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ABSTRACT

Multitrophic interactions play key roles in the origin and maintenance of species diversity, and the study of these interactions has contributed to important theoretical
advances in ecology and evolutionary biology. Nevertheless, most biodiversity inventories focus on static species lists, and prominent theories of diversity still ignore
trophic interactions. The lack of a simple interaction metric that is analogous to species richness is one reason why diversity of interactions is not examined as a response
or predictor variable in diversity studies. Using plant–herbivore–enemy trophic chains as an example, we develop a simple metric of diversity in which richness, diversity
indices (e.g., Simpson’s 1/D), and rarefaction diversity are calculated with links as the basic unit rather than species. Interactions include all two-link (herbivore–plant and
enemy–herbivore) and three-link (enemy–herbivore–plant) chains found in a study unit. This metric is different from other indices, such as traditional diversity mea-
sures, connectivity and interaction diversity in food-web studies, and the diversity of interaction index in behavioral studies, and it is easier to compute. Using this
approach to studying diversity provides novel insight into debates about neutrality and correlations between diversity, stability, productivity, and ecosystem services.

Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp

Key words: community structure; ecosystem function; food webs; multitrophic interactions; plant–insect interactions.

UNDERSTANDING THE ORIGIN AND MAINTENANCE OF TROPICAL DIVER-

SITY has always been one of the major goals of tropical ecology.

Considerable progress has been made toward integrating the many

feasible and well-tested hypotheses for why there is such a strong

latitudinal gradient in diversity for most taxa (Willig et al. 2003,

Mittelbach et al. 2007, Arita & Vazquez-Dominguez 2008). Nev-

ertheless, there are important unanswered questions about how pat-
terns of diversity should be measured, catalogued, monitored, and

conserved (Reiss et al. 2009). In diverse tropical habitats, efforts to

document species richness are naturally stymied by overwhelming

biodiversity and rapid anthropogenic degradation of habitat. Trop-

ical areas suffer disproportionate losses in biodiversity, at a rate

measured in weeks rather than years, and there is an urgent need to

develop and implement novel approaches to understanding tropical

ecosystem structure.
Predictable patterns of diversity have been demonstrated

within the tropics (Wake 1970, Connell 1978, Hubbell 1979,

Gentry 1982, Terborgh et al. 1990, Colwell et al. 2008) and studies

of tropical diversity have generated numerous testable hypotheses

(Hutchinson 1959, Lewinsohn & Roslin 2008), or null models

against which alternative models or hypotheses can be tested (Hub-

bell 1999, Arita & Vazquez-Dominguez 2008). To test these hy-

potheses, advances in field methods have allowed for accurate

measures of the number of species in communities for some taxo-

nomic groups and some habitats (Longino & Colwell 1997). Fur-

thermore, many novel analytical methods for evaluating and

comparing diversity have been developed in recent years (i.e., rar-

efaction techniques, partitioning a and b, multivariate analysis, and

sampling distributions), and access to these analytical methods has

been greatly improved (e.g., Colwell & Coddington 1994, Gotelli
& Colwell 2001, Alonso & McKane 2004). Recent tropical studies

have suggested that another fruitful approach to documenting bio-

diversity is to compile quantitative inventories of interaction webs

(Lewis et al. 2002, Janzen et al. 2005, Dyer et al. 2007, Novotny

et al. 2007, Tylianakis et al. 2007, Bascompte 2009). These inven-

tories have provided empirical data for testing hypotheses about re-

lationships between diversity, the structure of communities, and the

dynamics of community interactions. Here we propose a simple
variable to quantify interaction diversity analogous to methods used

to document and study biodiversity, and we identify the most im-

portant questions for which this variable may provide insight.

INTERACTION DIVERSITY

A rich literature exists for interaction diversity, which was loosely

defined by Janzen (1974) and then by Thompson (1996) as the
number of interactions linking species together into dynamic biotic

communities. Janzen lamented the loss of interactions as a hidden

consequence of extinction and Thompson (1996, 1997) pointed
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out that most of the earth’s diversity is in the interaction diversity

found in the tropics (also see Ohgushi et al. 2007). Numerous

studies have acknowledged that major theoretical and applied issues

in ecology and conservation must go beyond documenting species
diversity and take into account interaction diversity (Cohen &

Briand 1984, Price 2002, Del-Claro 2004, Burslem et al. 2005,

Ohgushi et al. 2007, Tylianakis et al. 2007, Del-Claro & Torezan-

Silingardi 2009). All these studies acknowledge that interactions

among species are important because they affect all ecosystem attri-

butes, from primary productivity to population dynamics and the

survival and reproduction of individuals. Nevertheless, there has

been little effort to quantify interaction diversity in the same way
that species diversity has been catalogued, mapped, highlighted,

and used as a predictor or response variable in ecological studies

(Ollerton & Cranmer 2002).

There are a number of methods available for measuring inter-

action diversity. The most prominent are found in literature on

food webs and in behavioral studies (Slater 2000, Bersier et al.
2002). Quantitative food webs are an improvement over qualitative

(binary) food webs because predators and prey are measured in the
same units of density, allowing the relative differences in the num-

ber of linkages observed for each species to be proportional to their

actual frequency in the community. In a quantitative food web, the

abundance of each species is measured as a density such that the

observed species abundances are assumed to be a representation of

the populations of each species and their corresponding linkages in

the community. In these studies, sampling variance, which affects

the number of individuals of each species and thus the number of
observed linkages, is the major source of unexplained variance and

may be accounted for using a variety of subsampling and data

exclusion methods.

Quantitative food-web studies typically assess food-web struc-

ture using measures of connectance and compartmentalization.

Connectance statistics assess the degree of species-level specializa-

tion between trophic levels by comparing the number of observed

linkages to the number of potential linkages in a completely con-
nected (generalist) food web. Low measures of connectance indicate

communities with highly specialized consumers (Bersier et al.
2002). Graphic representations of food webs include visual repre-

sentations of the relative abundance of species and linkages, but the

information in these figures is not easily summarized statistically.

Compartmentalization statistics measure the equivalent number of

species within each independent group of interacting species. Here

pi is measured as the fraction of total species observed in a single
compartment and species abundance is ignored. This measure is

useful for determining the degree to which interacting species are

divided into independent ecological units, and is valuable for de-

signing experimental approaches to communities or community

subsets. The number and evenness of compartments, however, as-

sess a narrow aspect of trophic interactions that is maximized only

when compartments are equivalent in their number of species.

There remains no generalized analytical approach to measuring the
structure of species interactions that includes information regarding

the richness and abundance of individuals and linkages in a

community.

A new focus in food-web studies and interaction diversity is to

examine nestedness (Bascompte et al. 2003) and this is an effective

method for examining interaction diversity. Qualitative mutualistic

webs (e.g., pollination, seed dispersal, and protection; Bascompte
et al. 2003, Burns 2007, Ollerton et al. 2007, Rezende et al. 2007)

have been examined for the degree of nestedness. One interesting

pattern emerging from this work is that these mutualistic networks

are cohesive in that the generalists in these systems create a dense

core of interactions that provides a foundation for the rest of the

community (Bascompte et al. 2003). This approach allows for in-

sight about the consequences of losses of specific interactions or

species from a community.
Unfortunately, these food web and network approaches in-

volve extensive knowledge of natural history, which is not com-

pletely available for any ecosystem (Godfray et al. 1999, Novotny

& Basset 2005), especially in the tropics. Although some well-

resolved food webs exist (Kelly & Southwood 1999, Memmott

et al. 2000, Brandle & Brandl 2001), these are merely slices em-

bedded in more complex webs of interaction. This is true for even

ubiquitous, cosmopolitan, and well-studied systems such as alfalfa
monocultures, where species interactions are still not fully resolved

(Dyer & Stireman 2003, Pearson et al. 2008). This lack of actual

food-web data illuminates a major problem facing current diversity

research: accumulation of relevant empirical data lags far behind the

plethora of mathematical, graphical, and verbal models in ecology

(Dyer 2008). Thus, we cannot test hypothesized correlations be-

tween tropical diversity and variables such as specialization, preda-

tion, and competition because the growing literature on ecological
theory relies on a large number of untested assumptions, such as the

concept that tropical organisms are more specialized.

In the tropics, our knowledge of the basic life histories for

plants and animals (e.g., Singer et al. 1982, Fortey 2008, Stork

2008) remains in its infancy. Rapidly accumulating species lists

provide a blurry glimpse of community assemblages, but their lack

of information on community structure provides only weak sug-

gestions for conservationists and those attempting to preserve them
or counter the effects of habitat fragmentation and its disruption of

ecological processes. The current devaluation of natural history

studies has been lamented by many modern biologists and their

importance touted by many others (Futuyma 1998, Dayton 2003),

but a demand for novel theoretical advances seems to have eclipsed

any coordinated efforts for basic descriptions of ecological commu-

nities. We suggest that using subsamples of life-history strategies

(i.e., interactions) will allow for quantification of natural history
observations and can provide unique insight into the understanding

of patterns of biodiversity.

For tropical ecosystems, the lack of a simple interaction diver-

sity metric or approach is exacerbated by the fact that most empir-

ical and many theoretical studies of diversity are potentially

irrelevant to tropical ecosystems given the limited range of diver-

sity studied. For example, the classic studies of Tilman (e.g., Tilman

et al. 2006) examine effects of 1–24 species of plants on primary
productivity or ecosystem stability, whereas changes in plant rich-

ness from temperate to tropical ecosystems or from low to high el-

evation can be two to three orders of magnitude (Kreft & Jetz
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2007). Similarly, food-web studies that range from 3 to 33 species

(Cohen & Briand 1984) or mathematical models that compare

two-predator systems to three-predator systems (e.g., Begon et al.
1996) are of limited utility when trying to understand causes and
consequences of enemy diversity gradients that cross orders of mag-

nitude. Thus, it is not clear how variables such as community sta-

bility and ecosystem function are affected when a forest patch has

1000 vs. 10 species of parasitoids or when a forest has 20 vs. 200

species of vascular plants.

A SAMPLING APPROACH TO MEASURING
INTERACTION DIVERSITY

Ideally, a quantitative approach to measuring the properties of food

webs should include quantified information on trophic interactions

for all trophic levels and involves all species in a community, but

such an approach is impractical for most reasonably diverse com-

munities (Lewis et al. 2002). Quantifying diversity of interactions is

similar to the measurement of species diversity and the numerous
problems associated with measuring tropical diversity (discussed or

reviewed by Heck et al. 1975; Lande 1996; DeVries et al. 1999,

2001; Magurran 2004; Jost 2006, 2007) apply to measures of in-

teraction diversity (Cohen & Briand 1984). Because interactions

are defined by the species observed interacting, distributions are

likely to behave similarly to the number of species in having an ef-

fectively infinite number of unique units, even though many of

those units are likely to be very rare or infrequent in samples. In
addition, the number of interactions observed in a given sample is

likely to be correlated with sampling effort.

The quantitative investigation of food webs therefore re-

quires the development of sampling schemes designed to infer the

properties of the complete community food web from samples

that in practice represent only a portion of the community. Cur-

rent quantitative food-web investigations solve this problem by

intensively sampling a restricted food web, focused on guilds or
subsets of interacting species (Memmott & Godfray 1994). This

approach gains precise quantitative characterization of trophic

interactions in terms of the numerical importance of interactions

within the guild, but sacrifices inference to the other species in

the community that were not sampled. An alternative approach is

to sample interactions at random from the total community pool

of interactions with the intent of estimating the properties of the

total community food web. A clear advantage of this approach is
that it allows inferences about the total community food web to

be made directly from the information in samples because the

experimental unit of interest is the total community as opposed

to a single family or guild of organisms. By design this approach

sacrifices the precision and within-guild resolution of interactions

provided by exhaustive sampling of focal groups to gain greater

insight for the entire community. The random sample approach

to the study of food webs takes advantage of the well-established
methods used in the study of species diversity to estimate the

properties of the total community from a limited number of

samples.

AN EXAMPLE: TRITROPHIC INTERACTIONS,
DIVERSITY, AND SPECIALIZATION

Plants, phytophagous insects, and enemies make up well over half
of global terrestrial biodiversity (Price 2002) and interactions be-

tween these trophic levels have generated important theoretical ad-

vances in ecology and evolutionary biology (Hairston et al. 1960,

Ehrlich & Raven 1964, Lawton & McNeill 1979, Price et al. 1980,

Novotny et al. 2006), but complete quantitative food webs includ-

ing these guilds are scarce (Godfray et al. 1999). In fact, detailed

information will never be available for all of the terrestrial food

webs on earth, nor will any complete food web be constructed for a
tropical ecosystem. Tritrophic chains are exemplary systems for

creating food web metrics that broadly capture interacting species

in a community but do not require documenting all the existing

interactions. Using plant–herbivore–enemy trophic chains as an

example, we recommend that tropical community ecologists utilize

a simple metric of diversity in which richness, diversity indices, and

rarefaction diversity are calculated with links as the basic unit rather

than species. Interactions can include all two-link (herbivore–plant
and enemy–herbivore), and three-link (enemy–herbivore–plant)

chains found in a reasonable study unit, such as a 100-m2 plot or a

200-m transect (Fig. 1). The simplest measure is the total number

of these interactions per unit area.

This sampling method depends on certain assumptions

when analyzing interaction diversity as a response variable in

models that compare effects between different habitats, eleva-

tions, and latitudes. If one samples a plot or transect for caterpil-
lars, rears them out to yield an adult moth or parasitoid, and then

counts up the interactions (Fig. 1), the distribution of unique in-

teraction links can be analyzed using methods applied to tradi-

tional species diversity. For such an approach, we make four basic

assumptions: (1) interactions are sampled at random, (2) inter-

actions are homogenously distributed within a plot, (3) any dis-

tribution of abundance among interactions is possible, and (4)

interactions are equally likely to be encountered at all locations
compared.

We are currently utilizing this method to document interac-

tion diversity at a number of tropical sites, including Yanayacu Bi-

ological Station Ecuador and La Selva Biological Station, Costa

Rica, as well as temperate sites in the Sierra Nevada (California),

Great Basin (Nevada), Arizona, and Louisiana. Plants and associ-

ated lepidopteran larvae and their parasitoids are quantified at all

sites in 10-m diam. plots (methods described in Dyer et al. 2007).
Preliminary analyses of plot data from the Ecuador and Louisiana

sites, for which we have sufficient number of plots for initial ana-

lyses, indicate that interaction richness and diversity are signifi-

cantly higher at the Ecuador vs. Louisiana site (for interaction

richness, t = 8.8, df = 650, Po 0.0001; Table 1), while species rich-

ness per unit area is higher at the Louisiana site. This is consistent

with the hypothesis that interaction richness asymptotes more

quickly than species richness (Fig. 1G), much like diversity indices
asymptote more quickly than richness (Lande 1996). Although

unique interactions are likely to be characterized by a lognormal

distribution, this distribution should be hyperkurtotic, with a few
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common interactions dominating and most other interactions be-

ing extremely rare (Bascompte et al. 2003).

Measures of specialization are wrought with pitfalls (Novotny

& Basset 2000, Ødegaard 2000, Novotny et al. 2006), but interac-

tion diversity per unit area may be less susceptible to methodolog-

ical flaws for measuring diet breadth as long as samples are random

and well replicated (Fig. 2A). Thus, it is interesting to contemplate

how interaction diversity per unit area, as well as beta diversity of
interactions, would vary across a gradient from Europe to Papua

New Guinea (Novotny et al. 2006) or across the Americas (Dyer

et al. 2007; Figs. 2B, C, and E). The beta diversity, or spatial turn-

over, of species in tropical forests has recently become a focal point

of analysis in the field of tropical ecology (Condit et al. 2002,

Ødegaard 2006, Novotny et al. 2007, Lewinsohn & Roslin 2008).

This concept of beta diversity or turnover could be expanded to

examine how the diversity of interactions varies over space. Exam-

ination of interaction beta diversity could be used to determine

whether species interact with the same set of consumers or hosts

over their range and how rapidly these interactions undergo spatial
turnover. Recent progress has been made by Novotny (2009) in

developing a conceptual and analytical framework to quantify how

diversity of interactions varies in space using a beta-diversity parti-

tioning approach. In addition to the usefulness of such analyses in

understanding patterns of community structure in a spatial context,

they could aid in understanding important evolutionary phenom-

ena, such as coevolutionary processes occurring over a geographic

mosaic of interactions (Gomulkiewicz et al. 2000, Thompson
2005).

IMPORTANT QUESTIONS FOR INTERACTION
DIVERSITY IN THE TROPICS

Biodiversity research has not been focused exclusively on tropical

ecosystems, but most of the major theoretical and applied issues in

biodiversity research are important for understanding tropical di-

versity. These issues include: (1) the latitudinal gradient in diversity
(reviewed by Rohde 1992, Willig et al. 2003, Arita & Vazquez-

Dominguez 2008), (2) neutral theory (Hubbell 2001, Chave 2004,

Chave & Norden 2007), (3) diversity–stability relationships (re-

viewed by McCann 2000, Tilman et al. 2006), (4) biodiversity and

ecosystem function (Duffy 2003, Thebault & Loreau 2003, Sri-

vastava & Vellend 2005, Long et al. 2007, Bastian et al. 2008), (5)

specialization (reviewed by Irschick et al. 2005, Lewinsohn et al.
2005), (6) latitudinal and elevational range size (Rapoport 1975,
Stevens 1992, reviewed by Ribas & Schoereder 2006, Ruggiero &

Werenkraut 2007), and (7) effects of climate change on biodiversity

(Colwell et al. 2008, Berggren et al. 2009). Hypotheses relevant to

these issues have generated a considerable number of empirical and

theoretical studies, but reviews of this literature acknowledge that

there are substantive questions that remain unresolved for all of

these diversity patterns and hypotheses. For example, the latitudinal

gradient in diversity, first formally described by Darwin (1859) and
Wallace (1878), still generates considerable research without con-

sensus on which mechanisms are most important for generating

diversity gradients in any given taxa or communities.

FIGURE 1. Simple examples of interaction diversity in subsamples of commu-

nities; interaction richness for each subsample is (A) 2, (B) 3, (C) 4, (D) 5, (E) 6,

and (F) 10. Generalist herbivores and enemies in the subsamples are linked to

more than one host; specialists are linked to only one host. Solid lines are two-

link interactions and dashed lines are three-link interactions; numbers refer to

unique species; e = enemy, h = herbivore, and p = plant. (G) Interaction diversity

measured using this method should generate an accumulation curve that as-

ymptotes faster than a species accumulation curve, given that interactions are

dominated by selected (and typically more generalized) interactions (Bascompte

et al. 2003). Many extremely rare interactions exist but are not detected (due to a

hyperkurtotic, positively skewed distribution), thus the apparent asymptote. In

addition, focusing on particular interactions combined with the fact that tourists

are a significant component of any sample of organisms, the number of inter-

actions per plot will usually be lower than the number of species.

TABLE 1. Preliminary data comparing tropical (Ecuador) and temperate (Louisi-

ana) interaction diversity in 10-m diam. circular plots. Means are

reported (� SE).

Ecuador Louisiana

Sample size (number of plots) 429 222

Mean species richness per plot 20.5 (0.8) 20.8 (0.8)

Mean interaction richness per plot 10.2 (0.3) 5.7 (0.2)

Mean interaction diversity (1/D) per plot 5.6 (0.3) 3.3 (0.3)
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How is interaction diversity related to the important questions

in biodiversity research? For many relationships, such as correla-

tions between biodiversity, stability, and ecosystem function, inter-
action diversity is a more intuitive variable for understanding

mechanistic relationships (Reiss et al. 2009). Thus, when Terborgh

et al. (2001) showed that losing predator–prey interactions led to

‘ecological meltdown’ in islands, changes in the total number of

species did not explain what happened to the island communities.

It was clear that the response was due to losing important preda-

tor–prey–plant interactions—or a decline in interaction diversity.
Stability can be understood in the same way—it is easier to explain

or model the consequences of loss of interaction diversity than it is

to understand the loss of species diversity (Fig. 2D). Much of the

historical and current debate concerning the relationship between

FIGURE 2. Predictions of how interaction diversity should behave in phytophagous insect systems. (A) Species diversity of herbivores increases interaction diversity

more than number of hosts per herbivore (i.e., diet breadth). For each extra plant host for an herbivore, only one new interaction is added, whereas for each extra

herbivore per host plant, there is at least one new interaction and potentially more (via multiple parasitoids). (B) Interaction richness should reach its lowest levels at

high latitudes due to the low species richness, despite appreciable diet breadth. It will increase rapidly with decreasing latitude as species richness increases, but as diet

breadth drops the rate of increase will flatten out or even decline. Finally, at some latitude, the increase in species richness will be great enough to result in a strong

upswing in interaction diversity, despite the continued increase in specialization. (Diversity of interactions across altitudinal gradients should be similar.) (C) Inter-

action diversity will vary with environmental gradients (latitudinal, species richness, disturbance, etc.). A null model would predict random assemblages of interactions

drawn from the (usually lognormal) distribution of plants, herbivores, and enemies, increasing with diversity. ‘Interaction’ models would also predict increases in

interaction diversity across gradients but the slope will be more pronounced for coevolved species assemblages because of a more kurtotic distribution of interactions

that is shifted to the right. (D) Interaction diversity should have a stronger effect on response variables such as stability and ecosystem function since it is a better

measure of the mechanisms that create the correlations with diversity. (E) Novotny et al. (2007) found that beta diversity was low in a tropical ecosystem, which

generates the beta-diversity prediction depicted here. Interaction diversity, which should asymptote more quickly, might be a better metric for assessing beta diversity,

which should be greater in the tropics based on a number of factors, including the narrow consumption niches of tropical organisms (Janzen 1974). (F) Effects of

climate change on diversity. Interactions are likely to decline at a greater rate than species, given that climate-driven changes in phenologies of plants and herbivores can

affect multiple consumers (e.g., Stireman et al. 2005).
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diversity and stability of ecological communities is concerned with

the number of trophic links (i.e., connectance) and their relative

strength (MacArthur 1955, May 1973, McCann 2000). For exam-

ple, recent generalized modeling analyses of vast numbers of simu-
lated food webs by Gross et al. (2009) have concluded that stability

is enhanced by oligophagy in top predators and high diversity of

intermediate trophic levels, and it is decreased by high variation in

link (interaction) strengths. In addition, it has been argued that di-

verse weak interactions (‘the weak interaction effect’; McCann et al.
1998, McCann 2000) and trophic complexity (Jiang et al. 2009)

both play pivotal roles in community stability. These relationships

can readily be explored by examining interaction diversities be-
tween component trophic levels, even when complete food-web in-

formation is unavailable. Such interaction diversities and associated

metrics can be compared among ecological communities or across

gradients to make predictions concerning patterns of stability and

resilience.

Understanding mechanistic relationships due to interaction

diversity is also important for applied issues, such as determining

the effects of climate change on biodiversity. Stireman et al. (2005)
found that parasitoid abundance declines with increasing climatic

variability. The mechanism proposed for this connection is related

to interaction diversity. Extreme weather events may decrease in-

teraction diversity via disrupting associations between parasitoids

and their herbivorous hosts, thus decreasing the number of poten-

tial tritrophic interactions. In this case, it was the more specialized

hymenopteran parasitoids that were most affected by increased cli-

matic variability, suggesting that parasitoid–host interaction rich-
ness, as well as abundance, was reduced. Climate change and

climatic variability have also been shown to influence diversity and

trophic interactions in other systems, such as vertebrate–insect in-

teractions (Spiller & Schoener 2008, Mazia et al. 2009) and inver-

tebrate marine communities (Przeslawski et al. 2008). Extending

analyses of these effects beyond species diversity and abundances by

examining interaction diversity (Fig. 2F) may provide considerable

insight into both the community consequences of climate change as
well as the mechanisms involved.

Perhaps the most exciting change in biodiversity research for

tropical ecology is the explosion of empirical and theoretical ad-

vances spurred by the development of the neutral theory (Hubbell

2001, Chave & Norden 2007, Zhou & Zhang 2008, Ellwood et al.
2009). Although neutral theory is relevant and useful for studying

tropical diversity in theoretical frameworks by providing appropri-

ate null hypotheses, it is primarily focused on single trophic levels.
The majority of studies seeking to test if community structure can

be explained by purely neutral processes have examined abundance

distributions and diversity of plant species without regard to their

interactions with consumers (Hubbell 2001, Chave 2004). Indeed,

one problem with neutral theory as an explanatory model (rather

than just a null model) is that it assumes that interactions among

trophic levels are inconsequential in shaping species abundance dis-

tributions, despite extensive empirical data to the contrary (e.g.,
Paine 1969, Terborgh et al. 2001). Nevertheless, a similar ‘neutral’

approach can be used to develop models of interaction diversity

based on the richness and abundance of trophically interacting

communities. Such models can be used to assess empirical devia-

tions from expected neutral ‘interaction distributions’ to under-

stand how community structures differ from neutrality and provide

some insight into why they may differ. This general approach of
using neutral models to examine species interactions has proven

profitable in recent studies on the asymmetry (Vazquez et al. 2007)

and nestedness (Krishna et al. 2008) of mutualistic interactions.

There is much room, however, for the development of null models

that explain the structure of other types of trophic interactions,

other properties of interaction diversity, and higher-order (e.g.,

tritrophic) interactions.

Finally, the latitudinal gradient in diversity is a robust and fas-
cinating pattern of diversity that may be better understood by ex-

amining interactions. Novotny et al. (2006) utilized an indirect

measure of interaction diversity to address a difficult question re-

lated to the diversity gradient: why are there so many species of

tropical insects? These authors compared the number of herbivore

species collected in standardized samples of tree species in tropical

and temperate forests. They found that herbivore richness per tree

species did not differ significantly across sites and that dietary spe-
cialization of herbivores (relative to the set of host species exam-

ined) was also similar for the two sites. Furthermore, they found

that beta diversity across the lowlands of Papua New Guinea was

relatively low (Novotny et al. 2007). Although they concluded that

the latitudinal gradient in herbivorous insect diversity can be ex-

plained as a simple function of greater host plant richness in the

tropics, a similar study indirectly examining interaction diversity

across eight New World sites (Dyer et al. 2007) demonstrated that
Lepidoptera are more specialized in the tropics than at temperate

latitudes. Dyer and colleagues argue that between-plant species beta

diversity in tropical lepidopteran herbivore communities is greater

than in temperate communities, and that this may play an impor-

tant role in shaping the latitudinal diversity gradient of insects. In

both of these alternative views, the basic precept that ‘diversity be-

gets diversity’ (Janz et al. 2006) is implicit; they differ rather in the

form of that relationship—whether it is linear or nonlinear and
how strongly it is influenced by other factors. More explicit and

thorough analyses of interaction diversity across latitudinal gradi-

ents could help to determine more precisely how community struc-

ture varies latitudinally, how this variation contributes to patterns

of species diversity, and help to reconcile these seemingly contra-

dictory patterns (Figs. 2A–E).

CONCLUSIONS

It is clear that multitrophic interactions play key roles in the origin

and maintenance of species diversity (e.g., Singer & Stireman

2005), thus it is relevant to utilize a biodiversity metric that quan-

tifies these interactions. Current experiments that manipulate di-

versity via changing number of species, number of guilds/functional

groups, identity of species, or other traditional diversity metrics

should be supplemented with experiments that randomly assign
different levels of interaction diversity to plots and examine the re-

sponses of productivity, mortality, temporal variance of species di-

versity, and other relevant response variables. Conservation issues
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cannot wait for a complete understanding of tropical life histories

and community assemblages. Our proposed interaction diversity

metric should form a basis for developing more realistic pictures of

community structure for comparative purposes applicable to a
broad array of ecological, evolutionary, and conservation issues.

Marrying natural history, ecology, and conservation through the

quantified sampling of interaction diversity is one-way forward to

understanding the evolution, maintenance, and preservation of rap-

idly dwindling biodiversity.
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2008. Beyond corals and fish: The effects of climate change on noncoral
benthic invertebrates of tropical reefs. Global Change Biol. 14:
2773–2795.

RAPOPORT, E. H. 1975. Areografia: estrategias geograficas de las especies. Fondo
De Cultura Economica.

REISS, J., J. R. BRIDLE, J. M. MONYOYA, AND G. WOODWARD. 2009. Emerging
horizons in biodiversity and ecosystem functioning research. Trends
Ecol. Evol. 24: 505–514.

288 Dyer, Walla, Greeney, Stireman, and Hazen



REZENDE, E. L., J. E. LAVABRE, P. R. JR. GUIMARES, P. JORDANO, AND J. BAS-

COMPTE. 2007. Non-random coextinctions in phylogenetically struc-
tured mutualistic networks. Nature 448: 925–928.

RIBAS, C. R., AND J. H. SCHOEREDER. 2006. Is the Rapoport effect widespread?
Null models revisited. Global Ecol. Biogeogr. 15: 614–624.

ROHDE, K. 1992. Latitudinal gradients in species diversity: The search for the
primary cause. Oikos 65: 514–527.

RUGGIERO, A., AND V. WERENKRAUT. 2007. One-dimensional analyses of
rapoport’s rule reviewed through meta-analysis. Global Ecol. Biogeogr.
16: 401–414.

SINGER, M. S., AND J. O. III. STIREMAN. 2005. The tri-trophic niche concept
and adaptive radiation of phytophagous insects. Ecol. Lett. 8:
1247–1255.

SINGER, T. R. E, V. C. MORAN, AND C. E. J. KENNEDY. 1982. The richness,
abundance and biomass of the arthropod communities on trees. J. Anim.
Ecol. 51: 635–649.

SLATER, J. V. P. 2000. Advances in the study of behavior, Vol. 29. Academic
Press, San Diego, California.

SPILLER, D. A., AND T. W. SCHOENER. 2008. Climatic control of trophic inter-
action strength: The effect of lizards on spiders. Oecologia 154:
763–771.

SRIVASTAVA, D. S., AND M. VELLEND. 2005. Biodiversity-ecosystem function
research: Is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36:
267–294.

STEVENS, G. C. 1992. The elevational gradient in altitudinal range—an
extension of rapoport latitudinal rule to altitude. Am. Nat. 140:
893–911.

STIREMAN, J. O. III, L. A. DYER, D. H. JANZEN, M. S. SINGER, J. T. LI,
R. J. MARQUIS, R. E. RICKLEFS, G. L. GENTRY, W. HALLWACHS, P. D.
COLEY, J. A. BARONE, H. F. GREENEY, H. CONNAHS, P. BARBOSA, H. C.
MORAIS, AND I. R. DINIZ. 2005. Climatic unpredictability and parasitism
of caterpillars: Implications of global warming. Proc. Natl. Acad. Sci.
102: 17384–17387.

STORK, N. E. 2008. Arthropod faunal similarity of bornean rain forest trees.
Ecol. Entomol. 12: 219–226.

TERBORGH, J., L. LOPEZ, P. NUNEZ, M. RAO, G. SHAHABUDDIN, G. ORIHUELA,
M. RIVEROS, R. ASCANIO, G. H. ADLER, T. D. LAMBERT, AND L. BALBAS.
2001. Ecological meltdown in predator-free forest fragments. Science
294: 1923–1926.

TERBORGH, J., S. K. ROBINSON, T. A. PARKER, C. A. MUNN, AND N. PIERPONT.
1990. Structure and organization of an Amazonian forest bird commu-
nity. Ecol. Monogr. 60: 213–238.

THEBAULT, E., AND M. LOREAU. 2003. Food-web constraints on biodiversity-eco-
system functioning relationships. Proc. Natl. Acad. Sci. 100: 14949–14954.

THOMPSON, J. N. 1996. Evolutionary ecology and the conservation of biodiver-
sity. Trends Ecol. Evol. 11: 300–303.

THOMPSON, J. N. 1997. Conserving interaction biodiversity. In S. T. A. Pickett,
R. S. Ostfeld, M. Shachak, and G. E. Likens (Eds.). The ecological basis
of conservation: heterogeneity, ecosystems, and biodiversity, pp.
285–293. Chapman & Hall, New York, New York.

THOMPSON, J. N. 2005. The geographic mosaic of coevolution. University of
Chicago Press, Chicago, Illinois.

TILMAN, D., P. B. REICH, AND J. M. H. KNOPS. 2006. Biodiversity and eco-
system stability in a decade-long grassland experiment. Nature 441:
629–632.

TYLIANAKIS, J. M., T. TSCHARNTKE, AND O. T. LEWIS. 2007. Habitat modifica-
tion alters the structure of tropical host-parasitoid food webs. Nature
445: 202–205.

VAZQUEZ, D., C. J. MELIAN, N. M. WILLIAMS, N. BLUTHGEN, B. R. KRASNOV,
AND R. POULIN. 2007. Species abundance and asymmetric interaction
strength in ecological networks. Oikos 116: 1120–1127.

WAKE, D. B. 1970. Abundance and diversity of tropical salamanders. Am. Nat.
104: 211–213.

WALLACE, A. R. 1878. Tropical nature and other essays. Macmillan, New York,
New York.

WILLIG, M. R., D. M. KAUFMAN, AND R. D. STEVENS. 2003. Latitudinal gradients
of biodiversity: Pattern, process, scale, and synthesis. Annu. Rev. Ecol.
Evol. Syst. 34: 273–309.

ZHOU, S., AND D. ZHANG. 2008. A nearly neutral model of biodiversity. Ecology
89: 248–258.

Interaction Diversity 289


	Diversity of Interactions: A Metric for Studies of Biodiversity
	Repository Citation

	Diversity of Interactions: A Metric for Studies of Biodiversity

