have applications mainly in wound
healing and regenerative medicine [311]. In most studies, elastin is typically incorporated
into hybrid hydrogels, along with other molecules, such as polysaccharides, proteins,
or peptides, to shape the properties of the final material. For example, a recent study
described the fabrication of a plasma–elastin hybrid hydrogel for skin regeneration. The
material was created to overcome the shortcomings of plasma-derived fibrin hydrogels,
which exhibit low mechanical properties, rapid contraction, and long-term degradation.
Therefore, a dual crosslinked network based on plasma-fibrin alternated with different
elastin-like recombinamers was created. These findings reveal the effective generation of
novel networks with enhanced mechanical properties [312]. In order to enhance the cellular
adhesion and biomimicking functions of Alg hydrogels, a group of scientists studied the
interactions of three proteins, including elastin, with graphene oxide (GO) platelets. In this
experimental work, the adsorption of elastin, type I Col, and BSA on the GO surface was
followed. Then, the protein-GO particles were incorporated into the alginate hydrogels
and analyzed through in vitro cell viability tests. The results indicated that the elastin and
BSA-GO hydrogels improved cell viability and the release of a therapeutic protein [313].

Another review shows the association between elastin and silk to create silk-elastin-
like protein (SELP)-based hydrogels for drug and gene delivery. The study presented a
variety of controlled releasing profiles for bioactive agents from loaded SELP hydrogel
matrices, as well as possible liquid embolic applications [314].

Elastin-like polypeptides show the desired properties, similar to those of elastin, that
are the focus of researchers in the most recent related studies. Further along in this paper,
the interesting aspects of this special category of polypeptides will be discussed.

4. Peptides

Peptides are unique building blocks for supramolecular assembly that can be designed
from up to 20 amino acids. Their self-assembly capacity is dictated by the peptide’s
sequence (primary structure), which can adopt α-helix orβ-sheet secondary structures [315].
The main disadvantages of peptides are susceptibility to enzymatic degradation, fast kidney
clearance, and possible immunogenic-induced responses [316]. Attaching peptides to either
natural or synthetic polymers can solve some of these issues.

4.1. Elastin-like Polypeptides

As previously discussed, elastin-like polypeptides (ELPs) have similar elastic prop-
erties to native elastin, but improved solubility. This particular category of recombinant
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polypeptides is composed of a repeated amino acid sequence (VPGXG)n, where X com-
prises any amino acid, except proline, a fact that disrupts the folding behavior, and n
represents the number of pentapeptide sequences [317,318]. By varying the guest residue
(X), the length of the polypeptide, and its concentration, ELPs are able to reversibly undergo
a phase separation around the lower critical solution temperature (LCST) or above the
transition temperature. These unique properties enable ELPs to be used as drug deliv-
ery vehicles, protein reservoirs, or bioactive compound carriers. Additionally, according
to numerous studies, ELPs can be produced recombinantly with enzyme-cleavable sites,
adjustable aggregation temperatures, and cell-adhesive moieties without generating any
immune response [318]. This is a very promising aspect in cancer therapy and for designing
novel anticancer delivery systems. For example, doxorubicin or paclitaxel was conjugated
to the ELPs and used for targeted delivery to the tumor site [319].

Some authors have already pointed out the association between ELPs and hyaluronic
acid in order to develop hybrid hydrogels with versatile applications, especially in the
biomedical field [320]. In this context, few studies highlighted the preparation of ELP/HA
hydrogels. One of them introduces a hydrogel with antimicrobial, elastic, and adhesive
properties comprising methacrylated hyaluronic acid (MeHA)-ELPs for tissue engineering
applications. A photo-crosslinked method was used to generate the MeHA-ELP hybrid
hydrogel. Zinc oxide (ZnO) nanoparticles were added into the hydrogel precursor solution
in order to provide antimicrobial characteristics. The obtained material was further investi-
gated using in vitro cytocompatibility and adhesive and antibacterial properties, as well as
using in vivo biodegradation and biocompatibility studies. According to the authors, the
hydrogel might promote cell proliferation and be integrated into the host tissues, without
any risk of triggering inflammatory responses [321]. On the same topic, a hydrogel of
ELP-Col incorporating recombinant human bone morphogenetic protein-2 (rhBMP-2) and
doxycycline to induce osteogenesis has been reported in the literature. This study followed
doxycycline and rhBMP-2 release tests, mechanical studies, cell morphology, and viability.
The hydrogel showed activity against E. coli, S. sanguinis, and P. aeruginosa, as well as good
cell attachment, proliferation, and differentiation, and is a promising bone regeneration
material [322].

4.2. Collagen-like Peptides

Short peptides designed with the repetitive collagen motif (Gly-X-Y)n, where X and
Y stand for proline (Pro or P) and hydroxyproline (Hpy or O) residues, are referred to as
collagen-like peptides (CLPs) or collagen-mimetic peptides (CMPs). The motif confers the
triple helical conformation that the native protein possesses on the synthetic structure [323].
CLPs present better solubility, immunogenicity, and thermal stability compared to native
collagen, as well as similar biological activity [324,325]. CLP/polysaccharide hydrogels are
mainly used in regenerative medicine as biomaterials for bone repair, cartilage regeneration,
wound healing dressings, or targeted drug delivery [326]. For example, a recent study
managed to obtain a biomimetic hydrogel system based on a CMP structure linked to a
hyaluronic acid backbone to promote the differentiation from BMSCs into chondrocytes for
cartilage-grow applications [324]. Firstly, HA was functionalized with maleimide groups
(HA-MAL) and analyzed using 1H-NMR. Further, the (GPO)8-CG-RGDS collagen-mimetic
peptide was conjugated to the previous functionalized polymer. This peptide contained a
(Gly-Xaa-Yaa)n sequence and could mimic the structure and biological activity of natural
collagen. The molar ratio of the reaction between the CMP and crosslinker was 3:1. The
preparation of the hydrogel was achieved using incubation of the HA-MAL-CMP and
matrix metalloproteinase (MMP) at 37 ◦C for more than 30 min. Figure 19 illustrates the
synthetic route to design the biomimetic hybrid hydrogel.
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Figure 19. Synthesis of collagen-mimetic peptide-HA hydrogel. (a) Functionalization of HA with N-
(2-aminoethyl) maleimide trifluoroacetate salt (AEM): (b) Synthesis of HA-collagen-mimetic peptide
hydrogel. With permission from [324], copyright, 2020 Elsevier.

Cell viability was followed at 1 and 3 days after culturing the cells entrapped in the
gels. Figure 20 shows the cell distribution compared on DTT (DL-1,4-Dithiothreitol used
as stabilizer), MMP, and CMP hydrogels from day one and day three. After day one, the
DTT media showed significantly lower viability than that of the other two groups. The cell
viability on the CMP hydrogel was the strongest after three days, while the DTT group
remained the weakest. The results showed the potential of the collagen biomimetic-peptide-
hydrogel to influence differentiation of the BMSCs into cartilage [324].

On a slightly different topic, a recombinant collagen-peptide, RHC, was conjugated
with CS to obtain a chemically crosslinked hydrogel with better biological and mechanical
properties for wound healing applications. Briefly, both RHC and CS were solubilized
in distilled water. RHC was mixed with EDC binding reagent to activate the carboxyl
groups. The activated peptide was transferred into the chitosan solution and incubated at
37 ◦C. The structure of the obtained hydrogel was characterized by FTIR and 1H-NMR and
further analyzed using cytotoxicity of gel extraction, cell encapsulation, and histological
and immunofluorescence studies. The study reported superior conjugation efficiency of
hydrogels, biocompatibility, and excellent potential as burn injury treatment [327].

4.3. Antimicrobial and Antioxidant Peptides

Short peptide sequences, with between 2–40 residues of amino acids, that exhibit a
variety of biological activities are called bioactive peptides. According to their mechanism
of action, bioactive peptides are classified as antimicrobial agents, antioxidants, antihyper-
tensive agents, metal chelators, etc. [328,329]. As an alternative to specific drugs, bioactive
peptides exhibit fewer side effects while combating oxidative stress and microbial infections.
Moreover, these compounds could have natural origins and could be assimilated from
different beans, seeds, plants, or animal sources.
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4.3.1. Antimicrobial Peptides

One of the most significant events in medicine was the discovery of antibiotics, which
are currently employed extensively in a variety of industries including food and agriculture.
However, the new generation of antibiotic-resistant microorganisms represents one of
the main global public health concerns [330]. Therefore, new mechanisms of action or
targets are explored in order to combat drug-resistant infections, in which antimicrobial
peptides (AMPs) represent promising therapeutic options [331]. AMPs are produced as
a defense mechanism by all living organisms and regulate the immune system against
invasive pathogens [332]. In fact, gramicidin, the first AMP, was isolated from B. brevis and
demonstrated in vivo and in vitro antibacterial activity against a range of Gram-positive
bacteria [333].

AMPs are briefly classified into two groups based on their cell-targeting activity:
intracellular targeting groups and extracellular targeting groups. The intracellular targeting
mechanism involves peptides with transmembrane transport capacity. Peptides are able
to form pores in the cell membrane and translocate into the cell. Further, AMPs inhibit
the processes of replication, translation, and transcription by binding to nucleic acids
and disturb the energy metabolism and cell cycle by affecting some enzymatic systems.
The extracellular mechanism includes cell wall targeting. AMPs inhibit the synthesis of
peptidoglycans, the main component of the bacterial cell wall, by selectively binding to
lipid II, the precursor molecule of peptidoglycans. Eventually, the cell wall is destroyed,
and the bacteria can no longer perform their function [330,334].
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The antimicrobial activity and specificity of AMPs are modulated by physico-chemical
parameters of the peptides and membranes of the microorganisms. The bacteriostatic and
bactericidal effects depend on amino acid composition, more precisely the charge of the
peptide, secondary structure, hydrophobicity, and amphipathicity. Most of the AMPs carry
a net positive charge that enables electrostatic interactions with the negatively charged
membranes, which are the first step in binding to the bacterial cell wall. Hydrophobicity
is an essential feature because it allows the peptide to penetrate the lipid bilayers of the
bacterial cell membrane. Many studies have demonstrated that antimicrobial activity
increases at an optimal percentage of hydrophobic residues. Once connection is formed
between the peptide and microbial cell, AMPs may adopt various secondary structures,
such as α-helical, β-sheet, and extended or mixed α/β-structures. The secondary structure
of the peptide influences the antimicrobial mechanism and selective cytotoxicity. The
conformational flexibility of antimicrobial peptides is attributed to their amphipathic nature,
which activates both hydrophobic and hydrophilic domains within the peptide [335,336].

4.3.2. Antioxidant Peptides

Antioxidant activity of peptides is related to structural characteristics, such as amino
acid composition, sequence, molecular mass, and hydrophobicity. According to a similar
review, antioxidant peptides consist of three to six amino acid residues with a range of
molecular weights from 400 to 650 g/mol. An additional finding of the study reveals that
70% of the 42 identified antioxidant peptides have molecular weights below 103 g/mol.
Peptides with high antioxidant capacity consist of hydrophobic amino acids, which are
considered key factors in scavenging radicals. His, Pro, Gly, Val, and Lys are among the
most frequently tested hydrophobic amino acids. However, other studies have mentioned
the ability of Trp, Tyr, and Phe, the three aromatic amino acids, to significantly improve
antioxidant capacity [337,338]. The antioxidant properties are determined mostly by in vitro
ability to scavenge free radicals (hydroxyl, 2,2-diphenyl-1-picrylhydrazyl, superoxide),
metal chelation, reducing ferric iron to ferrous, and inhibiting lipid peroxidation [339].
1,1-Diphenyl-2-picrylhydrazyl (DPPH) assay is one of the most popular spectrophotometric
methods for antioxidant capacity determination, which involves a direct reaction between
the radicals and antioxidants. DPPH is a stable nitrogen radical with a deep blue color. The
delocalization of electrons gives rise to a deep violet color, featuring an adsorption band
at around 517 nm. The DPPH radical is reduced in the presence of antioxidant molecules,
which donate their hydrogen atoms. As an outcome, the solution’s color changes to a pale
yellow, pointing to a reduced form [340,341].

Oxidative stress has become one of the main problems of the modern, unhealthy
lifestyle, being involved in the development of several chronic diseases, such as atheroscle-
rosis, diabetes, and cancer [342–347]. Accumulation of reactive oxygen species (ROS)
activates the pro-inflammatory and pro-apoptotic pathways by triggering uncontrolled
reactions with proteins, lipids, and DNA [347]. Both synthetic and natural antioxidants
manifest significant ROS scavenging abilities in order to maintain human health. Nev-
ertheless, synthetic antioxidants such as butylated hydroxytoluene (BHT) and butylated
hydroxyanisole (BHA) may present carcinogenic side effects. Therefore, it is encouraging
to consume and use natural antioxidant compounds as food preservatives rather than
synthetic antioxidants [348,349]. Plants, animals, dairy, and marine products represent
inexhaustible resources for natural biopeptides [347].

Plant-based foods provide nutrients, such as sugars, proteins, lipids, and biologi-
cally active substances [348,349]. For example, mung bean peptides exhibit antioxidant,
antitumor, and antidiabetic properties [350]. Peptides extracted from walnut residues
have also been explored in recent years due to their antioxidant and antihypertensive
properties [351,352]. Other examples of plant sources from which peptides are derived
are cottonseeds, potatoes, and spinach, while peptides isolated from seaweed and aquatic
animals are part of marine and animal sources [353–356].
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4.4. Nucleopeptides

Nucleobase-bearing peptides, also known as nucleopeptides, are hybrid molecules
where the nucleic acid base is attached to a peptide skeleton via its 1- or 9-position. Their
structural moieties endow the occurrence of many intermolecular interactions between
adjacent nucleopeptide chains or short nucleopeptides and polynucleotides [357]. A recent
study has shown that autocatalytic and cross-catalytic processes involving short nucle-
opeptide replicators are jointly controlled by the nucleobase motifs’ hybridization and the
peptide segments’ propensity for assembly. Within networks of complementary nucleopep-
tides, unequal assembly-dependent replication triggers a selectivity toward the emergence
of a particular species. This type of assembly process most probably was further translated
to biological assemblies such as cellular organelles and viruses [358].

Small size nucleotide-aromatic dipeptides (Thymine-FF and Thymine YY) were char-
acterized for their self-assembly properties using UV spectroscopy, circular dichroism (CD),
and dynamic light scattering (DLS). Although these peptides tend to form aggregates with
diameters higher than 300 nm in solution, they are not able to interact significantly with
homoadenine DNA and RNA as revealed by CD spectroscopy [359].

Two hydrogelators, one containing thymine, a phenylalanine moiety and a glycoside,
and the second two aromatic moieties flanked in a similar fashion, were also reported. These
supramolecular structures displayed biocompatibility to HeLa cells and good resistance to
proteases. Fluorescence microscopy studies support nucleopeptide–nucleic interaction and
their entry into nuclei [360,361]. Conversely, when a saccharide moiety was placed at the
N-terminal of FRGD or naphthyl-AFRGD peptide and the nucleobase at C-terminal, these
conjugates exhibited excellent cell biocompatibility but were unable to self-assemble in an
aqueous environment [362].

Two nucleotide-tetrapeptides (guanosine-GKFF-OH and guanosine-GKFF-NH2) were
used as a template for self-assembly investigation. TEM images, in the absence or presence
of KCl (10 equivalents), support the idea that slight structural changes on peptides’ C-
terminus yield distinct morphologies. For the amidated construct, a G-ribbon architecture
was preferred [363]. A novel thymine-decorated artificial hexameric peptide based on
L-diaminopropanoic acid was also studied for its capacity to interact with single- and
double-stranded DNA and RNA and later for its capacity to be used in antiviral strate-
gies [364]. Another report focused on three thymine-containing dodecamers that were syn-
thesized and their ability to hybridize with dA12. The homopolymer of thymine-containing
diaminobutiric did not bind to oligodeoxynucleotide, and its monomer incorporation into
thymine-containing N-(2-aminoethyl)glycine dodecamers at the N-terminus and in the
middle of the main chain led to weak binding to the targeted DNA as compared to ref-
erence dodecamer [365]. Chiral nucleopeptides (as heteropolymers) were obtained using
γ-diaminobutiric and lysine thymine amino acids as starting precursors. The binding of
hexamer (one monomer consists of a pair of different thymine amino acids) to dA12 and
polyA was revealed using CD and UV spectroscopies [366]. Nucleic acid binding ability of
a dithymine tetra-L-Serine nucleopeptide was also reported. The binding behavior was
demonstrated using CD and in silico studies. This nucleopeptide might induce a better
structuration when interacting with its random deoxyoligonucleotide partner [367]. A
trinucleo-heptapeptide was also synthesized and was characterized by its capacity to inter-
act with single-stranded oligonucleotides. The self-assembly capacity of a nucleopeptide,
more precisely, Nap-FFK(t)GK(c)GK(t), where t is thymine and c is cytosine, was superior
in the presence of single-stranded DNA (ssDNAs). This new compound also displayed
the ability to interact with plasmid DNA and might be used to deliver hairpin DNA into
cells with the possibility of affecting their behavior and function [368]. Two sets of homo-
thymine nucleopeptides were synthesized as stated by another elegant study. Among
these two 12-mer nucleopeptides, which comprise a thymine-functionalized L-ornitine
and an adjacent L-2,4-diaminobutyric acid, respectively, as an arginine unit, were able to
bind to specific DNA or RNA targets and to cross cellular and nuclear membranes [369].
Additionally, the interaction of nucleopeptides with RNA molecules is greatly influenced
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by backbone stereochemistry. As a result, stable complexes with RNA are being generated
by nucleopeptides that only contain alternating L-arginine and L-Lysine residues and a
thymine nucleobase [370].

A recent study investigated the gelation of thymine-triphenylalanine triggered by
Good’s buffer and salts. The gels displayed long-term stability in cell culture conditions
and short-term cell viability and proliferation as compared to widely used materials [371].
A library of sixteen nucleo-tripeptides, each having two phenylalanine residues at C-
terminus, was constructed in order to identify potential candidates that form hydrogels in
physiological conditions. The nanofibrous hydrogel’s formation was dictated using base
pairing and aromatic π–π stacking interactions. Proliferation of 3T3 fibroblasts in a media
containing 0.075–0.6 % (wt.) nucleo-triphenylalanines was also confirmed, and thus, this
type of compound is suitable for biomedical applications [372]. A biomimetic G-quadruplex
hydrogel was prepared using bioconjugation of cytosine-functionalized dipeptide with
guanosine and 4-formylphenylboronic acid. This injectable hydrogel exhibited antibacterial
activity, and its biocompatibility was demonstrated on HEK293T and MCF-7 cell lines [373].

Supramolecular assemblies of nucleopeptides (particularly in a N-terminal thymine-
capped noanapeptide, Thymine-FFKKFKLKL) could selectively supply ATP to cancer
cells, enhancing the effectiveness of the drug doxorubicin. Thus, these nucleopeptides
are suitable as gelators, which serve as valuable entities for identifying cellular bioactive
molecules [374].

The scientific community has taken advantage of the ability of nucleopeptides and
pseudopeptides to form well-ordered architectures. These supramolecular tools having
spherical, worm-like, or cylindrical structures have applications in biomedicine due to
their biocompatibility and biodegradability. In a recent review, the characteristics of these
supramolecular systems are succinctly outlined with an emphasis on their most essential
applications [375]. Consequently, gene release towards the target cell could be accomplished
using these supramolecular assembled scaffolds [361].

A recent review describes various nucleopeptide-based hydrogels. Briefly, this paper
has aimed to cover nucleopeptides having incorporated nucleotide, nucleoside derivatives,
or peptide nucleic acid segments. In addition, low-weight hydrogel-forming peptides
having a covalently linked nucleobase are also mentioned. The physico-chemical and
mechanical properties, their characterization by various techniques, and their biological
applications are also summarized [376]. Another reported study reveals nucleodipeptides
that have a nucleobase moiety attached at C-terminal via a triazole or an amide linker. The
morphology of self-assembled N-capped-nucleopeptides (with protected groups such as
Boc, tBu, and Cbz) was revealed using high-resolution surface investigation techniques.
Nucleodipeptides based on triazoles have the capacity to form nanospheres with exciting
potential in the field of bioelectronics [377]. In addition, a novel N-terminal acetylated
nucleopeptide, having 18 amino acids and a nucleotide repeat unit (GC) inside the peptide
main chain, was reported. This unusual nucleopeptide was acting as a template for ferric
oxide selective mineralization as an oriented nanotape [378].

Carba-nucleopeptides were also obtained via photocatalysis using Rhodamine B. The
reaction mechanism of dehydroalanine peptide with a bromonucleobase was elucidated
using experimental and computational approaches [379].

5. Conclusions and Future Outlook

A high diversity of hydrogels is designed from biomolecules with complex structures
and architectures at different scales. These networks are continuously studied, and their
performance is improved in order to reduce synthetic materials and replace such materials
with bio-based ones to the highest possible extent. Natural resources are is inexhaustible,
and the main advantages of biomolecules are related to their ability to confer valuable
biological and functional properties onto hydrogels, such as biocompatibility, antimicrobial
properties, biodegradability, and nontoxicity. Thus, this research area is of great interest,
and many efforts are coming together to improve the functionalities of existing biomaterials
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as much as possible, in order to meet the increasing requirements related to biomedical
and environmental applications as well as increasing the quality of life. Without ending the
discussion, Scheme 3 presents potential applications of bioinspired hydrogels.
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Huge creative efforts are converging towards new materials as reflected in an avalanche
of papers published in recent years, with some innovative hydrogels presenting a high po-
tential for practical applications. The bioinspired hydrogels are suitable for manufacturing
hygiene products, biosensors, bioimaging, foods and food packaging, matrices for drug
transport and delivery, wound dressings, cell culture, DNA- or RNA-targeted delivery,
regenerative medicine, 3D printing of biological tissues, water depollution, agriculture,
bioelectronics, etc.

This review evidences some attractive and unique properties of various biomolecules
that recommend them for preparing new customized hydrogels or for improving existing
ones for a specific application. Some valuable characteristics of bioinspired hydrogels
are: biocompatibility; biodegradability; hemostatic, antioxidant, antibacterial and anti-
inflammatory activities; self-healing ability; stimuli responsiveness; electrical conductivity;
etc. The range of applications is extended either by using physical methods for preparing
various multicomponent and multifunctional hydrogels, or by chemical modification and
convenient crosslinking of biomolecules.

Long-term storage and distribution of biomolecules, without losing their valuable
characteristics or losing easy access to bioresources, also needs to be taken into account.
In vivo tests represent a determinant step for hydrogel applications. Interdisciplinary studies
for hydrogel design, characterization, and in vitro investigations [55,92,116,189,380,381],
along with access to preclinical and clinical studies to ensure safety and efficacy of new
materials [98,271,382–385], will accelerate the application of new concepts and revolutionary
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materials. Last but not least, education regarding the protection of nature, which generously
offers us a variety of biomolecules, must be promoted beyond the academic framework.
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