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Abstract. The South African Hartbeespoort Dam is known for the occurrence of heavyMicrocystis blooms. Although a
few other cyanobacterial genera have been described, no detailed study on those cyanobacteria and their potential toxin

production has been conducted. The diversity of cyanobacterial species and toxins is most probably underestimated. To
ascertain the cyanobacterial composition and presence of cyanobacterial toxins in Hartbeespoort Dam, water samples
were collected in April 2011. In a polyphasic approach, 27 isolated cyanobacterial strains were classified morphologically

and phylogenetically and tested for microcystins (MCs), cylindrospermopsin (CYN), saxitoxins (STXs) and anatoxin-a
(ATX) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and screened for toxin-encoding gene
fragments. The isolated strains were identified as Sphaerospermopsis reniformis, Sphaerospermopsis aphanizomenoides,

Cylindrospermopsis curvispora, Raphidiopsis curvata, Raphidiopsis mediterrranea and Microcystis aeruginosa. Only
one of the Microcystis strains (AB2011/53) produced microcystins (35 variants). Forty-one microcystin variants were
detected in the environmental sample from Hartbeespoort Dam, suggesting the existence of other microcystin producing
strains in Hartbeespoort Dam. All investigated strains tested negative for CYN, STXs and ATX and their encoding genes.

ThemcyE gene of themicrocystin gene cluster was found in themicrocystin-producingMicrocystis strain AB2011/53 and
in eight non-microcystin-producing Microcystis strains, indicating that mcyE is not a good surrogate for microcystin
production in environmental samples.

Additional keywords: Cylindrospermopsis, Hartbeespoort Dam, microcystin, Microcystis, Raphidiopsis,

Sphaerospermopsis.
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Introduction

Periodic cyanobacterial blooms and dominance by cyanobacteria
are a common phenomenon in many freshwater ecosystems
worldwide and are caused by nutrient over-enrichment because

of agricultural, urban and industrial activities (Paerl and Huis-
man 2009). Cyanobacteria found in such blooms are often able
to produce a variety of hepatotoxic and neurotoxic secondary

metabolites and are a limiting factor for the utilisation of water
from these lakes and reservoirs as drinking water and for
irrigation and recreational purposes (Hitzfeld et al. 2000;

Carmichael 2001; Saqrane and Oudra 2009). Serious chronic
human and acute animal health problems, in some cases even
mortalities, have been related to the presence of hepatotoxic and
neurotoxic metabolites produced by cyanobacteria (Carmichael

2001; Paerl and Huisman 2009).
Since the 1950s, Hartbeespoort Dam has been known for

the occurrence of massive blooms of the potentially toxin-

producing cyanobacterium Microcystis aeruginosa (Kützing)

(Allanson and Gieskes 1961; Ashton et al. 1985; Zohary and
Pais-Madeira 1990; Van Ginkel 2003; Oberholster and Botha
2010; Conradie and Barnard 2012). Occasionally, a few
heterocytous cyanobacterial species, e.g. Anabaena sp. and

Cylindrospermopsis sp., and a few non-heterocytous cyanobac-
terial species e.g. Oscillatoria maxima, Pseudanabaena sp.,
Aphanocapsa sp., Planktothrix sp., have been reported in the

phytoplankton community inHartbeespoort Dam in conjunction
withM. aeruginosa (Allanson and Gieskes 1961; Zohary 1985;
Hambright and Zohary 2000; Van Ginkel 2003; Janse van

Vuuren and Kriel 2008; Conradie and Barnard 2012).
In the 1970s, cattle mortalities occurred on the shores of

Hartbeespoort Dam and were related to toxins produced by
blooms of M. aeruginosa (Toerien et al. 1976). The live-

stock mortalities lead to an intensive study of Microcystis

colonies, toxin production and toxins in Hartbeespoort Dam
(Toerien et al. 1976). A toxin called D-6 was isolated from a

Microcystis bloom collected from Hartbeespoort Dam in 1974
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(Botes et al. 1982a). Toxin D-6 was similar to a toxin BE-4
isolated from Microcystis strain WR 70 from Witbank Dam in

South Africa. Toxin BE-4, now known as microcystin-LA, was
the first microcystin to have its structure determined (Botes et al.
1982a, 1982b, 1984). Microcystins are cyclic heptapeptides

with the common structure cyclo-(-D-Ala1-L-X2-D-isoMeAsp3-
L-Z4-Adda5-D-isoGlu6-Mdha7). The position of amino acids is
indicated by the superscripted number (Diehnelt et al. 2006).

The most variable L-amino acids are found in the positions 2
and 4 (letters� and Z) in the microcystin molecule (Diehnelt
et al. 2006). Typical amino acids in position 3 are either
D-aspartic acid (Asp) or D-erythro- methylaspartic acid

(MAsp). In position 7 either N-methyldehydroalanine (Mdha),
dehydroalanine (Dha), or 2-amino-2-butenoic acid (Dhb) occur
(Diehnelt et al. 2006).

Altogether, 10 microcystin (MC) variants have been
described from Hartbeespoort Dam in different studies: MC-
RR, MC-LR, MC-FR, MC-YR, MC-LA, MC-YA, MC-LAba,

MC-WR, MC-(H4)YR and [Asp3, Dha7]MC-RR (Wicks and
Thiel 1990; Van Ginkel 2003; Mbukwa et al. 2012). However,
the number of microcystin variants found in Hartbeespoort Dam
is low compared with the more than 100 microcystin variants

that have been described worldwide (Neffling 2010). These
microcystins are produced byMicrocystis spp. and members of
other cyanobacterial genera e.g. Planktothrix, Anabaena, and

Nostoc (Sivonen and Jones 1999).
It is hypothesised that the number of cyanobacterial species

and toxins present in Hartbeespoort Dam documented to date is

underestimated because most former studies of Hartbeespoort
Dam have focussed onMicrocystis spp. only, and often utilised
analytical methods with limited ability to discriminate micro-

cystin analogues and detect other types of cyanobacterial toxins.
This study therefore aimed to apply modern analytical methods
in a polyphasic approach to elucidate in detail the cyanobacterial
composition, phylogeny and toxicity of the cyanobacteria

present in Hartbeespoort Dam, and their toxin profiles.

Material and methods

Study area, measurements and sampling

Hartbeespoort Dam is a manmade reservoir located near Pre-

toria, South Africa. Hartbeespoort Dam was completed in 1923
and filledwith water in 1925 (Cochrane 1987). The reservoir has
a surface area of around 20 km2 and a mean depth of 9.6m
(Ashton et al. 1985). Hartbeespoort Damwas originally planned

as a water supply for Pretoria and Johannesburg but, after
completion, was mainly used for irrigation and recreation
(Cochrane 1987; Water Research Commission 2008). The ini-

tial oligotrophic conditions in Hartbeespoort Dam changed over
the next 25 years to eutrophic because of excessive nutrient
loading (Allanson andGieskes 1961). Several studies conducted

between 1970 and 2010 have confirmed a further change to
hypertrophic conditions in Hartbeespoort Dam (Steyn et al.

1975; Ashton et al. 1985; Wicks and Thiel 1990; Van Ginkel

2003; Oberholster and Botha 2010).
The sampling point at Hartbeespoort Dam was close to the

northern shore (25844005.3400S, 27852008.6400E). Samples for
analysis of phytoplankton composition, cyanobacterial toxins

and for the isolation of cyanobacterial strainswere taken inApril

2011. The growing season for cyanobacteria in Hartbeesport
Dam is from January until April according to Conradie and

Barnard (2012). For quantitative phytoplankton analysis, a
125mL subsample was removed from a sample taken from
the lake surface, and fixed with Lugol’s solution. A 50mLwater

sample for isolation of cyanobacteria was taken and kept in
a cool shady place and gently shaken twice per day before
analysis in Norway.

For cyanotoxin analysis, 10 L of lake water from the surface
was sampled in a plastic container, frozen, thawed and then
shaken with 30 g of activated HP-20 resin (DIAION, Mitsubishi
Chemical Corporation, Tokyo, Japan) overnight to extract

microcystins (Miles et al. 2012). The sample was filtered
through nylon netting (200 mm mesh) and the resin recovered
and stored at 48C until transportation to Norway. The resin was

rinsedwith distilledwater and eluted slowlywithmethyl alcohol
(MeOH) (3� 50mL), the eluates were evaporated to dryness
in vacuo and dissolved in MeOH (5mL). A specimen was

diluted 10-fold for analysis.

Isolation of strains and morphological characterisation

Using a microcapillary, single colonies of Microcystis and fila-

ments of Sphaerospermopsis, Cylindrospermopsis and Raphi-

diopsis were isolated. They were washed five times and placed
in wells on microtiter plates containing 300mL Z8 medium

(Kotai 1972). After successful growth, the samples were placed
in 50mL Erlenmeyer flasks containing 20mL Z8 medium and
maintained at 228C. Strains were classified on the basis of

morphological traits according to Komárek and Anagnostidis
(1998), Horecká andKomárek (1979), Komárek andKomárkova
(2006) and Cronberg and Annadotter (2006). Morphological

characterisations were conducted using an Olympus BX50 light
microscope with an Olympus Dp72 camera and CellSense
Digital Image software (Olympus, Oslo, Norway). The mor-
phological identification was determined on the basis of the

following criteria: (i) size of vegetative cells, heterocytes and
akinetes and (ii) nature and shape of filaments or colonies.
Length and width of 50–250 vegetative cells and of 20–50

heterocytes and akinetes were measured. All strains used in this
study are maintained at the Norwegian Institute for Water
Research, Oslo, Norway.

Genomic DNA extraction, PCR amplification
and sequencing

Fresh culture material of all cyanobacterial strains was frozen

and thawed three times and boiled for 5min to break the cell
walls and remove mucilage surrounding the filaments or colo-
nies. After centrifugation (5min, 16000 g) the supernatant was

discarded. Autoclaved zirconium beads (0.5 g), 600mL sodium
phosphate buffer (pH 8) and 100mL 25% sodium dode-
cylsulfate (SDS) were added to each pellet. After horizontal

vortexing for 10min, the sample was centrifuged (6min, 14000
g). The supernatant was transferred into a new 2mL Eppendorf
tube. The pellet was washed with 500mL sodium phosphate

buffer, mixed thoroughly and centrifuged (6min, 14000 g).
The supernatants were combined and 200mL lysozyme (10mg/
mL in TE buffer (Tris–EDTA)) was added. After incubation at
378C for 15min, 150mL 25% SDS and 10 mL proteinase K

(20mg/mL) were added, followed by incubation at 608C for

176 Marine and Freshwater Research A.Ballot et al.



15min. To separate the DNA from proteins, 600mL ice-cold
7.5M ammonium acetate was added and the sample centrifuged

for 8min (14000 g). The supernatant was transferred to a new
2mL Eppendorf tube, and 0.7 volumes of isopropanol was
added. After centrifugation at 14000 g for 60min, the pellet was

washed twice with 80% ethanol and centrifuged for 5min
(16000 g). The pellet containing genomic cyanobacterial DNA
was dissolved in 40mL TE buffer and stored at �208C.

All PCRs were performed on a Peltier thermal cycler PTC
200 (MJ Research, Inc., San Francisco, CA) using the Taq PCR
core kit (Qiagen GmbH, Hilden, Germany). The reaction mix-
ture contained 0.1mL Taq DNA polymerase (5 U/mL), 0.5mL
deoxynucleoside triphosphate mix (10mM), 2mL Qiagen PCR
buffer, 1mL forward and reverse primer (10mM), and 1mL
genomic DNA (total volume 20 mL). The primers PCbf and

PCar were used to amplify the intergenic spacer and flanking
regions of the cpcB and cpcA genes of the phycocyanin operon
(PC-IGS) (Neilan et al. 1995). PCR was also used to check

whether the isolated strains were potential producers of ATX,
CYN, MCs or STXs. A polyketide synthase (PKS) encoding
gene (anaF) of the anatoxin gene cluster was amplified using the
primer atxoaf (Ballot et al. 2010a) and the newly designed

primer atxoar (acctccgactaaagctaggtcg). Amplification of the
cyrJ gene fragment was conducted using the primers cynsulfF
and cylnamR (Mihali et al. 2008). The primers sxtaf and sxtar

were used to amplify a part of the sxtA gene of the saxitoxin gene
cluster (Ballot et al. 2010b). A part of the mcyE gene of the
microcystin gene cluster was investigated using the primers

mcyEF2 and mcyER4 and the PCR program according to
Rantala et al. (2004). The cycling protocol for the PC-IGS
fragment was one cycle of 5min at 948C and then 35 cycles of

1min at 948C, 1min at 558C, and 1min at 728C with a final
elongation step of 728C for 5min. PCR products were visualised
by 1% agarose gel electrophoresis with GelRed staining and
UV illumination.

Amplified PC-IGS andmcyE products were purified through
Qiaquick PCRpurification columns (Qiagen,Hilden,Germany).
Sequencing of the purified PC-IGS and mcyE products was

performed using the same primers as for PCR. For each PCR
product, both strands were sequenced on an ABI 3130 XL
genetic analyser using the BigDye terminator V.3.1 cycle

sequencing kit (Applied Biosystems, Applera Deutschland
GmbH, Darmstadt, Germany) according to the manufacturer’s
instructions.

Phylogenetic analysis

Sequences of the PC-IGS locus in all Sphaerospermopsis,
Cylindrospermopsis, Raphidiopsis andMicrocystis strains were

analysed using Bioedit (Hall 2007) and Align (version 03/2007)
MS Windows-based manual sequence alignment editor
(Hepperle 2008) to obtain DNA sequence alignments, which

were then corrected manually. Segments with highly variable
and ambiguous regions and gaps making proper alignment
impossible were excluded from the analyses.

A PC-IGS set containing 443 positions was used in the
Nostocales PC-IGS tree. Nostocaceae Cyanobiont (AY181211)
was employed as the outgroup and 31 additional Nostocales
sequences derived from GenBank were included in the PC-IGS

analyses. A set containing 521 positions was used for the

Microcystis PC-IGS analysis. Pseudanabaena mucicola

(HQ662535) was employed as the outgroup and 35 additional

African Microcystis sequences derived from GenBank were
included in the PC-IGS analyses. Phylogenetic trees for PC-IGS
were constructed using the maximum likelihood (ML) algo-

rithm in PAUP* v.10b (Swofford 2002). In the ML analyses,
evolutionary substitution models were evaluated using the AIC
criterion in jModelTest v.0.1.1 (Guindon and Gascuel 2003;

Posada 2008). The TIM2þG evolutionary model was found to
be the best-fitting evolutionary model for the PC-IGS tree
(Nostocales) and TrNefþG for the PC-IGS tree (Microcystis).
ML analyses of both trees were performed with 1000 bootstrap

replicates using PAUP* v.10b (Swofford 2002). The sequence
data were submitted to the EMBL Nucleotide Sequence Data-
base under the accession numbers listed in Table 1.

Toxin analysis

Fresh culture material of all cyanobacterial strains was frozen
and thawed three times, ultrasonicated for 5min and filtered

through Spin-X centrifuge tube filters (Corning Inc., Corning
USA), at 10000 g. The filtratewas used for analysis of STXs. For
analysis of MCs, the filtrate (100 mL) was mixed with MeOH

(100 mL) (Miles et al. 2012), and for analysis of CYN and ATX
the filtrate was mixed with acetonitrile (1: 4).

Table 1. Cyanobacterial strains isolated from Hartbeespoort Dam,

strain codes and accession numbers.

Species Strain Accession nr. PC-IGS

Sphaerospermopsis

S. reniformis AB2011/03 HE979808

S. aphanizomenoides AB2011/04 HE979809

S. reniformis AB2011/05 HE979810

S. aphanizomenoides AB2011/08 HE979811

S. aphanizomenoides AB2011/24 HE979812

S. aphanizomenoides AB2011/34 HE979813

S. aphanizomenoides AB2011/43 HE979814

S. aphanizomenoides AB2011/48 HE979815

Cylindrospermopsis

C. curvispora AB2011/30 HE979816

Raphidiopsis

R. curvata AB2011/25 HE979817

R. mediterranea AB2011/37 HE979818

Microcystis

M. aeruginosa AB2011/06 HE979819

M. aeruginosa AB2011/07 HE979820

M. aeruginosa AB2011/27 HE979821

M. aeruginosa AB2011/31 HE979822

M. aeruginosa AB2011/32 HE979823

M. aeruginosa AB2011/33 HE979824

M. aeruginosa AB2011/35 HE979825

M. aeruginosa AB2011/36 HE979826

M. aeruginosa AB2011/38 HE979827

M. aeruginosa AB2011/42 HE979828

M. aeruginosa AB2011/44 HE979829

M. aeruginosa AB2011/46 HE979830

M. aeruginosa AB2011/51 HE979831

M. aeruginosa AB2011/52 HE979832

M. aeruginosa AB2011/53 HE979833

M. aeruginosa AB2011/55 HE979834
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Microcystin analysis

Standards

Microcystin (MC-RR, MC-LR, MC-YR, MC-WR, MC-LA,
MC-LY, MC-LF, MC-LW) standards were purchased from
AlexisBiochemicals (Grünberg,Germany), anNMR-quantitated
standard of [Dha7]MC-LR was obtained from IMB NRC,

Halifax, NS, Canada, and MC-RY was isolated from a cyano-
bacterial bloom (Miles et al. 2013b). [Asp3]MC-LY (Miles et al.
2012) isolated from M. aeruginosa CYA548, and with its

structure confirmed by NMR and mass spectral analysis
(C. O. Miles, H. E. Nonga, M. Sandvik, S. Chaudhry, A. L.
Wilkins, F. Rise and A. Ballot, unpubl. data), was also used as

a standard. Standards of MC-WR and MC-LW in 1 : 1 MeOH–
water (1mL) were each treated with 30% H2O2 (50 mL) and
allowed to stand at room temperature for a week to cause partial

oxidation of tryptophan (Puddick et al. 2013). The major
oxidation product from MC-WR was identical by LC-MS2 to
MC-NfkR identified in a Microcystis extract (Puddick 2012;
Puddick et al. 2013), whilst the major oxidation product from

from MC-LW showed LC-MS2 retention, mass and fragmenta-
tion pattern consistent with MC-LNfk.

Freeze-dried culture material of Nostoc 152 (containing

[ADMAdda5]MC-LR, [ADMAdda5]MC-LHar and [Asp3,
ADMAdda5]MC-LR as the major microcystins (Namikoshi
et al. 1990)) was obtained from K. Sivonen (Helsinki Universi-

ty, Finland), and a specimen (8mg) extracted with MeOH–H2O
(1 : 1, 1.5mL) as for the fresh culture material. Aliquots of the
extract were treated with pH 9.7 carbonate buffer (Miles et al.
2012) (to produce [DMAdda5]-microcystins by hydrolysis) at

308C, and progress of the reaction monitored by LC-MS2 for
2.5 days. Treatment of hydrolysed and unhydrolysed aliquots
(in carbonate buffer) with mercaptoethanol (to derivatise the

Mdha7-group), followed by LC-MS2 analysis (Miles et al.

2012), was used to confirm the identity of the major hydrolysis
products ([DMAdda5]MC-LR, [DMAdda5]MC-LHar and

[Asp3, DMAdda5]MC-LR) and the hydrolysed extract was then
used as a qualitative standard for these microcystins.

LC-MS2 analysis

LC-MS2 analysis with and without mercaptoethanol deriva-

tisation was performed as described by Miles et al. (2012).
Briefly liquid chromatography was performed on a Symmetry
C18 column (3.5 mm, 100� 2.1mm; Waters, Milford, MA,
USA), using a Surveyor MS Pump Plus and a Surveyor

Auto sampler Plus (Finnigan, Thermo Electron Corp., San Jose,
CA, USA) eluted (0.3mLmin�1) with a linear gradient
(300 mLmin�1) of acetonitrile (A) and water (B) each contain-

ing 0.1% formic acid. The gradient was from 22.5% to 42.5% A
over 4min, then to 75% A at 10min, to 95% A at 11min (1min
hold) followed by a return to 22.5% A with a 3-min hold to

equilibrate the column. The HPLC system was coupled to a
Finnigan LTQ ion trap mass spectrometer (Finnigan Thermo
Electron Corp., San Jose, CA, USA) operated in full-scan

positive ion ESI mode (m/z 500–1600).
Microcystins were analysed by LC-MS2, and quantitated

from their [MþH]þ ions in scan mode relative to the most
closely related commercial standard available (e.g. MC-YR-

analogues relative to MC-YR etc). Identities were considered

confirmed when retention time and fragmentation pattern were
identical to commercial standards or to analogues with, or

derived from, authenticated structures (MC-RY, [Asp3]MC-
LY, MC-NfkR, [DMAdda5]MC-LR and [Asp3, DMAdda5]
MC-LR). Identification was considered tentative if peaks with

appropriate retention times yielded appropriate fragmentation
patterns (Miles et al. 2012). Oxidised MC-WR analogues in the
samples were identified by comparison with MS2 spectra of

related compounds (Puddick 2012).

Cylindrospermopsin and anatoxin-a analyses

Liquid chromatography was performed on a SeQuant ZIC-
HILIC column (3.5 mm, 150� 2.1mm) (Merck, Darmstadt,
Germany), using an Accela HPLC module (Thermo Scientific,

San Jose, CA, USA). Separation was achieved using step gra-
dient elution at 0.2mLmin�1 starting with 20% A (water con-
taining 5mMammonium acetate and 0.1% acetic acid) and 80%

B (95% MeCN containing 5mM ammonium acetate and 0.1%
acetic acid) for 8min, then rising to 60%Aover 15min followed
by a return to 20% A (8min hold) before the next injection.

TheHPLCsystemwas coupled to a TSQQuantumAccess triple-
quadrupole mass spectrometer operating with an ESI interface
(Thermo Scientific, San Jose, CA, USA). Typical ESI para-

meters were a spray voltage of 3.5 kV, heated capillary tem-
perature at 2508Cand nebulizer gas at 600 L h�1 of N2. Themass
spectrometer was operated in MS/MS mode with argon as
collision cell gas at 1.4� 10�3 Torr. Ionisation and MS/MS

collision energy settings (typically 25–30 eV) were optimised
while continuously infusing (syringe pump) 200 ng/mL of CYN
and ATX, at a flow rate of 5mL min�1. Screening of CYN and

ATX were performed with multiple-reaction monitoring
(MRM) in positive ionisation mode using the following transi-
tions: m/z CYN 416.1-176.0, 416.1-194.0, ATX m/z

166.1-131.1, 166.1-149.1. Certified cylindrospermopsin
and anatoxin-a (NRC CRM) from National Research Council,
Halifax, NS, Canada were used as standards. The detection
limit for both toxins was 10mgL�1.

Saxitoxin analysis

Analysis of STXswas conducted according to theHPLCmethod
of Rourke et al. (2008), except that separation was achieved on
a Waters T3 Atlantis column and the acetonitrile content of

mobile phases A and B were 4% and 16%, respectively.

Results

Phytoplankton community

Cyanobacteria dominated the phytoplankton sample from
Hartbeespoort Dam in April 2011 and comprised 96.9% of the

total phytoplankton biomass of 27.7mgL�1 (Table 2). Themost
dominant cyanobacterium wasM. aeruginosawith a biomass of
26.3mgL�1 wet weight, or 97.9% of the cyanobacterial bio-

mass. Other cyanobacterial species present belonged to the
genera Sphaerospermopsis, Cylindrospermopsis, Raphidiopsis,
Pseudanabaena and Aphanocapsa which together comprised

a biomass of 0.56mgL�1 wet weight (2.1% of the cyano-
bacterial biomass). Other phytoplankton groups observed
were Bacillariophyceae, Chlorophyceae, Cryptophyceae and
Euglenophyceae with a total biomass of 0.85mgL�1 or 3.1% of

the total biomass (Table 2).
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Morphological and phylogenetic characterisation

Twenty-seven potentially toxin producing cyanobacterial
strains were isolated from Hartbeespoort Dam (Table 1).

On the basis of morphological features e.g. presence and
form of vegetative cells, heterocytes and akinetes, six of the
isolated strains were identified as Sphaerospermopsis aphani-

zomenoides (Forti) Zapomelová, Jezberová, Hrouzek, Hisem,
Reháková &Komárková, and two strains as Sphaerospermopsis
reniformis (Lemmermann) Zapomelová, Jezberová, Hrouzek,

Hisem, Reháková & Komárková. The S. aphanizomenoides

strains were characterised by straight filaments and the
S. reniformis strains by coiled filaments. The cell size of the

vegetative cells varied between 2.2–13.2� 1.8–6.8mm in
S. aphanizomenoides and 2.6–7.6� 3.0–7.2 mm in S. reniformis.
Round to ellipsoid heterocytes with a cell size of 3.7–8.2� 2.8–

6.6mm and 4.4–7.6� 4.6–7.8 mm were observed in strains of
S. aphanizomenoides and S. reniformis, respectively. Round to
slightly ellipsoid akinetes were observed adjacent to heterocytes

in four S. aphanizomenoides strains and in both S. reniformis

strains with cell sizes of 6.5–14.2� 4.9–11.1 mm and
6.9–12.0� 7.0–11.7 mm, respectively (Fig. 1, Table 3).

One strain was identified as Cylindrospermopsis curvispora

M. Watanabe. It was characterised by coiled filaments, vegeta-
tive cells with a cell size of 2.4–10.4� 1.9–3.6mm. ellipsoid
heterocytes with a cell size between 2.9–7.4� 2.0–3.7mm and

kidney shaped akineteswith a cell size of 9.4–19.6� 3.1–4.7mm
(Fig. 1, Table 3). One strain was determined as Raphidiopsis
curvata F.E.Fritsch & M.F.Rich and one strain as Raphidiopsis

mediterranea Skuja (Fig. 1, Table 3). The R. curvata strain was
characterised by curved filaments and the R. mediterranea

strain by straight filament. In both strains no heterocytes
were observed. The size of the vegetative cell ranged from

Table 2. Biomass of phytoplankton groups in Hartbeespoort Dam in

April 2011

Phytoplankton groups Biomass mgL�1 wet weight Biomass%

Bacillariophyceae 0.043 0.15

Chlorophyceae 0.060 0.22

Cryptophyceae 0.681 2.46

Cyanobacteria 26.860 96.94

Euglenophyceae 0.065 0.23

(a)

(b)

(c)

(d )

(e)

(f )

Fig. 1. Micrographs of cyanobacteria investigated in this study. (a) Raphidiopsis curvata; (b) Raphidiopsis

mediterranea; (c) Cylindrospermopsis curvispora; (d) Sphaerospermopsis reniformis; (e) Sphaerospermopsis

aphanizomenoides; (f) Microcystis aeruginosa. A¼ akinete, H¼ heterocyte. Scale bars indicate 25mm.
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3.8–17.3� 1.4–2.8mm in R. curvata and from 5.9–17.8� 1.6–
2.7 mm in R. mediterranea. Akinetes with a size of 6.7–
12.5� 2.4–4.0mm were observed in R. curvata only (Fig. 1,
Table 3).

Sixteen strains were identified asM. aeruginosa (Fig. 1). The
mean cell diameter of the various Microcystis strains ranged
from 3.2 mm (strain AB2011/53) to 5.4mm (strain AB2011/42)

(data not shown).
The morphological determination of the isolated strains was

supported by phylogenetic features (Figs 2, 3, Table 1). Phylo-

genetic relationships of the investigated strains are presented in
the ML tree of the PC-IGS region of Nostocales strains (Fig. 2)
and a separate tree of AfricanMicrocystis strains (Fig. 3). In the

ML-tree in Fig. 2 theCylindrospermopsis andRaphidiopsis spp.
were grouped in a distinct cluster (cluster I) which is supported
by a bootstrap value of 100%. Cylindrospermospis spp. and
Raphidiopsis spp. could not be distinguished phylogenetically

and formed mixed subclusters. Cylindrospermopsis curvispora
from Hartbeespoort Dam could not be distinguished from other
C. raciborskii strains (Fig. 2).

All S. aphanizomenoides and S. reniformis strains were
grouped in a separate cluster (cluster II) supported by a bootstrap
value of 95%. They were grouped closer to Anabaena and

Aphanizomenon strains than to Cylindrospermopsis and Raphi-
diopsis strains. Sphaerospermopsis reniformis formed mixed
subclusters with S. aphanizomenoides andA. aphanizomenoides
strains and could not be distinguished phylogenetically (Fig. 2).

The Microcystis strains from Hartbeespoort Dam were
grouped in 3 clusters which were separated from other African
Microcystis strains. The exception was cluster III, where a

Microcystis strain from Lake Victoria, Uganda (AM048621),
was included, forming a subcluster (Fig. 3). The microcystin
producing strain AB2011/53 was located in cluster IIIb. Its PC-

IGS sequence was characterised by a similarity of 100% to those
of seven non-microcystin producing strains.

Identification of cyanobacterial toxins
and toxin producing strains

As determined by LC-MS2 analysis, 41 microcystin variants
were found in the sample from Hartbeespoort Dam from April
2011 (Table 4). The most abundant variants were MC-RR, MC-

LR, MC-YR and MC-(H4)YR (Fig. 4). The MC-LR concen-
tration was 0.93 mgL�1 and the total microcystin concentration
was ,3.6mgL�1. For 23 of the 41 microcystins, the con-

centrations were below the limit of quantification (0.01 mgL�1).
All microcystins in Table 4, with the exception of the [Mser7]-
congeners, reacted with mercaptoethanol in the presence of

carbonate buffer, indicating that they contained Mdha or Dha,
rather thanMdhb or Dhb, as the amino acid at site-7 (Miles et al.
2012; Miles et al. 2013a).

Fifteen of the 16 M. aeruginosa strains isolated from Hart-
beespoort Dam did not produce microcystins. However, one
strain (AB2011/53) produced 35 microcystins as determined by
LC-MS2 (Table 4), with a total microcystin concentration

(extra- and intracellular) of 943mg g�1 wet weight, equivalent
to 0.024 pg cell�1.

All 27 cyanobacterial strains investigated in this study tested

negative for CYN, ATX and STXs by LC-MS and HPLC
analysis.

Amplification of toxin encoding genes

Amplification of the mcyE gene was observed in the MC-
producing M. aeruginosa strain AB2011/53 and in 8 other
non-MCproducingMicrocystis strains fromHartbeespoort Dam.

None of the 27 strains exhibited amplification of the sxtA gene
(saxitoxin gene cluster), cyrJ gene (cylindrospermopsin gene
cluster) and the anaF gene (anatoxin-a encoding gene cluster).

Discussion

This study clearly demonstrated the presence of the potenti-
ally toxic Nostocales cyanobacteria C. curvispora, R. curvata,

Table 3. Morphological characteristics of Sphaerospermopsis,Cylindrospermopsis and Raphidiopsis strains fromHartbeespoort Dam, South Africa,

grown under culture conditions.

Strain Characteristics

shape of trichomes vegetative cells heterocytes akinetes

length (mm)* width (mm)* length (mm)* width (mm)* length (mm)* width (mm)*

S. aphanizomenoides

AB2011/04 straight 4.5 (2.8, 6.9) 4.2 (2.6, 6.4) 5.9 (5.2, 6.8) 5.6 (4.2, 6.6) 10.0 (6.1, 12.7) 8.7 (6.2, 11.1)

AB2011/08 straight 5.2 (2.8, 9.9) 2.8 (2.1, 3.8) 6.1 (5.3, 7.4) 5.0 (4.2, 5.1) n.o. n.o.

AB2011/24 straight 5.0 (3.0, 11.0) 5.8 (4.7, 8.2) 5.6 (4.7, 8.2) 4.2 (3.3, 5.7) 9.9 (7.8, 11.9) 7.6 (6.6, 9.2)

AB2011/34 straight 5.5 (2.6, 13.2) 2.7 (1.8, 3.5) 5.2 (3.7, 8.2) 3.4 (2.8, 4.3) 8.8 (6.5, 12.3) 6.6 (4.9, 8.4)

AB2011/43 straight 3.7 (2.2, 7.2) 4.8 (2.6, 5.5) 7.2 (6.8, 7.6) 5.4 (5.1, 5.9) 11.3 (9.7, 14.2) 10.0 (9.2, 11.1)

AB2011/48 straight 4.8 (2.7, 9.8) 3.3 (2.3, 4.2) 5.6 (4.4, 8.0) 4.4 (3.6, 5.6) n.o. n.o.

S. reniformis

AB2011/03 coiled 4.5 (3.0, 6.5) 4.5 (3.0, 5.5) 5.3 (4.4, 6.2) 5.5 (4.6, 6.1) 8.4 (6.9, 9.6) 8.6 (7.0, 9.7)

AB2011/05 coiled 5.0 (2.6, 7.6) 5.9 (4.0, 7.2) 6.9 (6.4, 7.6) 7.1 (7.4, 7.8) 11.3 (9.9, 12.0) 10.8 (9.7, 11.7)

C. curvispora

AB2011/30 coiled 6.7 (2.4, 10.4) 3.0 (1.9, 3.6) 4.8 (2.9,7.4) 2.8 (2.0, 3.7) 13.5 (9.4, 19.6) 3.9 (3.1, 4.7)

R. curvata

AB2011/25 curved 8.8 (3.8, 17.3) 2.2 (1.4, 2.8) n.o. n.o. 9.4 (6.7, 12.5) 3.3 (2.4, 4.0)

R. mediterranea

AB2011/37 straight 9.9 (5.9, 17.8) 2.2 (1.6, 2.7) n.o. n.o. n.o. n.o.
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R. mediterranea, S. aphanizomenoides and S. reniformis in the
phytoplankton community of Hartbeespoort Dam, SouthAfrica.
None of these species have previously been detected in Hart-
beespoort Dam, but have been reported from tropical and

subtropical regions of Africa (Cronberg and Komárek 2004;
Cronberg andAnnadotter 2006).VanGinkel (2003) has detected
Cylindrospermopsis spp. (later described as C. raciborskii by

Janse van Vuuren and Kriel (2008) for the first time in South
Africa in the Orange River in 2000, and later in low numbers in
Hartbeespoort Dam. Cylindrospermopsis curvispora has been
described only from a few countries in the world. It was initially

detected in a Japanese reservoir by Watanabe (1995), and was
later also found in Sri Lanka, in western Africa in Senegal, and
in southern Africa in Zambia and Botswana (Cronberg and
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Fig. 2. Maximum likelihood tree determined on the basis of partial PC-IGS gene sequences of 42 Nostocales

strains. Outgroup¼Nostocaceae Cyanobiont (AY181211). Strains from this study are marked in bold. Bootstrap

values above 50 are included. The scale bar indicates 10% sequence divergence.
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Komárek 2004; Thomazeau et al. 2010). McGregor and Fabbro
(2000) have described coiled morphotypes of Australian
C. raciborskiiwith a similar morphology to C. curvispora strain
AB2011/30. Therefore, it cannot be excluded thatC. curvispora

is actually another morphotype of C. raciborskii. This is sup-
ported by a study from Thomazeau et al. (2010), who concluded
that C. curvispora cannot be distinguished genetically from

C. raciborskii using 16S rRNA gene sequences.
Cylindrospermopsis spp. and Raphidiopsis spp. are clearly

distinguished morphologically by the possession or lack of

heterocytes. Rhaphidiopsis curvata is characterised by short
crescent filaments and R. mediterranea by short straight fila-
ments (Cronberg andAnnadotter 2006), features which could be
clearly seen for filaments of both species in the environmental

sample from Hartbeespoort Dam. However, in culture, both
isolated Raphidiopsis strains AB2011/25 and AB2011/37 grew
mostly as long straight, or slightly curved, filaments.Only a small

proportion of the R. curvata culture AB2011/25 was observed
growing as short crescent filaments. Such morphological

variations between cyanobacterial strains growing in natural
environments or under culture conditions were also reported in
other studies (e.g. Ballot et al. 2008; Zapomělová et al. 2008).
This demonstrates that a correct identification, using morpho-

logical traits only, in some cases is misleading or not even
possible. An intensive study on the cyanobacterial composition
should therefore always include a combination of classical

methods (e.g. microscopy) and newer genetic methodologies.
Cylindrospermospsis curvispora, R. curvata and R. mediter-

ranea strains can be clearly distinguished using morphological

criteria. However, the mixed cluster (cluster I) of Cylindrosper-
mopsis and Raphidiopsis sequences from Hartbeestpoort Dam
and those derived from GenBank in the phylogentetic tree in
(Fig. 2) confirms suggestions by McGregor and Fabbro (2000),

Moustaka Gouni et al. (2009) and Stucken et al. (2010), that
Raphidiopsis and Cylindrospermopsis in fact constitute a single
genus. Cluster I in Fig. 2 also clearly indicates thatC. curvispora

from Hartbeespoort Dam is very closely related to other
C. raciborskii strains and is closer to R. mediterranea and
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R. curvata fromHartbeespoort Dam than toCylindrospermopsis

and Raphidiopsis species from other locations. These findings
raise the question of whether C. curvispora, R. curvata and
R. mediterranea can be regarded as separate species or are most

likely just rare morphotypes of C. raciborskii.
Strains of Cylindrospermopsis and Raphidiopsis from

Australia, Brazil, China, Japan and Thailand produce CYN,

STXs or ATX (Hawkins et al. 1997; Saker and Neilan 2001;

Li et al. 2001; Namikoshi et al. 2003; Soto-Liebe et al. 2010).

However, all the Cylindrospermopsis and Raphidiopsis strains
isolated fromHartbeespoort Dam tested negative for production
of cyanotoxins and their encoding genes. Interestingly, noCYN-

, STX- or ATX-producing Cylindrospermopsis or Raphidiopsis
strains have been located on the African continent to date
although genetic data have suggested the colonisation ofAustralia

by African Cylindrospermospis strains (Gugger et al. 2005;

Table 4. Microcystin variants found by LC-MS2 in a water sample from Hartbeespoort Dam and in

Microcystis culture AB2011/53 isolated from Hartbeespoort Dam

þ¼ concentration ,0.01mg/L;X¼ unidentified amino acid; nd¼ not detected

m/z Compound Status A Rt (min) AB2011/53 Hartbeespoort Dam

mg g�1 B mgL�1

1035.8 [DMAdda5]MC-(H4)YR Tentative 2.06 þ þ
1024.8 [Asp3]MC-RR Tentative 2.12 5 0.02

1038.8 MC-RR Confirmed 2.13 344 1.28

1031.8 [DMAdda5]MC-YR Tentative 2.40 3 0.01

1061.8 [DMAdda5]MC-Y(OMe)R Tentative 2.40 þ þ
967.8 [Asp3, DMAdda5]MC-LR Confirmed 2.57 þ þ
981.8 [DMAdda5]MC-LR Confirmed 2.59 1.4 0.01

1054.8 [DMAdda5]MC-WR Tentative 3.11 þ þ
1035.8 [Asp3]MC-(H4)YR Tentative 3.25 þ þ
1029.8 MC-RR analogue Unidentified 3.37 þ þ
1031.8 [Asp3]MC-YR Tentative 3.47 þ 0.01

1035.8 [Dha7]MC-(H4)YR Tentative 3.52 þ þ
1049.8 MC-(H4)YR Tentative 3.56 54 0.27

1061.8 [Asp3]MC-Y(OMe)R Tentative 3.60 þ þ
1013.8 [Mser7]MC-LR Tentative 3.65 þ þ
1063.8 [Mser7]MC-YR Tentative 3.68 þ þ
1031.8 [Dha7]MC-YR Tentative 3.75 þ þ
1013.8 MC-XR Tentative 3.77 þ þ
1045.8 MC-YR Confirmed 3.84 155 0.43

981.8 [Asp3]MC-LR Tentative 3.87 2.6 0.08

1075.8 MC-Y(OMe)R Tentative 3.87 10 0.03

995.8 MC-LR Confirmed 3.89 285 0.93

967.8 [Asp3, Dha7]MC-LR Tentative 3.93 þ þ
1100.8 MC-NfkR Tentative 3.99 þ þ
981.8 [Dha7]MC-LR Confirmed 3.99 15 0.10

1085.8 MC-XR Tentative 4.01 þ þ
1054.8 [Asp3]MC-WR Tentative 4.13 þ þ
1009.8 MC-HilR Tentative 4.15 12 0.03

1029.9 MC-FR Tentative 4.21 19 0.05

1068.8 MC-WR Confirmed 4.32 26 0.08

1054.8 [Dha7]MC-WR Tentative 4.35 þ þ
1037.8 MC-AnaR Tentative 5.05 11 nd

1031.8 [Asp3]MC-RY Tentative 5.12 þ þ
1045.8 MC-RY Confirmed 5.31 þ 0.01

896.8 [DMAdda5]MC-LA Tentative 6.18 nd þ
1029.8 MC-RF Tentative 6.34 þ þ
896.8 [Asp3]MC-LA Tentative 7.50 nd þ
960.8 MC-YA Tentative 8.13 nd þ
988.8 [Asp3]MC-LY Confirmed 8.15 nd 0.14

910.8 MC-LA Confirmed 8.29 nd 0.04

1002.8 MC-LY Confirmed 8.48 nd 0.04

924.8 MC-LAba Tentative 9.08 nd þ
A‘Unidentified’ indicates unknown analogue with characteristic microcystin-like MS2 fragmentation pattern,

‘tentative’ indicates microcystin with appropriate Rt, MS and MS2 fragmentation pattern for the proposed

analogue, and ‘confirmed’ indicatesRt,MS andMS2 fragmentation patternwere identical to those of an authentic

standard (for MS2 spectra, see Supplementary data).
Bmg g�1 wet weight of algal biomass.
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Haande et al. 2008). The only possible exception is in Egypt,
where C. raciborskii strains with hepatotoxic effects and

R. mediterranea strains with neurotoxic effects on mice were
detected (Mohamed 2007). However, the findings byMohamed
(2007) were not supported by LC-MS analyses and the supposed

toxins were not identified.
Sphaerospermopsis aphanizomenoides and S. reniformis

have also not been described from Hartbeespoort Dam before.

The filaments of both species were clearly visible among the
dominantMicrocystis colonies. Coiled and straight filaments of
Sphaerospermopsis are readily confused with Anabaena spp. if
akinetes and heterocytes are lacking. In culture, but not in the

environmental sample from Hartbeespoort Dam, some of the
Sphaerospermopsis filaments possessed heterocytes and
akinetes. There is a possibility that Anabaena spp. observed in

an earlier study by Van Ginkel (2003) were in fact Sphaeros-
permopsis spp. So far, only a few findings of S. reniformis or
other coiled species with a similar morphology (S. torques

reginae, A. eucompacta, A. oumiana) have been reported from
water bodies in Africa, Asia, Europe and Central and South
America (Li and Watanabe 1999; Cronberg and Annadotter

2006; Zapomělová et al. 2009; Werner et al. 2012). However,
this dearth of reports could be attributed to misidentification

of this morphospecies (Cronberg and Annadotter 2006; Werner
et al. 2012). In the PC-IGS tree, all Sphaerospermopsis spp.

fromHartbeespoort Dam are grouped together and are separated
from other Nostocales cyanobacteria. This supports findings by
Zapomělová et al. (2009, 2010), who reclassified former Apha-

nizomenon aphanizomenoides andAnabaena reniformis into the
new genus Sphaerospermopsis according to their morphological
and phylogenetic characteristics. Planktothrix spp. which was

described by Conradie and Barnard (2012) as occurring in low
numbers in samples preserved with Lugol’s solution from
Hartbeespoort Dam in 2005, was not observed in samples
collected for the current study.

So far worldwide, no Sphaerospermopsis strains have been
found to possess genes which encode for the biosynthesis of
CYN, STXs, ATX, and MCs or producing these toxins, includ-

ing in our study. However, the existence of toxin producing
Sphaerospermopsis strains cannot be excluded because in many
other Nostocales genera, e.g. Cylindrospermopsis, Aphanizo-

menon, Anabaena, non-toxin and toxin producing strains have
been described (Ballot et al. 2010a, 2010b; Li et al. 2001;
Haande et al. 2008).

Similar to other studies conducted at Hartbeespoort Dam
(e.g. Allanson andGieskes 1961; Zohary and Pais-Madeira 1990;
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Fig. 4. Liquid chromatography–mass spectrometry (LC-MS) chromatograms (m/z 890–1150, 1.8–9.2min) of extracts from bloom material from

Hartbeespoort Dam and fromM. aeruginosa culture AB2011/53. Chromatograms were produced by subtraction of the corresponding mercaptoethanol-

derivatisated chromatograms (Miles et al. 2012) to reduce peaks not attributable to microcystins.
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Van Ginkel 2003; Conradie and Barnard 2012), the present
study confirmed that M. aeruginosa is the dominant cyanobac-

terium. Blooms of M. aeruginosa in Hartbeespoort Dam have
been recorded since the 1950s, and this species has continued
to dominate the phytoplankton community of this reservoir

(Allanson and Gieskes 1961; Wicks and Thiel 1990; Conradie
and Barnard 2012). Harding et al. (2004) and Conradie and
Barnard (2012) have described frequent Microcystis domi-

nances of up to 100% of the phytoplankton biomass in Hartbee-
spoort Dam.

The difference between the 41 MC variants found in the
water sample from Hartbeespoort Dam and the 35 variants

produced by Microcystis strain AB2011/53 shows clearly that
other MC producing cyanobacteria (most likely other MC
producing Microcystis strains) must have been present in

Hartbeespoort Dam at the time of investigation. The novel
variant MC-AnaR (tentatively identified from its MS2 fragmen-
tation pattern) found in Microcystis strain AB2011/53 was not

detected in the water sample fromHartbeespoort Dam, probably
because its concentration in the water sample was below the
detection limit of the LC-MS analysis. The number of micro-
cystins detected in this study is considerably higher than the 10

MC variants (MC-RR, MC-LR, MC-YR, MC-FR, MC-YA,
MC-LA, MC-LAib, MC-WR, MC-(H4)YR, [Asp

3, Dha7)]MC-
RR) described in previous studies of Hartbeespoort Dam using

HPLC analysis (Botes et al. 1984; Wicks and Thiel 1990; Van
Ginkel 2003; Mbukwa et al. 2012). This is probably primarily
because of the analysis method here. Use of thiol derivatisation

permitted subtraction of chromatograms (Fig. 4) to assist in
identifying minor components. Thiol reactivity also provided
greater certainty in the identification of reacting components as

putative microcystins, which could then be evaluated by exami-
nation of their MS2 spectra (Miles et al. 2012; Miles et al.

2013b). In the current investigation, MC-RR, MC-LR, MC-YR
were the most prevalent microcystins, whereasWicks and Thiel

(1990) described MC-LR and MC-FR, and Van Ginkel (2003)
MC-LA, as the most abundant microcystins in Hartbeespoort
Dam. This suggests a varying dominance of different MC

producing Microcystis strains.
LC-MS2 analysis revealed production of [DMAdda5]MC-

LR, [DMAdda5]MC-LHar and [Asp3, DMAdda5]MC-LR

(pseudo-first order kinetics, t1/2 ca 30 h) in carbonate buffer
caused by hydrolysis of the acetate group from the major
analogues in the Nostoc 152 extract ([ADMAdda5]MC-LR,
[ADMAdda5]MC-LHar and [Asp3, ADMAdda5]MC-LR

(Namikoshi et al. 1990)). Hydrolysed Nostoc 152 extract was
used as a qualitative LC-MS standard to confirm the identities of
[ADMAdda5]-microcystins in the extracts from Hartbeespoort

Dam and M. aeruginosa culture AB2011/53. [DMAdda5]-
analogues of the major microcystins in Hartbeespoort Dam
and AB2011/53 extracts, including [DMAdda5]MC-LR and

[Asp3, DMAdda5]MC-LR, were readily identified from their
shorter retention times (by ,1.5–2-min) and prominent frag-
ment ions at m/z 585 (rather than m/z 599 in their [Adda5]-

congeners) and [MH�120]þ (rather than [MH�134]þ) in their
MS2 spectra (Supplementary data). [DMAdda5]-microcystins
were typically present at ca 1% of the levels of the parent
[Adda5]-analogues in the samples from Hartbeespoort Dam,

suggesting that they are minor products of normal microcystin

biosynthesis. Additionally, MC-NfkR, a tryptophan-oxidised
congener of MC-WR, was identified at low levels by LC-MS2

in the extracts from Hartbeespoort Dam and M. aeruginosa

culture AB2011/53 and its identity confirmed by oxidation of an
authentic specimen of MC-WR using the method of Puddick

et al. (2013). This appears to be the first report a tryptophan-
oxidised microcystin congener in a field sample.

The water sample from Hartbeespoort Dam contained

0.93 mgL�1 of MC-LR, which is slightly below the World
Health Organisation’s provisional guideline (1 mg L�1 MC-
LR) for drinking-water (WHO 1998), although the total MC
concentration (3.6 mgL�1) was considerably higher. However,

Harding et al. (2004) measured a much higher median MC
concentration of 580mgL�1 (between 0 and 28930mgL�1)
during a survey in 2003 and 2004, and Conradie and Barnard

(2012) detectedmicrocystin concentrations up to 3200 mgL�1 in
Hartbeespoort Dam in 2005. In the studies by Harding et al.

2004 and Conradie and Barnard 2012, biomass was measured as

chlorophyll-a and no correlation was found between the highest
microcystin concentrations and the highest chlorophyll-a con-
centations. Conradie and Barnard (2012) used an ELISA for the
detection of microcystins and could therefore not distinguish

the microcystin variants in their study.
The low MC concentrations detected in this study, can be

explained by the dominance of non-MC producing Microcystis

in Hartbeespoort Dam. Of the 16 Microcystis strains isolated,
only one (AB2011/53) produced microcystins. Interestingly, we
identified the mcyE gene, a glutamate-activating adenylation

domain which is part of the microcystin-encoding gene cluster
(Tillett et al. 2000), not only in the MC-producing strain
AB2011/53, but also in eight non-microcystin-producing strains

from Hartbeespoort Dam. The presence of the mcyE gene in
non-MC-producing cyanobacteria has also been described by
Noguchi et al. (2009) and this raises a question as to the
suitability of the mcyE gene to quantify toxin-producingMicro-

cystis spp. in quantitative PCR investigations. Other genes of the
microcystin encoding gene cluster, e.g. mcyA, mcyB, and
mcyT, have been reported in non-MC-producing Microcystis

and Planktothrix strains (Mikalsen et al. 2003; Kurmayer et al.
2004; Christiansen et al. 2008). Genes encoding the biosynthesis
of other cyanobacterial toxins, e.g. CYN and STXs, have been

detected in several non-toxin-producing cyanobacteria (Wood
et al. 2007; Rasmussen et al. 2008; Ballot et al. 2010b). Various
mechanisms, such as horizontal gene transfer, mutations, inser-
tions and deletions, have been proposed as explanations for

non-toxin-producing cyanobacteria possessing parts of toxin-
encoding gene clusters (Christiansen et al. 2008; Tooming-
Klunderud et al. 2008; Moustafa et al. 2009).

As depicted in the PC-IGS tree in Fig. 3, the toxin-producing
Microcystis strain AB2011/53 cannot be distinguished from
seven non-MC-producing strains which are grouped in sub-

cluster IIIb. Microcystis strains with similar PC-IGS sequences
are presentworldwide inNorthAmerica, Asia, and Europewhen
using NCBI Blast (NCBI). However, differences can be seen

when comparing the mean cell sizes. Vegetative cells of MC-
producing strain AB2011/53 measured only 3.2mm, which was
considerably smaller then the other Microcystis strains in
subcluster IIIb (mean cell sizes between 3.8 and 5.2mm). The

other eight Microcystis strains of this study in cluster I, II, IIIa
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and IIIB possess PC-IGS sequences which are unique to Hart-
beespoort Dam according to NCBI Blast and are distributed in

different clusters. However, the number of PC-IGS sequences in
GenBank is relatively low and further studies could reveal a
wider distribution of Microcystis species with similar PC-IGS

sequences.
By investigatingmore locations inHartbeespoort Damover a

longer time period we probably could have found a higher

cyanobacterial diversity and more diverse cyanotoxin composi-
tion. However, the current study shows clearly that a carefully
conducted polyphasic approach even of samples taken at one
selected date and at one location can result in a detailed

overview about the cyanobacterial and cyanotoxin composition
in a certain part of a lake. It is obvious that previous studies
conducted at Hartbeespoort Dam did not reveal a similar diverse

cyanobacterial community and cyanotoxin composition even
though those studies were conducted over longer time periods
and more locations were sampled. In the current study, the

proportion of MC producing Microcystis strains was low in
Hartbeesport Dam compared with non-MC producing Micro-

cystis strains. A shift to the dominance of MC producing
Microcystis strains could increase the MC concentrations in

the water body considerably threatening the use of Hartbee-
spoort Dam for irrigation, fishing and water sports and increas-
ing the risk to human and animal health during the growth season

of cyanobacteria.
Furthermore, the massive Microcystis blooms could be

curtailed by reducing nutrient loading in Hartbeespoort Dam.

However, such measures could then promote the growth of the
potential toxin producing Cylindrospermopsis, and Sphaeros-

permopsis or other heterocytous cyanobacteria. The ability of

those heterocytous cyanobacteria to fix atmospheric nitrogen
would be an advantvage and enable them to outcompeteMicro-

cystis spp. which are dependant on dissolved inorganic nitrogen
compounds (Sukenik et al. 2012).

In conclusion, this is the first report of S. aphanizomenoides,
S. reniformis, C. curvispora, R. mediterranea and R. curvata in
Hartbeespoort Dam. None of the isolates of these species

produced cyanobacterial toxins although Cylindrospermopsis

and Raphidiopsis spp. are known toxin producers in Australia,
Asia and South America. Forty-one MC variants were present in

an environmental sample from Hartbeespoort Dam and 35 MC
variants were detected in a Microcystis strain isolated from the
same water sample. The majority of the isolated Microcystis

strains did not produceMCs,which can explain the relatively low

MCconcentrations in thewater sample fromHartbeespoort Dam.
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G. Gärtner G,H.Heynig andD.Mollenhauer.) (SpektrumAkademischer

Verlag.)
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