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Abstract. In human societies the probability of strategy adoption from a given person may be affected by
the personal features. Now we investigate how an artificially imposed restricted ability to reproduce, over-
ruling ones fitness, affects an evolutionary process. For this purpose we employ the evolutionary prisoner’s
dilemma game on different complex graphs. Reproduction restrictions can have a facilitative effect on the
evolution of cooperation that sets in irrespective of particularities of the interaction network. Indeed, an
appropriate fraction of less fertile individuals may lead to full supremacy of cooperators where otherwise
defection would be widespread. By studying cooperation levels within the group of individuals having
full reproduction capabilities, we reveal that the recent mechanism for the promotion of cooperation is
conceptually similar to the one reported previously for scale-free networks. Our results suggest that the
diversity in the reproduction capability, related to inherently different attitudes of individuals, can enforce
the emergence of cooperative behavior among selfish competitors.

PACS. 02.50.Le Decision theory and game theory – 89.75.Fb Structures and organization in complex
systems

1 Introduction

Evolutionary game theory is a successful paradigm for
studying interactions among individuals as different as
bacteria [1] and humans [2]. One branch of game the-
ory considers the problem of cooperation as a particu-
lar example of such interactions. The conflict between the
individual and common interests is frequently modeled
by the so-called prisoner’s dilemma game [3]. Originally
the game consists of two players who have to decide si-
multaneously whether they want to cooperate or defect.
Mutual cooperation yields the highest collective benefit
shared equally between the players. However, a defector
can have a higher individual payoff if the opponent de-
cides to cooperate. Therefore both players decide to de-
fect, whereby they end up with a lower payoff than if both
would cooperate; hence the dilemma. This unfavorable re-
sult of classical game theory is, however, often at odds
with reality [4]. Accordingly, several mechanisms, rang-
ing from kin-selection to various forms of reciprocity [5]
and other more sophisticated processes [6], have been pro-
posed to explain the emergence of cooperation. Particu-
larly inspiring in the latter aspect, and still widely in-
vestigated, is also the spatial extension of the classical
prisoner’s dilemma game [7–9] as well as other games with
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different payoff rankings [10]. Although the outcome of so-
called games on grids depends somewhat on their numeri-
cal implementation [11], the cooperation-facilitating effect
in the context of the prisoner’s dilemma game is robust.

The success of the spatial prisoner’s dilemma game
to sustain cooperation has made it a common starting
point for further explorations of mechanisms that could
facilitate cooperation even beyond the borders determined
solely by the spatial extension. For example, it proved very
successful to introduce a third strategy into the game.
The so-called loners, or volunteers, induce a rock-scissors-
paper-type cyclic dominance of the three strategies [12]
and are able to prevent, via oscillatory changes, the ex-
tinction of cooperators even by high temptations to de-
fect [13,14]. Noteworthy, the loners also promote cooper-
ation in the absence of spatial interactions. Moreover, the
impact of variable degrees of investment in the prisoner’s
dilemma game has also been studied, as was the suitable
walk of agents on the grid [15], as well as fine-tuning of
noise and uncertainties by strategy adoptions [16–18].

To exceed the simplest lattice graphs, more specific
topologies of networks defining the interactions among
individuals were also studied [19,20], which has received
substantial attention (for a review see [21]). More specifi-
cally, the celebrated scale-free graph has been recognized
as an extremely potent promoter of cooperative behavior
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in the prisoner’s dilemma as well as in the snowdrift
game [22,23], and this promotion of cooperation has been
found robust on several factors [24]. However, one may
argue that the many links of a hub involve not just a
higher payoff but a higher cost as well. Therefore, the
use of normalized payoffs may represent a more realis-
tic approach [25]. Indeed, the introduction of participa-
tion costs eradicates the ability of scale-free networks to
promote cooperation [26], yielding similar levels of coop-
erative behavior as regular grids introduced initially by
Nowak and May [7]. Very recently, Pacheco et al. have
reported that a suitable dynamical linking helps to main-
tain cooperative behavior [27,28], whereas on the other
hand, Ohtsuki et al. have shown that the separation of
the interaction and strategy adoption graphs completely
disables the survival of cooperators if the overlap between
the two graph is zero [29,30]. Inhomogeneities in the strat-
egy adoption probabilities can also enhance the frequency
of cooperators [31,32], particularly if the strategy adoption
is favored from some distinguished players [33]. It is worth
mentioning that the introduction of other inhomogeneities
in the personality (e.g., stochastic payoffs [34], different
aspiration levels for the win-stay-lose-sift strategies [35],
or even individual acceptance levels for the evolutionary
Ultimatum games [36]) can also support the altruistic be-
havior under certain conditions.

In this paper, we extend the above investigations by
introducing the diversity of reproduction of individuals on
two types of complex networks; namely on regular small-
world graphs and on highly irregular scale-free networks.
To study the impact of the diversity of reproduction on the
stationary level of cooperation explicitly, we focus on nor-
malized payoffs by the prisoner’s dilemma game. We find
that the differences of reproduction facilitate cooperative
behavior irrespective of the interaction network and par-
ticularities concerning payoff accumulation, and moreover,
may lead to domination of cooperation where otherwise
defection would reign. Remarkably, although normalized
payoffs can eliminate the advantage of scale-free topology,
we observe that reproduction restrictions of players that
are inversely proportional to their connectivity restore
the cooperative trait across the whole parameter range of
the temptation to defect. By studying cooperation levels
within the group of individuals having full reproduction
capabilities, and comparing those to the overall fraction
of cooperators, we are able to draw strong parallels be-
tween the presented mechanism for the promotion of co-
operation and the one reported previously for scale-free
networks. Indeed, our results imply that several recently
introduced mechanisms for the promotion of cooperation
within the prisoner’s dilemma game are routed in diver-
sities of participating players, which may emerge intrinsi-
cally due to an inhomogeneous interaction network [23],
or can be introduced extrinsically via social diversity [37]
or reproduction restrictions.

The remainder of this paper is structured as follows.
Section 2 is devoted to the description of particularities of
the evolutionary prisoner’s dilemma game and reproduc-
tion restrictions on small-world and scale-free networks,

while Section 3 features the results. In the last Section we
outline potential implications of our findings.

2 Evolutionary prisoner’s dilemma game

We consider an evolutionary two-strategy prisoner’s
dilemma game with players located on vertices of ei-
ther regular small-world graphs or irregular scale-free net-
works. Via the analogy with the creation of the Watts-
Strogatz structure, the former graph is generated from a
regular two-dimensional grid by randomly rewiring a cer-
tain fraction Q of nearest-neighbor links whereby preserv-
ing the initial connectivity zx = 4 of each player x [38]. Ev-
idently, for Q = 0 this structure is a square lattice, whereas
the limit Q→ 1 yields a regular random graph. The scale-
free network is generated via the celebrated mechanism
of preferential attachment growth [39] yielding a power-
law distribution of zx but still having average connectivity
z = 4. Initially, each player x is designated as a coopera-
tor (C) or defector (D) with equal probability. Moreover,
amongst all N players, and irrespective of their initial
strategies, a fraction ν of players is chosen randomly and
designated as having a restricted ability to transfer their
strategy [33]. The parameter ν is crucial in the present
work since it determines the fraction of players having re-
stricted reproduction capabilities, and accordingly, will be
in the focus of simulation results presented in the follow-
ing Section. Importantly, the reproduction ability of each
player is set only once at the beginning of each simulation
and remains unchanged during the evolutionary process.
Next, a player y can reproduce its strategy sy on one of
its randomly chosen neighbors x (throughout this work
”neighbors of y” refers to those which are directly con-
nected with y) in accordance with the probability

W (sx ← sy) = Wy
1

1 + exp[(Px − Py)/K]
, (1)

where Wy = w < 1 if player y has a restricted ability to
transfer its strategy, and Wy = 1 otherwise. Note that the
choice of w = 0 in the former case would mean that νN
players amongst all N are completely unable to reproduce
their own strategy, which would lead to frozen states and
stop the evolutionary process for large enough ν. It is also
easy to see that the stationary state at ν = 0 agrees with
the state at ν = 1 but the relaxation is slower in the latter
case. Moreover, K characterizes the uncertainty related
to the reproduction process, also serving to avoid trapped
conditions and warranting smooth transitions towards sta-
tionary states. Payoffs Px and Py of both players are calcu-
lated in accordance with the standard prisoner’s dilemma
scheme [7] having temptation b, reward 1, and both pun-
ishment as well as the suckers payoff 0, where 1 < b ≤ 2 to
ensure a proper payoff ranking. More precisely, both play-
ers x and y play one round of the prisoner’s dilemma game
with all their neighbors, respectively. Their accumulated
payoffs resulting from zx and zy interactions are stored in
px and py. As mentioned above, these payoffs are normal-
ized with the number of interactions from which they were
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Fig. 1. Gray scale coded fraction of cooperators ρc in depen-
dence on Q and ν, obtained for K = 0.08 and b = 1.14. The
gray scale is linear, white depicting 0.0 and black 0.45 values
of ρc.

obtained, hence yielding Px = px/zx and Py = py/zy. Us-
ing normalized payoffs we can separate effects described
earlier by Santos et al. [22,23] from those appearing due
to the presently introduced reproduction restrictions.

The elementary steps of the game on the two consid-
ered types of complex networks are as follows. An arbitrar-
ily chosen player x acquires its payoff Px by playing the
game with all its neighbors. One randomly chosen neigh-
bor of player x; we denote it by y, also acquires its payoff
Py by playing the game with all its neighbors. Finally, the
reproduction of player y to the site of player x is attempted
according to equation (1). A full Monte Carlo step (MCS)
consists of executing the above-described elementary steps
N times. Simulations of the evolutionary process via the
Monte Carlo algorithm were performed for populations
comprising N = 105–106 players, and characteristic quan-
tities, such as the stationary frequencies of cooperators
ρc and defectors ρd, were averaged over a sampling period
(ts = 104–106 MCS) after a sufficiently long transient time
tr ≈ ts.

3 Results

The above described mechanism as a type of inhomoge-
neous teaching activity in a social context has proved to
promote cooperation on lattices [33]. Here we extend this
study to explore the possible role of the topological fea-
tures of complex graphs. To have an overview of the im-
pact of restricted reproducibility on a regular small-world
graph we calculated ρc systematically for different values
of Q and ν while the values of K and b were held fixed. A
typical contour plot of cooperation is plotted in Figure 1,
where K = 0.08 and b = 1.14 were used. Within a wide
region of ν the level of cooperation (ρc) is enhanced sig-
nificantly and this improvement increases monotonously
with the randomness of the interaction topology via Q.
In particular, the fraction of cooperation can be enhanced
from ρc = 0 (for ν = 0 and Q = 0) to ρc ≈ 0.45 if
ν = 0.6 and Q > 0.5. The cooperation level saturates if
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Fig. 2. Fraction ρc of cooperators when varying ν: (left) on the
regular small-world graph generated with Q = 0.1 for K = 0.4
and b = 1.02; (right) on the scale-free network for K = 0.1 and
b = 1.04.

the rewiring probability exceeds the value Q ≈ 0.5. Notice
that the optimal value of ν is practically independent of
Q (νopt ≈ 0.6).

The Monte Carlo simulations show that reproduction
restrictions expand and shift the region of parameters for
which the cooperator and defector strategies coexist. We
emphasize that defectors can die out completely (ρc = 1)
below a threshold value of b, whereby the latter depends
on Q, K, ν and w. Figure 2a demonstrates the effect of
ν on the fraction of cooperators on a regular small-world
structure for Q = 0.1. Notably, for sufficiently low values
of w there exists a central region of ν for which ρc = 1.
For larger values of w this region disappears and one can
only observe a peak in the contour of ρc(ν).

To extend the studied class of connection topologies we
have also analyzed the effect of reproduction restrictions
on the maintenance of cooperation for the strongly degree-
inhomogeneous Barabási-Albert scale-free network [39].
Figure 2b shows that the fraction of cooperators remains
fairly low for b = 1.04 if ν = 0. However, as soon as ν is in-
creased the fraction of cooperators rises quickly, eventually
reaching ρc = 1 at ν ≈ 0.5. Noteworthy, the optimal frac-
tion of players suffering under reproduction restrictions on
the scale-free network is comparable to the one identified
for regular small-world networks. The similarity of behav-
ior on these networks is related to the usage of normalized
payoffs that suppress the otherwise important role of hubs
by the scale-free connectivity structure [25,40].

Since an appropriately pronounced limitation of repro-
duction capabilities recovers the ability of scale-free net-
works to boost cooperation to dominance even if normal-
ized payoffs are used in equation (1), it seems reasonable
to investigate this phenomenon more precisely in depen-
dence on b, and moreover, to test if there exist optimal
ways of how reproduction restrictions can be introduced.
Accordingly, the results presented in Figure 3 compare
ρc as a function of b for four different cases of reproduc-
tion restrictions. In the absence of reproduction restric-
tions (ν = 0) the scale-free network alone is unable to
sustain cooperative behavior past b = 1.09 since normal-
ized payoffs are used for the evaluation of fitness. On the
other hand, the region of coexisting D and C strategies is
shifted towards significantly higher values of b; in partic-
ular, cooperators can survive up to b = 1.26 if ν ≈ 0.5.

Utilizing that scale-free networks have a power-law
connectivity distribution, it is reasonable to investigate
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Fig. 3. Fraction of cooperators ρc as a function of b when ν = 0
(solid line), ν = 0.5 (dashed line), and when the reproduction
restriction is proportional to the connectivity of each player
(dashed-dotted line) if K = 0.1 The highest ρc is achieved for
the model suggested by [22] (dotted line).

what happens if the reproduction capability of players is
proportional to their degree zy. For this purpose we have
studied a system with site-dependent w, i.e. wy = zy/zmax

where zmax is the maximal number of neighbors within
the employed scale-free network for ν = 1. These types
of dynamical rules describe the situation when strategy
adoption along each connection (in both direction) is al-
lowed with the same probability. The dashed-dotted line
in Figure 3 illustrates that in this case cooperators sur-
vive throughout the whole range of b. The advance of
players with large neighborhoods can be enhanced fur-
ther either by comparing total payoffs [22] or by artificial
preferences as suggested previously by Ren et al. [41]. To
demonstrate the additional enhancement the dotted line
in Figure 3 shows the values of ρc on scale-free networks
when the players compare their absolute payoffs, as im-
plemented in [22]. From the qualitative similarity between
the last two cases one can suspect that similar mechanisms
may underlie the enhancement of cooperative behavior for
these systems. In order to clarify this assumption, we have
studied the level of cooperation within the group of in-
dividuals having high reproduction capabilities, denoting
this as ρr, that can be compared to the overall fraction
of cooperators ρc. Evidently, the players with w = 1 be-
long to the mentioned group in the case of randomly dis-
tributed players with two possible values of reproduction
capabilities. However, when the reproduction capability is
inversely proportional to the degree of a node several dif-
ferent values of w are possible. Here we divide the nodes
into three categories in such a way that each interval of
the degree becomes equally large on the logarithmic scale.
We consider players belonging to the “high reproduction
capability class” if they are members of the highest con-
nectivity group.

Results in Figure 4 illustrate the difference ∆ρ =
ρr − ρc as a function of ρc for the small-world graph and
scale-free network at ν = 0.5, as well as for the case when
reproduction restrictions are proportional to the connec-
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Fig. 4. Excess fraction of cooperators ∆ρ within the group
of individuals having high reproduction capability (or connec-
tivity) versus the overall fraction ρc. The four curves (from
bottom to top) illustrate the results obtained on the scale-free
network with randomly distributed two-value reproduction ca-
pability (solid line), small-world network (Q = 0.9) with ran-
domly distributed two-value reproduction capability (dashed
line), scale-free network with reproduction rate proportional to
the connectivity of each player (dashed-dotted line), and scale-
free network with absolute payoffs as in [22] (dotted line). The
simulation were performed for ν = 0.5 and K = 0.1.

tivity of each individual (for comparative purposes results
obtained with absolute payoffs and in the absence of re-
production restrictions on the scale-free network are also
shown). In the latter case, and similarly to the inversely
proportional restriction situation, players of the studied
group have a connectivity belonging to the top third of
the whole interval on a logarithmic scale.

The most important message of Figure 4 is that ∆ρ >
0 in the whole region of parameters. In other words, the
cooperation is preferred on the sites from where the ac-
tual strategy can spread away faster independently of the
mechanism yielding this process. Evidently, for pure co-
operation (ρc = 1) or defection (ρc = 0) ∆ρ = 0. In the
close vicinity of the boundaries the enhancement vanishes
linearly, i.e., ∆ρ � ρc if ρc � 1 and ∆ρ � (1 − ρc) if
1 − ρc � 1. Between these two limits, however, values of
∆ρ indicate the enhancement of cooperation level within
the group of individuals having high reproduction capa-
bilities.

The above results indicate that defection cannot sur-
vive long on network sites having high strategy reproduc-
tion capability. This phenomenon is analogous to the one
reported by Santos et al. on the scale-free graph [23]. In the
latter case the total payoff difference determines the prob-
ability of strategy adoption that favors the sites with a
high degree. Consequently, within the large neighborhood
of a defector the fraction of defectors increases with time,
and this process yields a monotonously decreasing total
income for the focal defector. Sooner or later this focal
defector will adopt the strategy from another focal cooper-
ator whose imitation is beneficial for it, thereby, the focal
cooperators become the players to be followed by others.
In the present models a similar process takes place due to
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the introduction of inhomogeneous reproduction capabili-
ties as an additional feature of players. Finally, we mention
that the recently introduced promotion of cooperation via
social diversity in the prisoner’s dilemma game [37] also
relies on a mechanism with the same properties as de-
scribed above, hence implying it is widely applicable and
may serve to identify new ways of avoiding widespread
defection.

The above-described mechanism for the promotion of
cooperation assumes that links between players having a
large probability to affect their neighbor’s strategy are
rare [23,42]. Most notable enhancements of ρc are war-
ranted by the scale-free topology, which first, provides
extremely high inhomogeneities in the strategy adoption
probabilities, and second, yields practically unidirectional
strategy adoptions between players having large and small
connectivity. We have to emphasize, however, that on reg-
ular graphs the randomly distributed influential players
(players with full reproduction ability) are connected to
each other with an adequate probability only if their den-
sity is appropriately adjusted, i.e. neither too large nor too
small. Despite this necessary condition, however, the sim-
ulations have indicated some increase in ρc even if their
density was very low or high, respectively.

4 Summary

We have studied the effect of inhomogeneous reproduc-
tion capabilities on the evolution of cooperation for the
multi-agent evolutionary prisoner’s dilemma game if the
connectivity structure is described by different complex
graphs, such as regular small-world graphs and strongly
irregular scale-free networks. Our results suggest that the
introduction of inhomogeneous reproduction capabilities,
representing many realistic situations in human societies
and animal communities, is a powerful and robust pro-
moter of cooperative behavior that works irrespective of
the complexity of the interaction network and other de-
tails concerning payoff accumulation and determination of
fitness. Diversity in reproduction capability is a particu-
larly potent promoter of cooperation if the connectivity
structure ensures that many co-players follow the strat-
egy of rarely linked but potent players as it happens on
the scale-free graphs studied by Santos et al. [22,23].
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Fund (T-47003,K-73449) and the Slovenian Research Agency
(grant Z1-9629). A.S. thanks Zsuzsa Danku for useful discus-
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