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Although extraintestinal pathogenic Escherichia coli (ExPEC) are designated by their

isolation site and grouped based on the type of host and the disease they cause, most

diarrheagenic E. coli (DEC) are subdivided into several pathotypes based on the presence

of specific virulence traits directly related to disease development. This scenario of a

well-categorized E. coli collapsed after the German outbreak of 2011, caused by one

strain bearing the virulence factors of two different DEC pathotypes (enteroaggregative

E. coli and Shiga toxin-producing E. coli). Since the outbreak, many studies have shown

that this phenomenon is more frequent than previously realized. Therefore, the terms

hybrid- and hetero-pathogenic E. coli have been coined to describe new combinations

of virulence factors among the classic E. coli pathotypes. In this review, we provide an

overview of these classifications and highlight the E. coli genomic plasticity that results

in some mixed E. coli pathotypes displaying novel pathogenic strategies, which lead

to a new symptomatology related to E. coli diseases. In addition, as the capacity for

genome interrogation has grown in the last few years, it is clear that genes encoding some

virulence factors, such as Shiga toxin, are found among different E. coli pathotypes to

which they have not traditionally been associated, perhaps foreshowing their emergence

in new and severe outbreaks caused by such hybrid strains. Therefore, further studies

regarding hetero-pathogenic and hybrid-pathogenic E. coli isolates are necessary to

better understand and control the spread of these pathogens.

Keywords: Escherichia coli, intestinal infection, extraintestinal infection, hybrid, hetero-pathogenic, pathotypes,

ExPEC, DEC

INTRODUCTION

Escherichia coli is a gram-negative, facultative anaerobic rod, which produces catalase but not
oxidase. Taxonomically, it belongs to class Gammaproteobacteria, order Enterobacteriales, and
family Enterobacteriaceae (Adeolu et al., 2016). Bacteria of this species inhabit the intestinal tract
of humans and other animals as an important member of their microbiota (Leimbach et al.,
2013). Moreover, the high adaptive capacity of E. coli permits it to survive for long periods of
no growth and in a variety of niches such as soil, water, food, and sediments (Leimbach et al.,
2013). Although most are innocuous, some strains of this species are pathogenic and can cause
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intestinal or extraintestinal diseases, which are related to a variety
of virulence genes acquired by the horizontal transfer of plasmids,
pathogenicity islands, transposons, and bacteriophages (Kaper
et al., 2004; Croxen and Finlay, 2010; Leimbach et al., 2013;
Johnson and Russo, 2018).

The pathogenic E. coli strains are classified according to the
infection site of isolation. Strains capable of causing diseases in
the human intestinal tract are designated as diarrheagenic E. coli
(DEC), which is subclassified into seven different pathotypes:
enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC),
enteroaggregative E. coli (EAEC), and enteropathogenic E. coli
(EPEC), both sub-grouped in typical and atypical Shiga toxin-
producing E. coli (STEC), diffusely adherent E. coli (DAEC),
and adherent-invasive E. coli (AIEC) (Kaper et al., 2004;
Croxen et al., 2013; Leimbach et al., 2013; Gomes et al.,
2016). Except for AIEC and DAEC, the differences among
most of these pathotypes are typically due to specific virulence
encoding genes that are directly related to the development
of the disease and host symptomatology and are used for
diagnostic purposes (Table 1). AIEC has been postulated as
a cause of inflammatory bowel disease. However, at present,
there is no consensus on this issue (Palmela et al., 2018;
Perna et al., 2020), and the putative virulence factors described
as involved in AIEC pathogenesis are common to strains
isolated from extraintestinal infections (Martinez-Medina et al.,
2009; Yang et al., 2017). Furthermore, although DAEC is a
recognized enteric pathogen and the presence of genes encoding
afimbrial adhesins are occasionally used for screening this
pathotype, these genes are also present in other intestinal and
extraintestinal pathogenic E. coli as well as in commensal
strains, limiting their usefulness in defining the DAEC pathotype
(Croxen et al., 2013).

Unlike DEC, extraintestinal pathogenic E. coli (ExPEC) are
defined primarily by their site of isolation. The most clinically
important ExPEC groups are uropathogenic E. coli (UPEC),
neonatal meningitis-associated E. coli (NMEC), avian pathogenic
E. coli (APEC), and septicemic E. coli (SEPEC) (Ewers et al., 2007;
Santos et al., 2013; Johnson and Russo, 2018). ExPEC strains can
cause infection in diverse extraintestinal sites. Furthermore, a
strain that causes urinary tract infection in humans can also cause
infections in other human body sites or in animals, which makes
the use of the term ExPEC more appropriate than the pathotype
designation (Russo and Johnson, 2000). There is no single or
set of virulence factors exclusively associated with a specific host
or disease, but Picard et al. (1999) and Johnson et al. (2003)
have shown that the ability of ExPEC strains to cause disease in
immunocompetent subjects was associated with the presence of
two among five virulence markers (Table 1). The strains that bear
these traits were referred to as “intrinsic virulent” because they
are considered more pathogenic than those that do not harbor
these factors. Similarly, Spurbeck et al. (2012) have proposed a set
of four other genes to identify ExPEC strains with uropathogenic
potential (Table 1). In general, ExPEC virulence factors appear
partially redundant, involved in the ability of these strains to
colonize, evade immune system clearance, and survive in diverse
extraintestinal sites (Croxen and Finlay, 2010; Leimbach et al.,
2013; Johnson and Russo, 2018).

After the increased access to genome sequencing technologies,
several pathogenic E. coli genomes became available. These data
highlighted E. coli genomic plasticity and showed the distribution
of virulence factors among the pathotypes, including those traits
related to DEC definition. A remarkable example of plasticity
was the E. coli strain involved in 2011’s outbreak that displayed
the characteristics of two different pathotypes and led to severe
host symptoms. Consequently, the terms “hybrid” and “hetero-
pathogens” have emerged to designate potentially more virulent
strains that present a combination of virulence factors, which
were previously believed to be specific to each E. coli pathotype.
In this review, we bring together the reports on hybrid- and
hetero-pathogenic E. coli strains and discuss their potential
implication in more severe diseases.

DEFINING HETERO-PATHOGENS AND
HYBRID-PATHOGENS WITHOUT
DECONSTRUCTING PRIMARY CONCEPTS

Here we adopt the terms “hetero-pathogenic” or “hetero-
pathogen” to refer to strains that harbor virulence genes that are
characteristic of two ormore DEC pathotypes. Hence, the hetero-
pathogens are strictly entero-pathogens, and their designation
is based on the presence of specific virulence factors-associated
DEC pathotypes. Their definition is straightforward because
genes that delineate DEC are well-defined. A limitation is that
the absence of defined virulence markers prevents the inclusion
of DAEC and AIEC in these definitions.

In contrast, “hybrid-pathogenic” or “hybrid-pathogen” strains
exhibit both DEC and ExPEC defining virulence factors or,
alternatively, are isolated from an extraintestinal infection and
encodeDEC defining virulence factors. The alternate criterion for
designation as a hybrid-pathogen is required due to ambiguity in
the gene sets required to define ExPEC strains.

COMBINATIONS OF VIRULENCE FACTORS
THAT LEAD TO MORE SEVERE DISEASES

The current challenge concerning the hybrid- or hetero-
pathogenic E. coli strain classification is understanding
whether these virulence factors are, in fact, involved in
disease development and have clinical relevance that could be
considered in diagnosis. We present below some examples of
virulence marker combinations that were associated with more
severe diseases.

EAEC/STEC
The higher virulence of the hetero-pathogenic EAEC/STEC
group was highlighted when it caused the foodborne outbreak
that started in Germany in 2011 and spread out to Europe
and North America (Bielaszewska et al., 2011; Mellmann et al.,
2011; Rasko et al., 2011), affecting more than 4,000 persons in
16 countries (Center for Disease Control Prevention, 2013). In
Germany, as many as 3,816 cases were reported, 845 of which
progressed to hemolytic uremic syndrome (HUS) and with 54
deaths (Frank et al., 2011).
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TABLE 1 | Escherichia coli pathotypes and the virulence genetic markers used for their classificationa.

Pathotype Subgroup Virulence genetic markers

(function or virulence factor)

Observations

EAEC Typical (tEAEC) aggR (transcriptional activator) The occurrence of the aggregative adhesion pattern in

HeLa/Hep-2 cells is the standard method to characterize EAEC

Atypical (aEAEC) aatA and aaiG (plasmid and chromosomal secretion system,

respectively)

EPEC Typical (tEPEC) bfp (bundle-forming pilus), eae (intimin), and absence of stx (Shiga

toxin)

Characterized by the presence of LEE

Atypical (aEPEC) eae (intimin) and the absence of bfp and stx

STEC – stx (Shiga toxin) –

The presence of LEE pathogenicity island confers to EHEC the

ability to cause A/E lesion in the intestinal epithelium, as EPEC

EHEC stx (Shiga toxin) and eae (intimin)

ETEC – elt (heat-label toxin—LT) and/or est (heat-stable toxin—ST) –

EIEC – ipaH (multicopy family of effectors present in invasion plasmid and

chromosome)

–

DAECb – dra or afa (AFA-Dr adhesins) No virulence factor confirmed as determinant of diarrhea was

described

AIECb – Unknown No virulence factor confirmed as determinant of inflammatory

disease

ExPECc – Presence of at least two of five genes: pap (P fimbriae), sfa (S

fimbriae), afa/dra (AFA-Dr adhesins), iuc/iut (aerobactin), and

kpsMT II (capsular group II)

Intrinsic virulent strains are lethal in an animal model of sepsis; not

all extraintestinal isolates harbor this set of virulence genes

UPECd – Simultaneous presence of the following genes: yfcV (fimbriae Yfc),

vat (vacuolating autotransporter toxin), chuA (heme receptor), and

fyuA (yersiniabactin)

Strains harboring these four genes can cause urinary tract

infection in animal models; not all strains isolated from UTI harbor

these four genes

aThe table displays the virulence factors often used in surveillance studies and the diagnosis of intestinal infections. It does not represent the complete list of virulence factors that each

pathotype can harbor.
bThe classification of DAEC and AIEC was not based on the presence of specific virulence factors; consequently, it is not possible to identify the hybrid/hetero-pathogenic strains of

these pathotypes.
cAll E. coli strains isolated from any extraintestinal infection are ExPEC. This term can also be used to classify strains isolated from diverse sources that harbor specific virulence factors

and are intrinsically virulent, being lethal to mice in the animal model (Picard et al., 1999; Russo and Johnson, 2000; Johnson et al., 2003).
dUPEC is the pathotype designation used to refer to ExPEC strains that were isolated from urinary tract infections or strains isolated from diverse sources that are capable of causing

urinary tract infections in an animal model (Spurbeck et al., 2012; Johnson and Russo, 2018).

Studies conducted in Germany and France showed no
evidence of zoonotic origin for this outbreak and that this hetero-
pathogen became well-established in the human population
(Monecke et al., 2011; Wieler et al., 2011; Auvray et al., 2012).
The success of this hetero-pathogen can be explained by its
genetic background, which combines the EAECO104:H4 and the
STEC virulence profiles, comprising the aggregative adherence
(AA) pattern and the Stx2 production (Bielaszewska et al.,
2011; Mellmann et al., 2011; Rasko et al., 2011). Another
factor that makes the EAEC/STEC outbreak alarming is that
infections caused by this hetero-pathogen frequently progress to
HUS, possibly because they present a set of proteins involved
in intestinal colonization such as IrgA homologue adhesin
(Iha), aggregative adherence fimbriae I (AAF/I), long polar
fimbriae (Lpf), and different serine-protease autotransporters of
Enterobacteriaceae (like Pic, SepA, etc.). These proteins could
work synergistically to make these strains better colonizers,
leading to persistent diarrhea and facilitating Shiga-toxin (Stx)
absorption (Navarro-Garcia, 2014).

Besides that, a study conducted at the German National
Reference Center with 2,400 STEC strains, isolated between
2008 and 2012, identified two additional hetero-pathogenic

EAEC/STEC strains that were isolated from a patient with
diarrhea and exhibited the AA pattern and the stx gene. One of
these strains produced AAF/ IV, while a new type of aggregative
fimbriae was described in the other (Prager et al., 2014; Lang
et al., 2018). Furthermore, before the German outbreak, other
EAEC/STEC hetero-pathogens were described in HUS cases
associated with outbreaks that occurred in France (serotype
O111: H2) and HUS and bloody diarrhea in Japan (serotype O89:
HNM) (Boudailliez et al., 1997; Morabito et al., 1998; Iyoda et al.,
2000).

EHEC as a Long-Standing EPEC/STEC
Hetero-Pathogen
The enterohemorrhagic E. coli (EHEC) pathotype is involved
worldwide inmany outbreaks, severe symptomatology, and lethal
outcomes to the human host (Levine, 1987; Kaper et al., 2004;
Croxen et al., 2013; Gomes et al., 2016). This pathotype has been
classified based on different concepts. Some researchers classify
any STEC strain as EHEC based only on the patients’ clinical
manifestations, including hemorrhagic colitis or HUS due to Stx
production (Doughty et al., 2002; Navarro-Garcia, 2014; Krause
et al., 2018; Lang et al., 2018; Torres et al., 2018). Others, instead,

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 July 2020 | Volume 10 | Article 339

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Santos et al. Hybrid/Hetero-Pathogenic Escherichia coli

use molecular criteria based on the simultaneous presence of Stx
and the locus of enterocyte effacement (LEE) pathogenicity island
(PAI) to classify as EHEC (Kaper et al., 2004; Croxen et al., 2013;
Sadiq et al., 2014; Silva et al., 2019).

Herein the EHEC nomenclature has been used to refer to
the STEC subset that simultaneously harbors Stx and LEE. As
STEC strains can cause diarrhea and HUS in human subjects
independently of the presence of LEE (Luck et al., 2005; Croxen
et al., 2013; Krause et al., 2018), this PAI is an accessory set
of virulence genes that enhances STEC pathogenicity; thus, we
can consider it as a hetero-pathogen. Nevertheless, LEE PAI
is the major factor associated with the occurrence of attaching
and effacing (A/E) lesion and diarrhea by EPEC strains (Croxen
et al., 2013; Silva et al., 2019). LEE bears several virulence genes
encoding, e.g., intimin (eae), a type 3 secretion system, and other
effectors involved in A/E lesion formation, which are used to
clinically classify pathogenic E. coli strains as EPEC (Table 1).

The EPEC pathotype is sub-grouped based on the presence
of the bundle-forming pilus (BFP) in the strains classified
as typical and, on its absence, in the strains classified as
atypical. In general, EPEC/STEC hetero-pathogens comprise
atypical EPEC carrying Stx (Croxen et al., 2013; Eichhorn
et al., 2015; Gomes et al., 2016; Silva et al., 2019). The first
description of a typical EPEC strain bearing Stx was reported
by Gioia-Di Chiacchio et al. (2018), who identified eight E.
coli strains isolated from birds that carried Stx2, LEE, and BFP
simultaneously. The production of Stx2 was shown in all strains,
and two strains induced A/E lesions in cell cultures. All these
isolates belonged to the same serotype (O137:H6) and sequence
type (ST2678).

EPEC/ETEC
The first reported case of these hetero-pathogenic isolates was
of a 6-month-old child presenting acute watery and bloody
diarrhea (Dutta et al., 2015), a more severe symptom. The
virulence of this strain was assessed in vitro, showing that it
induced A/E lesions and produced a functional heat-label toxin
(LT) (Dutta et al., 2015). In 2016, a new type of EPEC/ETEC
strain bearing the heat-stable toxin (ST) instead of LT-encoding
genes was reported in healthy cattle (Askari Badouei et al.,
2016), but the ST expression was not evaluated. Hazen et al.
(2017) reported the identification of four EPEC/ETEC hetero-
pathogenic strains isolated from children, two of them being with
diarrhea, one asymptomatic, and another with lethal outcome.
The EPEC/ETEC strain isolated from the stools of the latter
child presented the autotransporter eatA accessory gene of ETEC,
which prompted the authors to suggest its consideration as a
hetero-pathogen (Hazen et al., 2017). However, from our point
of view, the presence of eatA is not an adequate criterion since
this factor is neither an ETEC pathotype defining marker nor a
marker related to the ETEC infection symptomatology. Although
this is the most recent report concerning these pathogens, the
study comprised strains that were isolated between 2008 and
2009 in Africa and Asia (Kotloff et al., 2012). Additionally, in all
cases, the EPEC strains had acquired plasmids bearing the ETEC
toxin-encoding genes.

ExPEC/STEC
The ExPEC/STEC hybrid is a high-risk pathogen for humans
due to the possibility of a systemic infection occurring in
concomitance with HUS, which might be aggravated by the
presence of a multidrug resistance phenotype, making treatment
even more difficult. Reports on the occurrence of HUS just
after E. coli urinary tract infection (UTI) are rare but have been
noted in different countries since 1979 (reviewed by Lavrek et al.,
2018). Many studies have reported the presence of Stx-converting
phages amongUTI isolates, mainly in humans but also in animals
(Beutin et al., 1994; de Brito et al., 1999; Mariani-Kurkdjian et al.,
2014; Toval et al., 2014b; Cointe et al., 2018; Nüesch-Inderbinen
et al., 2018; Gati et al., 2019).

However, few reports have shown the occurrence of diarrhea
and extraintestinal infection, in the same patient, as being caused
by a single E. coli strain. Mariani-Kurkdjian et al. (2014) reported
the occurrence of an EHEC strain that caused diarrhea, HUS, and
bloodstream infection in an adult in France. This hetero-hybrid
pathogen harbors two variants of Stx2, the LEE PAI and one
virulence plasmid—(pAPEC-like plasmid) carrying the ompTp,
etsC, iss, hlyF, sitA, cvaA, iroN, and iucC virulence genes—which
is often present in APEC and NMEC strains. Moreover, the strain
fulfills the intrinsic virulence criteria by Johnson et al. (2003)
(Table 1) for consideration of ExPEC (Nüesch-Inderbinen et al.,
2018), which may explain the capacity of this pathogen to reach
the bloodstream and cause severe neurological symptomatology
(Mariani-Kurkdjian et al., 2014; Wijnsma et al., 2017). Other
studies from Switzerland and France have shown that this hetero-
hybrid pathogen, which belongs to serotype O80:H2 and ST301-
A, was also isolated from HUS cases followed by bacteremia
(confirmed by blood culture positive) (Soysal et al., 2016; Cointe
et al., 2018; Nüesch-Inderbinen et al., 2018). This hetero-hybrid
pathogen was also reported in human cases of diarrhea and
HUS without bacteremia and from calves with diarrhea in
Belgium, Switzerland, and the Netherlands (Fierz et al., 2017;
Wijnsma et al., 2017; De Rauw et al., 2019). Cointe et al. (2018)
also showed the occurrence of this hetero-hybrid pathogen in
human and animal subjects in other European countries, such as
Germany, Switzerland, Spain, and Slovakia. It is noteworthy that
the report of unusual severe neurological conditions was linked
with these hybrid strains, even in the absence of bacteremia,
and the HUS occurrence is higher than average (about 80%)
(Soysal et al., 2016).

Toval et al. (2014b) have shown other types of ExPEC/STEC
hybrid strains isolated from humans in Germany. Some of these
were also hetero-hybrid pathogenic strains carrying different
subtypes of intimin. In addition, the authors demonstrated
the Shiga-toxin functionality in bladder cells and that some
strains cause UTI and pyelonephritis in animals. These data
were corroborated by another study (Gati et al., 2019) and by
the occurrence of one case of diarrhea followed by urosepsis
and HUS found to have been caused by another ExPEC/STEC
hybrid-pathogen isolated in the Netherlands (Ang et al., 2016).

ExPEC/EPEC
Diarrhea followed by bacteremia and multiorgan dysfunction
was the outcome of the patient from whom this hybrid-pathogen
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was isolated (Kessler et al., 2015). This hybrid strain called
attention also by the fact that a pathogen simultaneously bearing
PAIs from DEC and ExPEC could reach additional niches
and cause a severe disease. This ExPEC/EPEC strain harbored
ExPEC defining virulence factors, LEE, and BFP and belonged
to serotype O4:H1 and to ST12-B2, a recognized ST related
to extraintestinal infections. The phylogenetic analyses of the
strain showed that it clustered with other ExPEC lineages but
not with EPEC from phylogroup B2, as the EPEC prototype
strain E2348/69 (Kessler et al., 2015). Although not thoroughly
characterized, another ExPEC/EPEC hybrid strain of serotype
O12:K1: HNM was described, which drove a similar outcome.
This strain expressed a functional LEE PAI and invaded diverse
cell lineages (Bratoeva et al., 1994).

Not all ExPEC/EPEC hybrids cause a disease in intestinal and
in extraintestinal niches. Although rare, these hybrid strains have
been isolated from diverse extraintestinal infections from human
subjects without diarrhea (Abe et al., 2008; Toval et al., 2014a;
Riveros et al., 2017; Valiatti et al., 2019). These strains harbored
the LEE, no ExPEC defining virulence factors, and belonged to
phylogroups A or B2. However, the reason why these strains
caused only extraintestinal infections is unclear.

COMBINATIONS OF VIRULENCE FACTORS
WITH UNCERTAIN INVOLVEMENT IN
MORE SEVERE DISEASES

The studies on the majority of the hybrid/hetero-pathogenic
strains that were reported so far lacked information regarding
host symptomatology or the expression of virulence factors.
Therefore, there is not enough data to determine if the acquisition
of new virulence factors necessarily implicates different or more
severe symptoms. The combination of virulence traits might
not implicate new pathogenicity features or increased virulence
because some of the hybrid/hetero-pathogenic strains identified
by molecular methods do not express both traits.

STEC/ETEC
Many reports on STEC/ETEC have shown its high frequency
among strains isolated from post-weaning diarrhea and edema
disease in piglets (Cheng et al., 2006; Barth et al., 2007, 2011;
Beutin et al., 2008; Byun et al., 2013). These hetero-pathogenic
strains were also isolated from other animals, food, diarrheic
human subjects, and some cases of HUS (Monday et al., 2006;
Müller et al., 2007; Barth et al., 2011; Prager et al., 2011; Steyert
et al., 2012; Nyholm et al., 2015b; Leonard et al., 2016; Michelacci
et al., 2018; Bai et al., 2019; Yang et al., 2020).

Although often reported worldwide, studies conducted in
Finland and Sweden, which evaluated a large number of human
isolates, demonstrated that the occurrence of STEC/ETEC
hetero-pathogens was low (Nyholm et al., 2015b; Bai et al.,
2019). In one of these studies, four STEC/ETEC strains were
reported, corresponding to 2.05% of the total 195 clinical strains
initially characterized as STEC isolated over 15 years. Severe
symptomatology promoted by this hetero-pathogen was reported

only in piglets, and little is known about the impact of these
strains, leading to different clinical conditions in human subjects.

The occurrence of multidrug-resistant (MDR) hetero-
pathogenic E. coli strains emphasizes their genome plasticity
and points to the role of horizontal gene exchange in favoring
the emergence of higher virulent MDR clones (Rasko et al.,
2011), such as certain STEC/ETEC strains. García et al. (2018)
showed a STEC/ETEC strain isolated from pig suffering from
post-weaning diarrhea, which carried a plasmid containing
multiple resistance genes and another one containing multiple
virulence genes. Other authors also reported a multidrug-
resistant phenotype among strains of this hetero-pathogenic
pathotype (Brilhante et al., 2019).

It is interesting to note the diversity of sequence types (STs),
phylogroups, and serotypes (more than 40) that was observed
among the STEC/ETEC hetero-pathogenic strains (Table 2).
Such diversity suggests that both the ETEC virulence plasmid
and Shiga-toxin-converting bacteriophages could be spread to a
broad range of genetic backgrounds, including those serotypes
related to more pathogenic strains previously described to cause
human disease such as O2:H27, O15:H16, O101:H-, O128:H8,
and O141:H8 (Nyholm et al., 2015b).

ExPEC Harboring EAEC Virulence Markers
In 1991, a community-acquired UTI outbreak occurred in
Copenhagen (Olesen et al., 1994). The genotypic and the
phenotypic characterization of the outbreak-related strains
showed that they belonged to the O78:H10 serotype, commonly
associated with diarrhea. The outbreak strains harbored the
complete set of EAEC defining virulence genes, expressed the
aggregative pattern of adherence, and belonged to ST10, like
the EAEC strains isolated from diarrhea. Interestingly, they
were also lethal in an animal model and hence considered as
ExPEC, clearly different from other EAEC strains isolated from
diarrhea (Olesen et al., 2012). To our knowledge, these findings
were the first evidence that some EAEC strains could cause an
extraintestinal infection. Nevertheless, it is important to consider
that, in the Copenhagen outbreak, there was no evidence that
the EAEC strains could cause diarrhea, although diarrheagenic
EAEC harboring ExPEC intrinsic virulence factors have already
been reported (Nunes et al., 2017).

It is important to note that strains classified as EAEC by
their virulence markers are not always causing diarrhea in
their hosts. In fact, Nataro et al. (1995) demonstrated that
only strain 042 among four EAEC strains studied induced
diarrhea in human volunteers, although all the strains carried the
EAEC virulence plasmid. Subsequently, many reports came out,
registering the isolation of strains from various extraintestinal
infections, which presented the EAEC defining genotype and
expressed the aggregative adherence pattern in vitro (Abe et al.,
2008; Nazemi et al., 2011; Toval et al., 2014a; Lara et al., 2017;
Riveros et al., 2017; Freire et al., 2020). However, differently from
the EAEC strains of the Copenhagen outbreak, the presence of
the ExPEC markers are rare among the reported EAEC isolates
from extraintestinal infections (Abe et al., 2008; Toval et al.,
2014a). Moreover, it is still unclear if the same strain can cause
infections in intestinal and in extraintestinal niches.
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TABLE 2 | Summarized characteristics of hybrid- and hetero-pathogens.

Isolation source Virulence traits Expression of

the virulence

traits

Disease Outbreaks Serogroup

or serotype

MLST-

phylogroupa

References

EAEC/STEC Intestinal infections Stx and

aggregative

fimbriae with aggR

regulator

Yes Diarrhea, bloody

diarrhea, and HUS

Yes O104:H4

O59:H-

Orough:H-

O111:H2

O89:H-

O23:H28

ST678-B1

ST26-B1

ST1136-B1

Morabito et al.,

1998; Iyoda et al.,

2000; Frank et al.,

2011; Prager

et al., 2014; Lang

et al., 2018

EPEC/STEC Intestinal infections in

humans, animals’ gut,

environment, and food

LEE PAI and Stx Intimin (various

subtypes) and Stx

Yes Diarrhea, bloody

diarrhea, and HUS

Yes O157:H7

O145

O103

O26

O111

ST11-E

ST32cplx-D

ST20cplx-B1

ST29cplx-B1

ST29cplx-B1

Eichhorn et al.,

2015

Normal fecal sample LEE PAI, Stx-2f,

and BFP

Identified only in

birds

Yes No O137:H6 ST2678-B2 Gioia-Di Chiacchio

et al., 2018

EPEC/ETEC Intestinal infections LEE PAI and LT or

ST

Regardless of the

presence of BFP

Yes Watery diarrhea No Unknown ST278cplx-

B1

ST1788-A

Dutta et al., 2015;

Askari Badouei

et al., 2016; Hazen

et al., 2017

ExPEC/STEC

and

ExPEC/EHECb

Diarrhea and

extraintestinal infections

simultaneously or

extraintestinal infections

only

Stx and ExPEC

intrinsic virulence

factors

Yes—both

characteristics are

expressed

In general, harbor

Stx2 variant

UTI, hemorrhagic

cystitis, HUS,

bacteremia

Yesc O2:H6

O76:H19

Ont:H-

O80:H2

O145:H-

ST141-B2

ST675-B1

ST10cplx-A

ST165cplx-A

ST32cplx-D

Mariani-Kurkdjian

et al., 2014; Toval

et al., 2014b; Gati

et al., 2019

ExPEC/EPEC Extraintestinal infections

only or diarrhea followed

by extraintestinal

infection

LEE PAI only or

LEE PAI and

ExPEC intrinsic

virulence factors

Regardless of the

presence of BFP

LA or LAL pattern

was observed in

some studies

Cystitis,

pyelonephritis,

UTI-related

bacteremia, and

diarrhea with

multiple organ

dysfunction

No O71

O78:H-

O4:H1

O12:K1:H-

Unknown

ST2018-B2

ST12-B2

Unknown

Vieira et al., 2001;

Abe et al., 2008;

Toval et al., 2014a;

Kessler et al.,

2015; Riveros

et al., 2017;

Lindstedt et al.,

2018; Valiatti et al.,

2019

STEC/ETEC Intestinal infections in

human and animals

Stx and ST toxin Various Stx2

variants; Stx1 is

frequently low

Yes, but some

strains express

just one toxin

Diarrhea, bloody

diarrhea, and HUS

No Various

serogroups

(>40

serotypes)

ST10cplx-A

ST40cplx-B1

ST325-A

ST329-A

Nyholm et al.,

2015b; García

et al., 2018; Bai

et al., 2019

(Continued)
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FAVORABLE BACKGROUND FOR THE
MIX-UP OF VIRULENCE FACTORS

The E. coli population can be divided into eight different
phylogroups (A, B1, B2, C, D, E, F, and G) (Clermont et al.,
2019). Although pathogenic E. coli are distributed among all,
some pathotypes are frequently assigned to specific phylogroups;
for example, ExPEC strains are often referred to as belonging
to phylogroups B2 and D, while many DEC strains are of
phylogroup B1. In this context, phylogroup A strains are
classically related to those that make up the gut microbiota and
are avirulent, such as the E. coli K-12 prototype strain MG1655
(Leimbach et al., 2013; Clermont et al., 2017; Johnson and Russo,
2018). However, virulent strains, including those associated
with both ExPEC and DEC outbreaks, are also assigned into
phylogroup A.

Interestingly, some clonal groups inside phylogroup A are
frequently reported to be involved in a myriad of infections and
multidrug-resistance, such as ST10 (Olesen et al., 2012; Hauser
et al., 2013; Riley, 2014; Toval et al., 2014a; Nyholm et al., 2015a;
Arais et al., 2018; García et al., 2018; Yamaji et al., 2018). The
strains belonging to this ST seem to be very flexible and receptive,
bearing many hybrid- and hetero-pathogenic strains (Table 2).
These findings suggest that some specific genetic backgrounds
could bemore permissive to acquire and stably maintain a variety
of mobile genetic elements, allowing the emergence of hybrid- or
hetero-pathogenic strains.

Gati et al. (2019) have shown that the ST141-B2, which
includes both STEC and ExPEC strains, was the origin of
some STEC/ExPEC hybrid strains. Accordingly, their analysis
suggested that ST141, allocated between well-defined pathogenic
clusters, could be a hotspot for the emergence of hybrid strains.
These authors have also concluded that the development of the
STEC/ExPEC hybrid was a recent event. These events might
happen in all clonal groups that harbor more than one of the E.
coli pathotypes and could not be seen as restricted to any ST or
phylogroup. The characteristics of the hybrid/hetero-pathogenic
strains are detailed in Table 2.

WHAT MIGHT BE THE CONSEQUENCES
OF E. COLI GENOME PLASTICITY?

Some hybrid- and hetero-pathogenic strains have been isolated
from human and animal infections since the extensive study
of pathogenic E. coli strains began. Some of these pathogens
were reported long ago, like EPEC/STEC strains, while others,
like ExPEC/STEC strains, emerged in recent years and are being
pointed only now as the cause of diseases. Although the hybrid-
and hetero-pathogenic strains might have appeared long ago,
the interest in their significance as more virulent pathogens is a
recent phenomenon.

Sequencing technologies have helped to understand the
events involved in hybrid/hetero-pathogen evolution, the most
common being the transference of virulence genes by mobile
plasmids and the acquisition of converting phages. Most of
the hybrid strains described until now are related to the STEC
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pathotype, probably because of the broad host range of Shiga-
toxin-converting bacteriophages, since their occurrence has been
reported in different species including Citrobacter freundii and
Enterobacter cloacae, which were associated with HUS and
one outbreak (Tschäpe et al., 1995; Paton and Paton, 1996).
Additionally, Fogolari et al. (2018) recently reported that the
presence of the Stx-converting phage could be found in other
Shigella species besides Shigella dysenteriae type 1, mainly in
Shigella flexneri. Moreover, viable Stx-converting phages were
shown to be present in water and sewage (Muniesa and Jofre,
1998; Beutin et al., 2008). Therefore, the prevalence in the
environment and the broad host range explain the capacity of
these phages to reach new bacteria. Interestingly, there has been
no report on the occurrence of the EIEC virulence plasmid
among other DEC or ExPEC pathotypes. Nevertheless, the
presence in EIEC of some ExPEC virulence genetic markers,
including those of UPEC pathogenicity islands, has already
been reported (da Silva et al., 2017). However, the reported
strains cannot be considered as hybrid pathogens since they
do not fulfill the molecular criteria proposed by Johnson
et al. (2003) for the classification of intrinsic virulent ExPEC
(da Silva et al., 2017).

Currently, there is not enough published data to confirm
if hybrid/hetero-pathogens are always more virulent than
their parental pathotypes. Although some studies pointed
out that the disease prognoses were worst (Bratoeva et al.,
1994; Navarro-Garcia, 2014; Kessler et al., 2015; Ang et al.,
2016; Soysal et al., 2016; Wijnsma et al., 2017), this question
has not been adequately addressed in all hybrid/hetero-
pathogenic strains, and more information about the
host symptomatology are necessary to better understand
their significance.

It is well-known that the E. coli genome is a dynamic
entity; thus, hybrid- and hetero-pathogens will probably continue
to emerge and expand the current set of recognized E. coli
pathotypes. The great challenge for both human and veterinary
medicine will be to promptly identify and hinder these pathogens
from spreading and causing massive outbreaks, such as the
German outbreak of 2011. Considering that these hybrid/hetero-
pathogens can carry virulence-associated makers as well as
multidrug resistance genes, there is an urgency to identify them
and address appropriate measures of containment.
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