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Abstract: The amplification of phage-displayed libraries is an essential step in the 

selection of ligands from these libraries. The amplification of libraries, however, decreases 

their diversity and limits the number of binding clones that a screen can identify. While 

this decrease might not be a problem for screens against targets with a single binding site 

(e.g., proteins), it can severely hinder the identification of useful ligands for targets with 

multiple binding sites (e.g., cells). This review aims to characterize the loss in the diversity 

of libraries during amplification. Analysis of the peptide sequences obtained in several 

hundred screens of peptide libraries shows explicitly that there is a significant decrease in 

library diversity that occurs during the amplification of phage in bacteria. This loss during 

amplification is not unique to specific libraries: it is observed in many of the phage display 

systems we have surveyed. The loss in library diversity originates from competition among 

phage clones in a common pool of bacteria. Based on growth data from the literature and 

models of phage growth, we show that this competition originates from growth rate 

differences of only a few percent for different phage clones. We summarize the findings 

using a simple two-dimensional “phage phase diagram”, which describes how the collapse 

of libraries, due to panning and amplification, leads to the identification of only a subset of 

the available ligands. This review also highlights techniques that allow elimination of 
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amplification-induced losses of diversity, and how these techniques can be used to improve 

phage-display selection and enable the identification of novel ligands. 

Keywords: phage display; diversity; competition; amplification; fast-growing clones 

 

1. Introduction—Motivation for Writing This Review 

Receptor-ligand interactions are the basis for most biological processes. The discovery of ligands 

that bind a specific target is the basis for the development of pharmaceuticals, biomaterials, and 

diagnostic tools. There are, in general, two strategies for the development of ligands for a new target: 

(1) rational design and (2) selection from libraries of random molecules. Within the second strategy, 

phage display is a widely-used method that allows for the identification of useful ligands from a library 

of 10
9
 random polypeptides [1-4]. The expression of peptides on the coat proteins of bacteriophage 

physically links the peptide to the information carrier (DNA) inside phage that contains all the 

instructions for the synthesis of the expressed peptide [5-7]. Unlike conventional chemical libraries  

[8-13], each member of the phage-display library, even if present as a single “molecule” (i.e., one 

phage particle), can be amplified to an amount sufficient for detection or assay. Phage display has been 

used to discover ligands for a wide range of targets, including proteins, cells and tissues, and even 

inorganic materials (for reviews see [6,14-21]). The number of discovered ligands, however, is often 

lower than expected from a library of 10
9
 diverse peptides. For example, some targets—such as cells, 

tissues and organs—have many binding sites, but multiple groups reported a convergence to <5 ligands 

after rounds of panning and amplification. Factors other than the binding affinity between ligands and 

the target must also contribute to the convergence of the library to the identified ligands. 

The amplification of libraries, which is an essential step in phage display selection, has been shown 

to decrease the diversity of libraries [22-25]. Literature summarizing the effects of amplification is 

rare. The motivation of this review, therefore, is to organize the findings from the phage display 

literature and to show explicit evidence that the amplification of libraries leads to a loss of useful 

binding ligands. The elimination of the processes that lead to the undesired loss of diversity during 

amplification enables the identification of a much broader repertoire of binding ligands, including the 

identification of multiple ligands for targets with multiple binding sites (e.g., cells, tissues). We 

describe two approaches that have been used to bypass this unwanted loss of diversity: (1) selection 

without amplification; (2) amplification in isolated compartments. We also discuss approaches to 

characterize the loss of diversity in current phage display screens: (1) deep-sequencing of phage 

libraries; (2) bio-informatic analyses of library diversities; (3) databases of phage-display screens. 

This review focuses on libraries based on functional filamentous phage, which is used to display 

short peptides. The loss of diversity during amplification also occurs in related techniques based on 

phagemid-display [26,27] which is used to display natural [28,29] or synthetic [3,30,31] antibody 

fragments and other full-length proteins [32,33], as well as displays with other types of phage (T4, λ). 

Competition during amplification is not unique to phage; it also occurs in other display systems. We 

will outline them briefly in the last section of this review. 
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2. The Problem: Panning vs. Rate of Amplification 

Selection from phage display libraries is driven by two processes (Figure 1): (1) the panning step 

enriches for clones that bind to the desired target or any other physical moieties present during the 

panning step, such as walls of the vessels [34], etc. (reviewed in [35]) (Figures 1A,B). (2) The 

amplification step—infection of bacteria by a single phage particle and the secretion of ~1,000 copies 

of phage—enriches clones that have an advantage during any of the amplification steps [24,36-39] 

(Figures 1B,C).  

Figure 1. (A) A library of phage-displayed peptides contains clones that bind to a target 

better than other clones and clones that amplify faster than other clones. These 

characteristics are largely independent. (B) A round of panning enriches the phage clones 

that bind to the target. (C) A round of amplification enriches for the clones that amplify 

faster. Presenting the library as a circle in the (binding vs. growth)-phase diagram allows 

the description of (D) selection (R1S) as a collapse to the upper part of the circle and (E) 

amplification (R1A) as further collapse to the right part of the phase diagram. (F-G) The 

decrease in diversity in subsequent rounds of screening and amplification is identical to 

that in (D-E); it leads to a collapse of the sub-population to the upper-right portion. (G) 

After three rounds of selection, the screen identifies binding ligands. The number of 

identified ligands, however, is much smaller than the number of binders that were 

originally present in the library. 
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If processes (1) and (2) are largely independent, the phage library can be represented using a two-

dimensional “phage phase diagram” (Figure 1D): the top of the diagram contains the library members 

that bind to the target with the strongest affinity, and right of the diagram contains the library members 

that have the highest growth advantage. Figures 1D-G describe a hypothetical selection process: 

panning collapses the circular shape to the top, “strong-binding” part of the library (Figure 1D). 

Amplification collapses the ellipse horizontally towards the right of the diagram because (binding) 

clones that amplify faster out-compete other (binding) clones that amplify slower (Figure 1E). 

Subsequent rounds of panning and amplification—described by a series of vertical and horizontal 

collapses—yield a small number of ligands that bind strongly to the target. The number of these 

ligands, however, is much smaller than the number of all binders in the library (Figure 1E).   

The diagram described in Figure 1D is a qualitative description accounting for the two independent 

selection pressures caused by panning and amplification. It makes predictions that cannot be inferred 

from models based solely on binding events during panning [40-42]: (1) selection identifies a sub-

population of the binding ligands that have high growth rate only. (2) Selection pressures are 

orthogonal (independent): increasing one does not eliminate the effect of the other. (3) The loss of 

diversity during amplification can be minimized only by reducing the number of amplification steps, or 

by eliminating differences in growth rate of different clones. Indeed, it is known that 3-4 rounds of 

selection provide ligands of the highest diversity. Multiple rounds of selection (>4) improve binding 

ability only partially, but they are known to in fact reduce sequence diversity 

This phage phase diagram is useful to visualize qualitatively the loss of diversity that occurs during 

selection process (panning + amplification). In the following sections, we present results from phage 

display screens in the literature to provide examples and analysis on the loss in diversity during 

amplification.  

 

3. Evidence for Amplification-Induced Convergence Based on Comparison of Sequence Diversity 

at Every Step of the Selection Process 

In our previous report, we performed a small-scale investigation by sequencing a small fraction of 

the library (40-60 clones) after each round of panning and amplification [23]. The panning target—

human embryonic stem (hES) cells—is one that has plethora of binding sites (1,000s of receptors on 

the cell surface). The screen targeted all of the receptors on the surface of hES cell and should have 

identified a vast number of binding ligands. We observed that the diversity of the final library was low: 

the results after three rounds were dominated by less than ten peptide sequences (Figures 2A,B). 

Several of them (APWHLSSQYSRT and HGEVPRFHAVHL) were confirmed by Lan Ma and co-

workers to be specific ligands that bind to the surface of primate ES cells or neural stem cells [43-45]. 

It was surprising that the screen converged on a few peptide sequences only. By tracing the loss of 

diversity in the amplification/selection process, we saw that the diversity of the library decreased 

abruptly at each amplification step. A single amplification step eliminated ~70% of the phage clones. 

Some of them—for example LPMRYFDKSMST, TMREYQYPTAYA and VNQNASWASYYA—

were present at 2/40 abundance before amplification, and thus were enriched in the second round of 

the selection (column 3, Figure 2B). These peptides, however, disappeared after amplification, i.e., 

their abundances dropped from 2/40 to < 1/40 after amplification (column 4, Figure 2B).  
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Figure 2. (A) We performed panning starting from the Ph.D.-12 phage library using hES 

cells as the target. Amplification occurred in a standard shaking culture. After each round 

of panning or amplification, we sequenced 40-50 clones. The plot in (A) summarizes the 

results from two independent experiments. The diversity of the library collapses at each 

amplification step. (B) Sequences from each round; repeating sequences are colored. (C) 

Distribution of the clones in the library can be presented as a stacked bar chart (D) in which 

the width of each black or white bar is proportional to the abundance of the peptide 

sequence. (E) presents the same data as A and B using stacked bars. Two replicates are 

presented independently. The right set of bars describe the abundance of individual amino 

acids in the library. (F) describes the sequencing results from Kelly et al. [46], and Li et al. 

[47]. (A and B are reproduced from Derda et al. [23] with permission). The frequencies of 

amino acids (AA) in E, G, F (and in subsequent Figures 3 and 4) were calculated as 

(number of times AA encountered) / (total number of AAs in all sequences). 
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We could not find any other examples in the literature that sequenced clones after each round of 

selection and amplification separately, although there are reports that describe deep sequencing of 

libraries of RNA aptamers after each round of amplification [48]. These reports also demonstrate that 

panning and amplification processes impose two independent selection pressures on the library (see 

discussion below). In the phage display literature, many reports describe sequences of the phage 

libraries after every round of panning. In order to facilitate comparison of library diversity from 

different reports in the following sections, we summarize and present the sequence results after each 

round(s) of panning or amplification as a stacked bar (Figure 2D). Each segment represents a unique 

sequence. The length of the segment is proportional to the relative abundance of the sequence (Figure 

2C). This presentation contains a higher density of information than a simple bar graph and is more 

space-effective than lists of sequences (compare Figures 2A, B and E).  

We show an example of the charts representing loss of diversity in a library of 7-mers (Ph.D.-7) in a 

screen for ligands that bind (benz)indolium fluorochrome (GH680) (Figure 2F) [46]; or aminoacyl-

tRNA site (A site) of 16S rRNA (Figure 2G) [47]. The collapse of sequence diversity in Figure 2F-G is 

similar to that in Figure 2E. Both screens converge abruptly to a small number of ligands after a few 

rounds of the screening, even when the libraries or targets were very different.  

 

4. Evidence for Amplification-Induced Convergence Based on Comparison of the Diversity of 

Identified Ligands for Targets with One, Few, Or Many Binding Sites 

We compare the final diversities of the ligands identified in the screens against diverse targets. In 

comparing these results, it is useful to categorize the targets according to the expected number of 

binding ligands. Category 1: If the target has one well-defined binding site that recognizes a defined 

amino acid sequence (e.g., monoclonal antibodies), one should identify a relatively low number of 

sequences for this target. Category 2: If the target has several binding sites (e.g., polyclonal 

antibodies), or if the binding site is less defined (e.g., proteins with large binding interfaces or 

inorganic materials), the number of ligands should be greater than that identified for ligands in the 

category 1. Category 3: If the target has 1,000s of binding sites (e.g., cells or organs), there should be 

a significantly higher number of ligands identified for these targets when compared to both categories 

1 and 2. 

We selected studies that originated from three types of libraries: Ph.D-12
TM

, Ph.D-7
TM

, and Ph.D-

C7C
TM

 library of 12-mers, 7-mers, and cyclic 7-mers, respectively, displayed on protein P-III (New 

England BioLabs). Figures 3 and 4 used references that contained information about > 15 clones only. 

We clustered the results according to the target category and sorted them according to the number of 

unique sequences (column 5, Figure 3 and 4). Figures 3 and 4 contain several useful observations. (1) 

Within each target category, there are similar abundances of screens that yield one or multiple unique 

sequences. (2) There is no obvious correlation between the number of binding sites in the target and 

the number of unique binding clones identified for this target. (3) There is no apparent correlation 

between the distribution of binding clones (patterns within the stacked bars) and the nature of the 

target. We observed similar trends when we analyzed other libraries that were used in a large number 

of screens (e.g., fUSE5-based libraries developed by Smith and co-workers [7]). The results from ~300 

screens indicate that the selection against any target always converges to a small number of ligands.  
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Figure 3. Analysis of the diversity of the Ph.D.-12 phage library after screening against 

various targets (see Figure 2 for an explanation of the stacked bar representation) from 

papers that report >15 DNA sequences. The data was extracted from raw MimoBD 

database [49] using a custom MatLab software. PMID is the PubMed ID of each article. 
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Figure 4. Analysis similar to Figure 3, but for Ph.D.-7 and Ph.D.-C7C libraries. 
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Theoretically, more ligands should be identified for the targets that have more binding sites. In 

reality, the distribution of diversities is similar for all targets (Figure 3, 4). The convergence to a few 

binding ligands is unexpected, as a library of 10
9
 peptides should contain 10

2
-10

5
 ligands of similar 

affinities (see below: “How many binding ligands are lost in the screen?”). The survey of the literature, 

shown in Figures 3 and 4, is incomplete. From a few thousand publications describing various phage 

display screens (1990-2010), > 50% did not report sequence abundances explicitly, ~ 30% of the 

articles (~200 out of 600 publications for Ph.D.-12 libraries) sequenced < 15 clones and only ~15% 

report sequences for 15 or more clones. Additionally, standard search engines (PubMed or ISI) are ill-

suited for searching the phage display literature: they often do not contain information about the 

sequences nor the library type. The survey was facilitated by a database of phage sequences 

(MimoDB) generated by Jian Huang and co-workers (http://immunet.cn/mimodb) [49]. This database, 

however, provides partial information about sequence results only (e.g., binding affinities of sequences 

in Figure 3 and 4 were not documented). 

 

5. The Relative Abundances of Ligands in the Library Are Not Correlated to Their Binding 

Strength 

If a decrease in the library diversity is primarily due to the specific binding of ligands to the target, 

the distribution of ligands in the final library should correlate with the binding ability of the phage. 

Such correlation cannot be drawn, however, based on results from the literature. As example, we used 

information from a screen performed by Andrew Feig and co-workers [50] because it contains a 

detailed analysis of the sequences of 179 clones and the Kd value for each binding clone. Of the 179 

clones, 118 were weak binders or non-binders and 61 were binders (confirmed in follow-up assays). 

This study, summarized in Figure 5, demonstrates that: (1) the Kd of phage clones that present a given 

peptide sequence cannot be correlated to the abundance of this clone within the 179 clones sequenced 

(Figure 5A). (2) The distribution of the abundance of binding and non-binding sub-populations is 

similar (Figure 5B). (3) The amino acid distribution in these two populations is also similar (Figure 

5C). Interestingly, the abundance of proline is observed in > 50% of the screens, as shown in Figure 4, 

and in the original, unselected libraries [24]. Pro is generally abundant in protein-protein interaction 

sites [51,52], but its abundance in phage-displayed peptides can also originate from the specifics of the 

phage secretion mechanism [24].  

All three observations above suggest that there is the enrichment of specific binding clones and the 

elimination of other binding clones that were independent of their binding ability. The results in 

Figures 5A-C are representative of trends usually seen in the literature. The results in Figures 5D-I 

summarize the findings from different libraries and different targets [53-58]. They illustrate that the 

abundance of the binding clones is not correlated with their binding ability. Collecting a 

comprehensive set from the literature, however, was difficult because most reports sequenced only a 

small numbers of clones, performed qualitative “yes/no”-assays, or characterized a small number of clones. 
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Figure 5. There is no correlation between the abundance of binding clones and their 

binding ability. (A-C) This example is from Feig and co-workers, who identified peptides 

that bind to Clostridium difficile toxins. After 4 rounds of panning, 61 clones were 

identified as binders and 118 clones had weak (or no) binding affinity [50]. (A) The Kd of 

the clones that bind. The horizontal position of each bar corresponds to the binder clone 

shown in the top stacked bar in (B). The width of the bar in A and B indicates the 

abundance of each clone. The binding affinity of each clone and its abundance in the sub-

library are not correlated. (B) The distribution of the diversity in sub-populations of binders 

and non-binders are similar (both have several highly abundant clones). (C) Amino acid 

abundances are similar. (D-I) Results from other screens in the literature have the same 

trend as those in A: binding ability of the phage clones and their abundances are not 

correlated [53-58].  

 

6. Subtle Differences in Growth Rate Yield Drastic Differences in Clone Abundances after 

Rounds of Amplifications 

The biological reasons for growth advantage have been discussed in several reports [36] and 

include: the binding to pili, the use of rare codons [37], interference with packing or infection [22,24], 

and rare mutations in the regulatory regions of phage genes [38,39]. These effects are usually small for 

the display of peptides on pIII proteins and for the display of short (<8-mer) peptides on protein pVIII 

[59-61]. In general, libraries of peptides displayed on pVIII are more prone to loss of sequence 

diversity than those displayed on pIII [22,25,62] but these problems can be mitigated by modification 



Molecules 2011, 16                            

 

 

1786

of pVIII proteins [63,64]. Phage display technology is very successful because the modification of the 

phage coat proteins has minor effects on the rate of production of phage [5,7,65]. Nevertheless, we 

demonstrate that even small differences in growth rate can have important consequences in the 

distribution of phage that display different peptides after amplification. Figure 6 shows two well-

characterized examples using phage that display the 7-mer HAIYPRH-sequence and contain a 

mutation in the regulatory region of gene pII (Figure 6A) [39], and M13 phage with the wild type (wt) 

M13 genome (Figure 6B) [66]. For example, a wt (rapid or R) phage produces a burst of phage ~70 

minutes after infection whereas a library (slow or S) phage requires ~90 minutes (Figure 6B) [66]. This 

difference of 40% between R and S phage was sufficient for the R (wt) phage to take over the 

population— the R/S ratio reached 300:1 after five hours of growth—that started with a 1:1 mixture of 

wt and library phage (Figure 6B). HAIYPRH-phage also rapidly takes over a population of library 

phage [39]. 

Growth advantages of different clones do not originate from differences in the total number of 

phage produced per bacteria. Library, wt, or HAIYPRH-phage reach the same saturation density when 

amplified in separate solutions (Figure 6A). Rather, growth advantages result from small differences in 

the growth rate of the different phage clones, and the exponential growth of phage. Infection produces 

1000 copies of phage from a single bacterium and the number of phage grows as 1  10
3
  10

6
  10

9
 

upon serial infection in an excess of uninfected bacteria. We used a discrete-step model of phage 

growth to visualize how small differences in growth rate lead to large differences in the number of 

phage produced after multiple cycles of re-infection. The model used four parameters: (1) infection 

rate was described using a simple 2
nd

 order kinetics with respect to concentration of phage and bacteria 

(Figure 6D); (2) delayed burst of 1,000 phage particles (Figure 6E) [36]; (3) no re-infection of bacteria 

that were already infected (Figure 6F) [67]; and (4) substrate-limited growth for infected and non-

infected bacteria (Figure 6G) [36,68]. The model fits well with the data in Figure 6B and we can 

therefore attribute the 1:1 to 1:300 increase in R/S ratio to ~30% difference in growth rates of R and S 

phage (Figure 6C). 

We used the same model to describe the growth competition in a library containing 100 different 

clones that differ only in their secretion time (Figure 7). The distribution of secretion time of the clones 

was assumed to be normal (Figures 7A,D). The fastest clone #1 and the slowest clone #100 had 

secretion time of 85 and 95 minutes, respectively (Figure 7D). Starting from a population of clones 

with equal abundance, amplification produces a population of phage in which the ratio of clone #1 to 

clone #100 is 5:1 (Figures 7B,E). This ratio reaches 15:1 after dilution and re-amplification of the 

library (Figures 7C,E). This model confirms that as little as a 10% difference in growth rate among 

phage clones can be rapidly amplified to yield distributions of clones similar to those observed in  

real screens.  

The model we described in Figures 6 and 7 does not provide the most precise description of all 

stages of life cycle of the phage. It shows, however, that a simple model that accounts for one 

difference in life cycle between phage clones—the rate of secretion—can be sufficient to explain the 

origin of large differences in concentration of the clones after amplification (Figure 6C).  

We have chosen secretion rate as a variable. The same model can be used to predict what 

differences in concentrations can arise from differences in infection rate, or a combination of infection 

rate, secretion rate, and other parameters. The accurate multi-parametric simulation of phage 
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competition, however, will require extensive support from the experiments that measure all the 

relevant parameters (e.g., secretion rate, infection rate, etc.). 

Figure 6. The kinetics of phage growth and its effects on the diversity of the library. (A) 

HAIYPRH-displaying phage amplifies faster than parent Ph.D.-7 library. In separate 

solutions, Ph.D.-7 library amplifies more slowly, but eventually reaches the same 

saturating concentration. (B) Competition of wild-type insert-free phage (R) and phages 

from Ph.D.-12 library (S) when these phage are amplified in the same solution. (C) Results 

from B overlaid with results from simulation of the competition between two clones. (D-G) 

A detailed description of the simulation: (D) Infection of phage (R or S) and bacteria (B) is 

a second order kinetic process with an infection rate constant kinf which produces infected 

bacteria (BR or BS). (E) BR or BS generate a burst of 1000 copies of R or S. Burst time 

follows a normal distribution. Average burst time is the only parameter that distinguishes R 

and S phage. (F) Infection by R or S converts bacteria B to BR or BS species that cannot 

be re-infected. (G) Bacteria grow via symmetric division according to substrate-limited 

Monod model. Growth rate of infected bacteria (BR or BS) is 2x slower than B. (A - 

adapted from Brammer et al. [39]; B – reproduced from Derda et al. [66] with permission). 
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Figure 7. A simulation of the growth of a library containing 100 different clones. (A and 

D) The initial population contains equal concentrations of the clones (numbered #1 through 

#100). The clones differ only in the time they are produced by the bacteria (average burst 

time is slowest for #1 and fastest for #100). We approximate the burst time of different 

clones in the population to follow a Gaussian distribution (i.e., the abundance of the fast 

and slow growers is low; most clones have an average growth rate). (B) Amplification of 

mixture of 100 copies of each clone using 10
8
 bacteria (see Figures 6D-G for details of the 

amplification). In amplification from 10
4
 pfu/mL to 10

12
 pfu/mL, the ratio of clone #1 

(fastest) to clone #100 (slowest) reaches 5:1 (E). (C) Dilution of the amplification result 

from B to ~10
4
 and re-amplification to 10

12
 further skews the distribution of the clones (F). 

 

 

7. Relationships between Panning and Amplification 

Tuning the stringency of panning can be used to minimize the selection of non-specific ligands. For 

example, the ratio of input and output clones can be used to indicate different panning stringencies 

(Figures 8B,C). In the absence of panning, the screen yields one wild type clone that amplifies the 

fastest (Figure 8A) [66]. Increasing the strength of the selection can avoid selection of non-specific 

fast-amplifying clones (Figure 8C). It cannot, however, mitigate the competition among  

binding clones. 

There are indications in the literature that a phage that displays peptides with a β-turn structure on 

pIII protein amplify faster, whereas those that display α-helical peptides amplify slower [24,69]. 

Panning for a target that binds α-helical peptides will select for slower growing clones; amplification, 

which selects for fast growing clones, would inevitably interfere with panning. Panning against a target 

that preferentially recognizes β-turn peptides, thus, simultaneously enriches for faster-growing clones. 

Direct evidence for this prediction, has not been demonstrated for the pIII display system, but selection 

of peptides of specific structure is known in the pVIII display system [22].  
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Figure 8. (A-C) Phage phase diagram illustrating that increasing the strength of the 

selection can minimize amplification of non-specific ligands. 

 

8. How Many Binding Ligands Are Lost in the Screen? 

The phage diagram (Figure 1D-G) predicts that phage-display selection loses the majority of the 

binding ligands originally present in the library after several rounds of amplification. This loss can be 

quantified by estimating the number of potential ligands in the library [24,70]. For example, if the 

target recognizes a stretch of five amino acids, simple calculations show that a 5-mer binding motif 

occurs in within a 12-mer approximately 10
10

 times [71]. In a library of 12-mers (4.1 × 10
15

 unique 

sequences), 1 sequence in every 400,000 sequences is a frame-shifted binder. If the frame shift does 

not change the binding ability of the peptide, then a library with 10
9
 random peptides can contain ~10

3
 

binding clones that present ligands of similar affinities. If the target has 1,000s of binding sites (e.g., a 

cell), the number of identified ligands should scale up further [72].  

Peptide-based ligands can also contain permissive mutations in the recognition site that do not 

perturb binding. An estimation of the possible number of the permissive mutants can be based on the 

assumption that a specific class of amino acids (charged, hydrophilic, non-polar) at the specific 

position are required for binding. This assumption, however, is not general: Sidhu and co-workers, for 

example, demonstrated that the recognition of many targets can be achieved only by a combination of 

two amino acids (Tyr and Ser) located on a scaffold of defined shape (such as, the binding site of the 

antibody) [73,74]. Recognition of RNA/DNA aptamers [75,76] or molecular imprinted polymers [77] 

also suggests that the shape of the molecule can provide a rich recognition repertoire with very limited 

side-chain repertoire. The plasticity of molecular recognition and the current lack of understanding of 

molecular recognition in water make it difficult to predict the number of permissive mutants. It is safe 

to assume, however, that permissive mutations can increase the number of potential binders by 1-2 

orders of magnitude.  

Panning alone cannot provide the selective pressure for enriching one peptide from thousands of 

other binders with similar affinities. Convergence to a few clones should never happen in an ideal 

situation where panning is the only selective pressure; this convergence, however, happens in 90% of 

the literature reports (Figures 3, 4).  
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9. Mitigating Amplification-Induced Convergence: Screens without Amplification 

If amplification of a library leads to loss of diversity, the simplest strategy to bypass this problem is 

to skip the amplification steps altogether. This method is generally avoided because the ratio of 

binding clones to non-binding clones is believed to be lower. The method, however, has been used 

successfully in several instances.  

William and Sharon conducted a single round of panning to identify ligands from Fab-displaying 

phage libraries that bind to colorectal cancer cells [78]. 50-90% of the clones isolated from this single 

round were identified as binders to colorectal cancer cells in a follow-up ELISA. In a similar study, 

Sharon and co-workers performed one round of panning against Cryptosporidium parvum 

glycoproteins to identify a population of phage that contained 50-70% of active clones [79]. We have 

conducted an amplification-free panning experiment to isolate a population of ~10
5
 clones that bind to 

the surface of pluropotent cells [23]. From this population, using ELISA and arrays of peptides 

[80,81], we identified the binding clones (six out of 500 tested sequences) from which two supported 

long-term self-renewal of human ES cells [23]. 

Arap, Pasqualini and co-workers used a single round of panning to identify peptides that bind to 

tissues, or tissue-specific vasculature in a brain-dead human patient. Only one round of panning was 

used originally because isolation of panning targets—surgical removal of multiple vital tissues—

precluded panning in the same human patient [82]. On the other hand, biopsy in non-vital sites (e.g., a 

tumor) can be performed multiple times; it is thus possible to conduct repetitive rounds of phage 

panning in the mouse [83] or human organism [84] (reviewed in [85]). 

Smith and co-workers used a single round of panning to identify peptide substrates for proteases 

[86]. A fUSE5 phage vector was used to display a random hexamer and a FLAG sequence. After 

incubation with proteases, the phage that display peptides cleaved by proteases are FLAG-free, and 

can be easily isolated. Sequencing of 86 clones after one round of panning yielded 86 different 

peptides from which only six had no detectable substrate activity for the target proteases. One round 

was shown to yield results similar to three-rounds of panning [86]. 

Removing library amplification step from the screen eliminates one of the advantages of phage 

display. Nevertheless, even without re-amplification, screening of phage libraries has several 

advantages over screening of non-encoded libraries. Small molecules which are not displayed on 

phage cannot be screened as a complex mixture; each molecule has to be present at large quantities for 

subsequent identification. For example, 10
6
-10

8
 molecules are required for mass-spectrometry-based 

identification, whereas even one particle of phage can be easily isolated and characterized 

 

10. Mitigating Amplification-Induced Convergence: Amplification in Isolated Compartments 

Previous sections demonstrate that phage competition occurs due to different rates of production 

and not due to differences in the total numbers of phage produced (i.e., phage with different secretion 

kinetics produce an equal number of clones). For example, both Ph.D.-12 library phage and wt phage 

produce similar number of clones (~10
13

) when amplified in separate solutions [66]. HAYPRI-phage 

and library phage also reach identical final number of clones when they amplify in separate 

compartments (Figure 6A) [39]. These observations suggest that uniform amplification—one that does 
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not enrich any clones in the library and preserves their ratio—can be achieved by: (1) isolating clones 

from one another; (2) supplying each clone with an equal number of bacteria, (3) allowing the 

amplification process to go to completion (i.e., allowing all bacteria to be infected by phage). 

  

10.1. Agarose plates as isolated compartments 

One method for isolating phage is the growth of libraries as sub-confluent plaques in an agar 

overlay that contains excess of bacteria. Amplification in agar was used in several reports to produce 

and amplify phage displayed libraries [7,28,87,88]. The method was also commonly used in phage-

based screens of DNA libraries that used bacteriophage λ [89]. Amplification in an agar overlay 

satisfies two of the three criteria above: (1) isolation and (2) an equal amount of bacteria. Phage clones 

in plaques in agar, however, grow continuously and never reach “true” saturation in which phage 

infects all of the available bacteria. Simple inspection of phage plaques reveals that the plaque sizes are 

not uniform (i.e., growth rate in the individual plaques is different). Amplification by isolation in agar 

is reminiscent of incomplete amplification in Figure 6A; (e.g., ratio of HAIYPRH-phage to library 

phage in Figure 6 is non-uniform at any time before saturation at ~5 hours). Indeed, a comparison of 

the amplification in a mixture of rapidly-growing phage (M13mp8) and slow-growing phage (display 

of 38-amino acid sequence on M13mp18) demonstrates that plate amplification provided no significant 

advantage over liquid culture. Both amplification methods exhibit similar bias resulting from 

competition amongst clones (Figure 9A-B) [87]. Amplification of phage in agar overlays is also 

experimentally inconvenient. For example, ~10 cm
2
 of agar is required to isolate 500 clones. 

Amplification of a typical 10
5
-10

6
 output from the phage library, thus, requires agar trays of  

2,000-20,000 cm
2
 (44 × 44 cm and 140 × 140 cm respectively). 

 

10.2. Monodisperse droplets as isolated compartments  

We have demonstrated, recently, that true uniform amplification of phage libraries can be achieved 

in monodisperse droplets formed in a microfluidics channel (Figures 9C-I) [66]. Monodisperse 

droplets satisfy all of the criteria outlined above: the drops isolate the phage clones; each compartment 

is identical in size and contain a similar number of bacteria that grow to nearly identical densities. 

Figure 9H compares the amplification of identical libraries in bulk solutions and in droplets. A 1:1 

mixture of rapid-growing (R) and slow-growing (S) phage amplified uniformly in monodisperse 

compartments (Figure 9H). The original 1:1 ratio was preserved after amplification. Those that 

amplified in bulk solutions always yielded >300:1 R/S ratio after amplification. We also demonstrated 

explicitly that droplets must have uniform size in order to achieve uniform amplification (Figure 9I). 

The number of phage produced per droplet was proportional to the size of the droplet. Since the 

volume of droplets in polydisperse emulsions (e.g., those generated by vortex-mixing of oil and water) 

could vary > 10-100 fold [90], amplification of phage libraries in these droplets cannot be uniform. 
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Figure 9. Amplification methods that prevent competition between the phage. (A) Rapid R 

and slow S clones compete in the same solution. The R/S ratio is not preserved. (B) R and 

S are isolated in agar, but they do not amplify to completion. The R/S ratio is not 

preserved. (C) Amplification in monodisperse droplets isolates each phage to its own 

droplet; amplification to saturation preserves R/S ratio. (D) Photograph of the microfluidic 

device we used to isolate phage in separate monodisperse droplets. (E) Optical micrograph 

of the microfluidic device that generates droplets containing bacteria and phage in LB 

media suspended in a perfluorinated solvent as the carrier fluid. (F) Droplets contain 

bacteria (arrows) and phage. We generated these drops from a solution containing phage 

with an initial concentration such that each drop of a specific volume contains one or zero 

particles of phage. (G) Dividing bacteria inside the droplet. (H) Comparison of the 

amplification of a mixture of R and S phage (see Figure 6) in bulk solution or in the 

droplets. The R/S ratio is preserved in droplets and it increases by 100 to 300-fold in bulk 

solution. (F) The size of the droplets is important; the number of phage generated per 

droplet is proportional to the size of the droplet. Uniform amplification, thus, can be 

obtained in monodisperse droplets and not polydisperse emulsions. Reproduced from 

Derda et al. [66] with permission. 

 

 

The use of monodisperse droplets for the uniform amplification of phage was enabled by a series of 

advances in microfluidics technology: (1) microfluidic flow-focusing devices (MFFD) [91,92], T-
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junctions [93], and other geometries can generate droplets of <1% polydispersity at rates >10,000 

droplets per second. This speed allows the production of a necessary amount of droplets in a short 

amount of time (e.g., 10
6
 in ~30 min). A library of phage and bacteria could, therefore, be mixed 

directly in LB media, and then encapsulated into separate droplets before the first burst of phage 

production has occurred (within 30–45 min) [66]. (2) Perfluorinated liquids were used as a carrier fluid 

for the droplets containing phage and bacteria. Perfluorinated liquids are highly permeable to oxygen, 

thus the growth of bacteria in droplets was not limited by oxygen [94]. (3) The development of a 

biocompatible fluoro-surfactant by Weitz and co-workers allowed the stabilization of droplets in 

perfluorinated liquids [95]. Emulsions containing phage and bacteria could be rocked in a Petri dish for 

many hours without causing the drops to coalesce. In addition, there was no transfer of bacteria or 

phage among these droplets [66]. Without a suitable surfactant, droplets have to be confined to the 

surface or isolated inside a long tubing to prevent coalescence during culture [96,97]. 

 

11. Indirect Mitigation of Amplification-Induced Convergence Using Bioinformatics Analysis  

Libraries of phage-displayed peptides are limited in their diversity even before selection because 

they are secreted by bacteria. Rodi, Soares, and Makowski analyzed the diversity of the several 

libraries and demonstrated that the first secretion step makes certain types of sequences (e.g., proline-

containing) more abundant than other sequences (e.g., cysteine-containing). From analysis of abundant 

sequences, Rodi and Makowski developed a method that calculated the probability (p) of finding a 

specific sequences in the original library [98]. They hypothesized that peptides of low information, or -

ln(p) are common in the library, and are more likely to be present in the screen due to growth 

advantage. Those with high information are more likely to be selected due to panning [24]. Analysis of 

the information content of the peptide, hence, can be used to identify phage clones that were selected 

due to growth preferences [88,99]. 

 

12. Indirect Mitigation of Amplification-Induced Convergence Using Databases 

This issue of the journal contains a review of the bioinformatics tools and phage databases [100]. 

Databases of phage sequencing results can be used to search for peptides that are commonly identified 

in peptide screens and thus identify ligands that are selected due to growth advantage [101]. Similar 

searches have led to the discovery of a phage that has mutation in the ribosome binding site (RBS), 

which equips these clones with a growth advantage [39].  

Databases of sequences based on published results serve a useful purpose, but they can miss a lot of 

useful information, which is not reported in the publications. Bioinformatics databases are usually 

updated and supervised by a single user or group of users and it usually has fixed entry. We propose 

that leveraging both open-source and open-access along with semantic web technology can build a 

much more useful database than those currently. Ideally, the database can be maintained by individual 

users and contain auxiliary data like the sequencing results that are traditionally not reported in the 

publications. Information concerning the ongoing development of this project can be found at 

www.phagewiki.org.  
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13. Loss of Diversity in Other Display Systems 

The problem outlined in this review is not unique to peptide libraries on filamentous phage. Loss of 

diversity during amplification in an environment with shared recourses occurs for any replicating 

species. Joyce and Breaker demonstrated that simple re-amplification of RNA libraries in one solution 

selects “parasitic sequences” that amplify faster than the rest of the library [102]. Recently Zimmerman 

et al. investigated how rounds of amplification can influence the diversity of libraries of RNA 

aptamers using massive parallel sequencing [48]. Their results mirror many observations mentioned in 

our review. For example, the authors reported that “SELEX favors structurally unstable sequences in 

general, independent of the positive selection”. Interestingly, SELEX did not select for specific 

sequence or specific nucleotide content; still, it enriched for sub-classes of sequences that have lower 

structural stability (and thus, potentially, amplified faster) [48, 103]. Any technique that uses DNA or 

RNA as an information carrier uses DNA amplification in a common solution—DNA display [104, 

105], RNA display [106], or ribosome display [107, 108]—will suffer from this competition. This 

problem, however, can be solved by the separation of competing species into droplet-based 

compartments [66,109,110]. 

We note that compartmentalization of phage may not always result in uniform amplification. For 

example, mutations in a phage coat protein can decrease the number of produced phage from  

10
13

 pfu/mL to 10
10

 pfu/mL [17,18]. In this case, compartmentalization will still lead to the loss in 

diversity. Concurrent use of orthogonal display systems—lytic phage T7 [111], or λ [89], chemically-

resistant bacterial spores [112], physiologically benign S. carnosus [113,114], or yeast [115], and other 

systems [116,117]—can be used to identify a population of binding peptides that have growth 

disadvantages in libraries displayed on filamentous phage.  

14. Outlook 

Elimination of the majority of possible binders and retaining only a few discards a lot of useful 

information. The undesired loss in target-binding clones was convenient in the past, when researchers 

could only isolate and characterize a small sub-population of phage clones due to practical and 

economic inconveniences. The loss of most binding clones, in some ways, made phage display 

practical in the times when DNA sequencing was slow and expensive. Enrichment of a few clones in a 

population of <20 clones was often used an indicator of the selection success. For targets with a single 

binding site, loss of extra binding ligands might not appear as a problem: researchers are usually 

interested in the “one ligand that works”. Even if given hundreds of peptides with identical affinities, it 

is not uncommon that only one would be picked for follow-up studies. Unfortunately, for a target that 

has multiple binding sites (e.g., cells), competition between binding clones makes it impossible to 

identify multiple ligands that bind to distinct sites on these targets. Clones that contain binding 

peptides compete during amplification and the majority of useful binders are eliminated from the 

screen. 

Phage display is no longer limited by sequencing constrains. In the past 5-10 years, sequencing of 

large number of DNA sequences has become routine [118]. Commercial technologies like Illumina 

sequencing [119] or Polonator [120] make it possible to sequences hundreds of millions of short <100 
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bp DNA fragments. One example of deep-sequencing of phage (~100,000 clones using 454 technology 

[121]) has been reported by Pasqualini and Arap and co-workers [122]. The number of diverse 

sequences obtained from medium-scale 454 sequencing suggests that original libraries can be 

completely covered by large-scale sequencing.  

The elimination of competition between binding clones and large-scale sequencing of phage 

libraries will enable: (1) a prediction of affinity from the abundance of the clones. (2) a conclusion 

about the motifs that are absent from the results: motifs which are not enriched do not bind. 

Information about sequences that do not work can provide complementary information for structure-

activity relationship (SAR) in addition to SAR based on binding sequences only. (3) the use of phage 

as a tool in forward chemical genetics [123,124]. A panning of peptide libraries against a cell can yield 

ligands for many cell-surface receptors. Exposing cells to these peptides identifies those that yield a 

desired phenotype (e.g., the inhibition of stem cell differentiation) [23,125]. The identification of the 

cognate receptors can lead to the discovery of the mechanism for regulation of biological processes 

(e.g., stem cells differentiation). This approach can sample a much higher number of binding ligands 

than traditional chemical genetic approaches (limited to 10
3
-10

4
 compounds) [126,127]. Its success, 

however, depends critically on the ability to identify ligands for all receptors on the surface of the cell. 

It is possible only if the binding ligands do not compete with one another during selection. 
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